Existence and Ulam–Hyers Stability of a Fractional-Order Coupled System in the Frame of Generalized Hilfer Derivatives
Abstract
:1. Introduction
- (i)
- and
- (ii)
- represents the -Hilfer FD of order and type .
- (iii)
- and represent the-R-L fractional integrals of order and ,respectively;
- (iv)
- are continuous and nonlinear functions on a Banach space ;
- (v)
- are an increasing function with for all
2. Preliminaries
3. Main Results
- (Hy1)
- are continuous such that for each there exist with
- (Hy2)
- are completely continuous such that for each there exist with
3.1. Existence Result
3.2. Uniqueness Result
3.3. Special Cases
- (1)
- The R-L type system, for , and (see [2]);
- (2)
- The Caputo type system, for , and (see [2]);
- (3)
- The Hilfer type system, for (see [5]);
- (4)
- The Katugampola type system, for and (see [42]);
- (5)
- The Caputo–Katugampola type system, for and (see [44]);
- (6)
- The Hilfer–Katugampola type system, for (see [43]);
- (7)
- The Hadamard type system, for and (see [40]);
- (8)
- The Caputo–Hadamard type system, for and (see [45]);
- (9)
- The Hilfer–Hadamard type system, for (see [41]).
3.4. U-H Stability Analysis
- (i)
- and
- (ii)
- For all
4. Examples
- 1.
- In order to illustrate Theorem 5, we take andThen we have
- 2.
- In order to illustrate Theorem 4, we takeIt is easy to see that
- 3.
- In order to illustrate Theorem 6, we have from case 1 that (Hy) is satisfied. As has been shown in Theorem 6, for and , if satisfiesHence which implies that system (29) is H-U stable.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Abdo, M.S.; Abdeljawad, T.; Shah, K.; Ali, S.M. On nonlinear coupled evolution system with nonlocal subsidiary conditions under fractal-fractional order derivative. Math. Meth. Appl. Sci. 2021, 44, 6581–6600. [Google Scholar] [CrossRef]
- Wang, J.; Shah, K.; Ali, A. Existence and Hyers–Ulam stability of fractional nonlinear impulsive switched coupled evolution equations. Math. Meth. Appl. Sci. 2018, 41, 1–11. [Google Scholar] [CrossRef]
- Ahmad, M.; Zada, A.; Alzabut, J. Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer–Hadamard type. Demon. Math. 2019, 52, 283–295. [Google Scholar] [CrossRef]
- Almalahi, M.A.; Abdo, M.S.; Panchal, S.K. Existence and Ulam–Hyers stability results of a coupled system of ψ-Hilfer sequential fractional differential equations. Results Appl. Math. 2021, 10, 100142. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Graef, J.R. Coupled systems of Hilfer fractional differential inclusions in Banach spaces. Commun. Pure Appl. Anal. 2018, 17, 2479. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Khan, A.; Abdeljawad, T.; Alkhazzan, A. Existence results in Banach space for a nonlinear impulsive system. Adv. Differ. Equ. 2019, 2019, 18. [Google Scholar] [CrossRef]
- Khan, R.A.; Shah, K. Existence and uniqueness of solutions to fractional order multi-point boundary value problems. Commun. Appl. Anal. 2015, 19, 515–526. [Google Scholar]
- Furati, K.F.; Kassim, M.D.; Tatar, N.E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 64, 1616–1626. [Google Scholar] [CrossRef] [Green Version]
- Salim, A.; Benchohra, M.; Karapınar, E.; Lazreg, J.E. Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations. Adv. Differ. Equ. 2020, 2020, 1–21. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Vanterler, C.S.J.; Capelas, O.E. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Vanterler, C.S.J.; Kucche, K.D.; Capelas, O.E. On the Ulam-Hyers stabilities of the solutions of ψ-Hilfer fractional differential equation with abstract Volterra operator. Math. Methods Appl. Sci. 2019, 42, 3021–3032. [Google Scholar]
- Luo, D.; Shah, K.; Luo, Z. On the Novel Ulam–Hyers Stability for a Class of Nonlinear ψ-Hilfer Fractional Differential Equation with Time-Varying Delays. Mediterranean J. Math. 2019, 16, 1–15. [Google Scholar] [CrossRef]
- Wahash, H.A.; Abdo, M.S.; Panchal, K.S. Fractional integrodifferential equations with nonlocal conditions and generalized Hilfer fractional derivative. Ufa Math. J. 2019, 11, 151–171. [Google Scholar] [CrossRef] [Green Version]
- Abdo, M.S.; Hanan, A.W.; Panchal, S.K. Ulam–Hyers–Mittag-Leffler stability for a ψ-Hilfer problem with fractional order and infinite delay. Results Appl. Math. 2020, 7, 100115. [Google Scholar] [CrossRef]
- Abdo, M.S.; Thabet, S.T.; Ahmad, B. The existence and Ulam–Hyers stability results for ψ-Hilfer fractional integrodifferential equations. J. Pseudo-Differ. Oper. Appl. 2020, 11, 1757–1780. [Google Scholar] [CrossRef]
- Asawasamrit, S.; Kijjathanakorn, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal boundary value problems for Hilfer fractional differential equations. Bull. Korean Math. Soc. 2018, 55, 1639–1657. [Google Scholar]
- Ntouyas, S.K.; Vivek, D. Existence and uniqueness results for sequential ψ-Hilfer fractional differential equations with multi-point boundary conditions. Acta Math. Univ. Comenianae 2021, 90, 171–185. [Google Scholar]
- Sudsutad, W.; Thaiprayoon, C.; Ntouyas, S.K. Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Math. 2021, 6, 4119–4141. [Google Scholar] [CrossRef]
- Ulam, S.M. Problems in Modern Mathematics; John Wiley and Sons: New York, NY, USA, 1940. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Obloza, M. Hyers stability of the linear differential equation, Rocznik Nauk-Dydakt. Prac. Mat. 1993, 13, 259–270. [Google Scholar]
- Li, T.; Zada, A. Connections between Hyers–Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces. Adv. Differ. Equ. 2016, 2016, 153. [Google Scholar] [CrossRef] [Green Version]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 2010, 26, 103–107. [Google Scholar]
- Kumam, P.; Ali, A.; Shah, K.; Khan, R. Existence results and Hyers-Ulam stability to a class of nonlinear arbitrary order differential equations. J. Nonlinear Sci. Applic. JNSA 2017, 10, 2986–2997. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, X. Ulam-Hyers stability of fractional Langevin equations. Appl. Math. Comput. 2015, 258, 72–83. [Google Scholar] [CrossRef]
- Ali, Z.; Zada, A.; Shah, K. On Ulam’s Stability for a Coupled Systems of Nonlinear Implicit Fractional Differential Equations. Bull. Malays. Math. Sci. Soc. 2019, 42, 2681–2699. [Google Scholar] [CrossRef]
- Kassim, M.D.; Abdeljawad, T.; Shatanawi, W.; Saeed, M.A.; Abdo, M.S. A qualitative study on generalized Caputo fractional integro-differential equations. Adv. Differ. Equ. 2021, 2021, 375. [Google Scholar] [CrossRef]
- Abdo, M.S.; Shah, K.; Panchal, S.K.; Wahash, H.A. Existence and Ulam stability results of a coupled system for terminal value problems involving ψ-Hilfer fractional operator. Advances in Difference Equations. Adv. Differ. Equ. 2020, 2020, 316. [Google Scholar] [CrossRef]
- Da Vanterler, C.S.J.; Capelas, O.E. On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator. J. Fixed Point Theory Appl. 2018, 20, 96. [Google Scholar]
- Abdo, M.S.; Panchal, S.K. Fractional integro-differential equations involving ψ-Hilfer fractional derivative. Adv. Appl. Math. Mech. 2019, 11, 338–359. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Encyclopedia of Mathematics and its Applications 71; Cambridge University Press: Cambridge, UK, 1999; Volume 71. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Smart, D.R. Fixed Point Theorems; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Hadamard, J. Essai sur létude des fonctions donnees par leur developpment de Taylor. J. Mat. Pure Appl. Ser. 1892, 8, 101–186. [Google Scholar]
- Qassim, M.D.; Furati, K.M.; Tatar, N.E. On a differential equation involving Hilfer-Hadamard fractional derivative. Abstr. Appl. Anal. 2012, 2012, 391062. [Google Scholar] [CrossRef]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Oliveira, D.S.; de Oliveira, E.C. Hilfer–Katugampola fractional derivatives. Comput. Appl. Math. 2018, 37, 3672–3690. [Google Scholar] [CrossRef]
- Almeida, R.; Malinowska, A.B.; Odzijewicz, T. Fractional differential equations with dependence on the Caputo–Katugampola derivative. J. Comput. Nonlinear Dyn. 2016, 11, 061017. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 142. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, A.M.; Abdo, M.S.; Jeelani, M.B. Existence and Ulam–Hyers Stability of a Fractional-Order Coupled System in the Frame of Generalized Hilfer Derivatives. Mathematics 2021, 9, 2543. https://doi.org/10.3390/math9202543
Saeed AM, Abdo MS, Jeelani MB. Existence and Ulam–Hyers Stability of a Fractional-Order Coupled System in the Frame of Generalized Hilfer Derivatives. Mathematics. 2021; 9(20):2543. https://doi.org/10.3390/math9202543
Chicago/Turabian StyleSaeed, Abdulkafi M., Mohammed S. Abdo, and Mdi Begum Jeelani. 2021. "Existence and Ulam–Hyers Stability of a Fractional-Order Coupled System in the Frame of Generalized Hilfer Derivatives" Mathematics 9, no. 20: 2543. https://doi.org/10.3390/math9202543
APA StyleSaeed, A. M., Abdo, M. S., & Jeelani, M. B. (2021). Existence and Ulam–Hyers Stability of a Fractional-Order Coupled System in the Frame of Generalized Hilfer Derivatives. Mathematics, 9(20), 2543. https://doi.org/10.3390/math9202543