New Irregular Solutions in the Spatially Distributed Fermi–Pasta–Ulam Problem
Abstract
:1. Introduction
2. Results
2.1. Basic Result
2.2. Justification of Theorem 1
2.3. Case of Results
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russell, J.S. Report on Waves. In Proceedings of the 14th Meeting of the British Association for the Advancement of Science, York, UK, September 1844; pp. 311–390. [Google Scholar]
- Fermi, E.; Pasta, J.R.; Ulam, S. Studies of Nonlinear Problems. I. In Los Alamos Report LA-1940; Los Alamos Scientific Laboratory: Los Alamos, NM, USA, 1955. [Google Scholar]
- Porter, M.A.; Zabusky, N.J.; Hu, B.; Campbell, D.K. Fermi, Pasta, Ulam and the Birth of Experimental Mathematics. Am. Sci. 2009, 97, 214–221. [Google Scholar] [CrossRef]
- Dauxois, T.; Peyrard, M.; Ruffo, S. The Fermi–Pasta–Ulam ‘’numerical experimen”: History and pedagogical perspectives. arXiv 2005, arXiv:0501053v2. [Google Scholar]
- Genta, T.; Giorgilli, A.; Paleari, S.; Penati, T. Packets of resonant modes in the Fermi– Pasta–Ulam system. Phys. Lett. A 2012, 376, 2038–2044. [Google Scholar] [CrossRef]
- Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. Method for Solving the Korteweg-deVries Equation. Phys. Rev. Lett. 1997, 19, 1095–1097. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Clarkson, P.A. Solitons Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Kudryashov, N.A. Refinement of the Korteweg—De Vries equation from the Fermi–Pasta–Ulam model. Phys. Lett. A 2015, 279, 2610–2614. [Google Scholar] [CrossRef]
- Kudryashov, N.A. From the Fermi–Pasta–Ulam Model to Higher-Order Nonlinear Evolution Equations. Rep. Math. Phys. 2016, 77, 57–67. [Google Scholar] [CrossRef]
- Volkov, A.K.; Kudryashov, N.A. Nonlinear waves described by a fifthorder equation derived from the Fermi–Pasta–Ulam system. Comput. Math. Math. Phys. 2016, 56, 680–687. [Google Scholar] [CrossRef]
- Kashchenko, S.A. The interaction of waves in the Fermi–Pasta–Ulam model. Commun. Nonlinear Sci. Numer. Simul. 2020, 91, 105436. [Google Scholar] [CrossRef]
- Kashchenko, S.A. Bifurcations in spatially distributed chains of two-dimensional systems of equations. Russ. Math. Surv. 2020, 76, 1153–1155. [Google Scholar] [CrossRef]
- Kashchenko, S.A. Normalization in the systems with small diffusion. Int. J. Bifurcations Chaos 1996, 6, 1093–1109. [Google Scholar] [CrossRef]
- Kashchenko, I.S.; Kashchenko, S.A. Quasi-Normal Forms of Two-Component Singularly Perturbed Systems. Dokl. Math. 2012, 86, 865. [Google Scholar] [CrossRef]
- Kashchenko, S.A. Asymptotic Behavior of Rapidly Oscillating Solutions of the Modified Camassa–Holm Equation. Theor. Math. Phys. 2020, 203, 469–482. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transform; SIAM: Philadelphia, PA, USA, 1981. [Google Scholar]
- Dodd, R.K.; Eilbeck, J.C.; Gibbon, J.D.; Morris, H.C. Solitons and Nonlinear Wave Equations; Academic Press: London, UK, 1982. [Google Scholar]
- Newell, A.C. Solitons in Mathematics and Physics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1985. [Google Scholar]
- Zabusky, N.J.; Kruskal, M.D. Interaction of «solitons» in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 1965, 15, 240–243. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashchenko, S.; Tolbey, A. New Irregular Solutions in the Spatially Distributed Fermi–Pasta–Ulam Problem. Mathematics 2021, 9, 2872. https://doi.org/10.3390/math9222872
Kashchenko S, Tolbey A. New Irregular Solutions in the Spatially Distributed Fermi–Pasta–Ulam Problem. Mathematics. 2021; 9(22):2872. https://doi.org/10.3390/math9222872
Chicago/Turabian StyleKashchenko, Sergey, and Anna Tolbey. 2021. "New Irregular Solutions in the Spatially Distributed Fermi–Pasta–Ulam Problem" Mathematics 9, no. 22: 2872. https://doi.org/10.3390/math9222872
APA StyleKashchenko, S., & Tolbey, A. (2021). New Irregular Solutions in the Spatially Distributed Fermi–Pasta–Ulam Problem. Mathematics, 9(22), 2872. https://doi.org/10.3390/math9222872