Next Article in Journal
A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation
Previous Article in Journal
On Some Features of the Numerical Solving of Coefficient Inverse Problems for an Equation of the Reaction-Diffusion-Advection-Type with Data on the Position of a Reaction Front
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

(L,⊙)-Fuzzy (K,E)-Soft Filter

by
Ahmed Aref Abd El-Latif
1,2,*,† and
Ahmed Abd Elkader Ramadan
3,†
1
Department of Mathematics, Faculty of Science and Arts at Belqarn, University of Bisha, Bisha 67361, Saudi Arabia
2
High Institute of Computer King Marriott, Alexandria 3135, Egypt
3
Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2021, 9(22), 2895; https://doi.org/10.3390/math9222895
Submission received: 30 September 2021 / Revised: 22 October 2021 / Accepted: 10 November 2021 / Published: 13 November 2021
(This article belongs to the Section Fuzzy Sets, Systems and Decision Making)

Abstract

:
In the present study, we preface the notion of the ( L , ) -fuzzy ( K , E ) -soft filter and probe many of its characteristics. Using certain operations, we induce ( L , ) -fuzzy ( K , E ) -soft topologies from ( L , ) -fuzzy ( K , E ) -soft filters. Finally, we introduce the products of the ( L , ) -fuzzy ( K , E ) -soft filters and ( L , ) -fuzzy ( K , E ) -soft topologies on strictly two-sided commutative quantale lattices ( L , ) and ( L , ) .

1. Introduction

The theory of soft sets was presented by Molodtsov [1]. This theory was is considered a novel mathematical tool to simplify dealing with uncertainty in modeling problems in many scientific fields, such as computer science, physics, medical sciences and engineering. Molodtsov devoted his efforts to developing his theory and used it in many fields [1,2,3]. Molodtsov et al. [4] were able to introduce some applications of their new theory.
Maji et al. [5,6] defined the notion of a fuzzy soft set and studied several basics of its characteristics. Maji et al. [7] and Roy and Maji [8] used soft sets and fuzzy soft sets to study some problems in decision making. Many authors have developed the theory of fuzzy soft sets [9,10,11,12].
Shabir and Naz [13] introduced the concept of soft topological spaces and studied their numerous properties. Aygünoǧlu et al. [14] presented the notion of ( L , ) -fuzzy ( K , E ) -soft topology in the sense of Šostak [15]. Many concepts in fuzzy topological spaces in the sense of Chang [16] and in the sense of Šostak [15] were extended to fuzzy soft theory (see [17,18,19,20,21,22,23,24]).
The concept of L-filters was presented and investigated by Höhle and Šostak [25]. L-filters were used to introduce many types of convergence spaces ([26,27,28,29]). The L-filter is a significant tool for investigating the properties of L-fuzzy topological spaces ([30,31]). L-filter has been developed in different directions ([32,33,34,35]).
The intent of our study was to extend the notion of the L-filter into the theory of fuzzy soft sets and study their characteristics. This motivated us to use it for studying more properties of ( L , ) -fuzzy ( K , E ) -soft topology. The structure of the whole paper is as follows: In Section 2, we recall some essential concepts and properties which we need for our study. In Section 3, we preface the concept of a ( L , ) -fuzzy ( K , E ) -soft filter and study its various properties. In Section 4, by using certain operations, we induce ( L , ) -fuzzy ( K , E ) -soft topologies from ( L , ) -fuzzy ( K , E ) -soft filters. In Section 5, we present the products of the ( L , ) -fuzzy ( K , E ) -soft filters and ( L , ) -fuzzy ( K , E ) -soft topologies and study some of their properties.

2. Preliminaries

Let L = ( L , , , , 0 L , 1 L ) be a completely distributive lattice where 0 L is the least element and 1 L is the greatest element. In this manuscript, X is denoted as an initial universe; and E and K are the sets of all parameters for X. An L-fuzzy set on X is a mapping λ : X L [36]. L X is the set of all L-fuzzy sets on X.
Definition 1 
([37,38]). A tripartite ( L , , ) is said to be a strictly two-sided commutative quantale (for short, stsc-quantale) if it holds the following conditions:
(L1) 
L = ( L , , 0 L , 1 L ) is a complete lattice;
(L2) 
( L , ) is a commutative semigroup;
(L3) 
u = u 1 L , u L ;
(L4) 
( i Γ u i ) v = i Γ ( u i v ) .
Definition 2 
([25]). If ( L , ) and ( L , ) are two stsc-quantales, the operation dominates * if it holds:
( u 1 v 1 ) ( u 2 v 2 ) ( u 1 u 2 ) ( v 1 v 2 ) .
Lemma 1 
([39]). Let ( L , ) and ( L , ) be stsc-quantales which induced two implications u v = { w : u w v } and u v = { w : u w v } , respectively. Let dominates *. For each u , v , w , , z , u i , v i L , we have:
(i) 
If v w , then u v u w and u v u w .
(ii) 
u v w iff u v w . Moreover, u v w iff u v w .
(iii) 
If v w , then u v u w and w u v u for { , } .
(iv) 
u v u v , u v u v and u ( v w ) ( u v ) w .
(v) 
( u v ) ( w z ) ( u w ) ( v z ) .
(vi) 
( v w ) ( u v ) ( u w ) .
(vii) 
( v w ) ( u v ) ( u w ) and ( v u ) ( u w ) ( v w ) .
(viii) 
u i v i ( i Γ u i ) ( i Γ v i ) .
(ix) 
u i v i ( i Γ u i ) ( i Γ v i ) .
(x) 
( w u ) ( v z ) ( u v ) ( w z ) .
(xi) 
u v iff u v = 1 L .
Definition 3 
([14]). h is said to be an L-fuzzy soft sets on X, where h : E L X is a mapping from a parameter set E into L X , i.e., h e : = h ( e ) L X , e E . ( L X ) E denotes the collection of L-fuzzy soft sets on X. Let h 1 , h 2 ( L X ) E . Then:
(i) 
h 1 is a subset of h 2 , and write h 1 h 2 if ( h 1 ) e ( h 2 ) e , e E . h 1 = h 2 iff h 1 h 2 and h 2 h 1 .
(ii) 
The intersection of h 1 and h 2 is an L-fuzzy soft set h = h 1 h 2 , where h e = ( h 1 ) e ( h 2 ) e , e E .
(iii) 
The union of h 1 and h 2 is an L-fuzzy soft set h = h 1 h 2 , where h e = ( h 1 ) e ( h 2 ) e , e E .
(iv) 
An L-fuzzy soft set h = h 1 h 2 is defined as h e = ( h 1 ) e ( h 2 ) e , e E .
(v) 
h is the complement of h and is defined by h , where h : E L X is a mapping obtained by h e = ( h e ) , e E .
(vi) 
0 X is a null L-fuzzy soft set, if ( 0 X ) e ( x ) = 0 L , e E , x X .
(vii) 
1 X is absolute L-fuzzy soft set, if ( 1 X ) e ( x ) = 1 L , e E , x X .
Definition 4 
([14]). Let E 1 and E 2 be two parameters sets for the crisp sets X and Y, respectively; and let ϕ : X Y and ψ : E 1 E 2 be two mappings. Then ϕ ψ : ( L X ) E 1 ( L Y ) E 2 is called a fuzzy soft mapping.
(i) 
For f ( L X ) E 1 , ϕ ψ ( f ) e 2 ( y ) = x ψ 1 ( { y } ) ( e 1 ψ 1 ( { e 2 } ) f e 1 ( x ) ) , k K , y Y ,
(ii) 
For g ( L Y ) E 2 , ϕ ψ ( g ) e ( x ) = g ψ ( e ) ( ϕ ( x ) ) , e E , x X .
(iii) 
ϕ ψ : ( L X ) E 1 ( L Y ) E 2 is called one to one (resp. onto, bijective) if ϕ and ψ are both one to one (resp. onto, bijective).
Lemma 2 
([40]). Let ϕ ψ : ( L X ) E 1 ( L Y ) E 2 . Then, for f , f i ( L X ) E 1 and g , g i ( L Y ) E 2 , we have
(i) 
g ϕ ψ ( ϕ ψ ( g ) ) and g = ϕ ψ ( ϕ ψ ( g ) ) if ϕ ψ is onto.
(ii) 
f ϕ ψ ( ϕ ψ ( f ) ) and f = ϕ ψ ( ϕ ψ ( f ) ) if ϕ ψ is one to one.
(iii) 
If ϕ ψ is one to one,
ϕ ψ ( f ) e 2 ( y ) = f e 1 ( x ) , if x ϕ 1 ( y ) , e 1 ψ 1 ( e 2 ) 0 L , otherwise .
(iv) 
ϕ ψ ( g ) = ( ϕ ψ ( g ) ) .
(v) 
ϕ ψ ( i Γ g i ) = i Γ ϕ ψ ( g i ) .
(vi) 
ϕ ψ ( i Γ g i ) = i Γ ϕ ψ ( g i ) .
(vii) 
ϕ ψ ( i Γ f i ) = i Γ ϕ ψ ( f i ) .
(viii) 
ϕ ψ ( i Γ f i ) i Γ ϕ ψ ( f i ) with equality if ϕ ψ is one to one.
(ix) 
ϕ ψ ( g 1 g 2 ) = ϕ ψ ( g 1 ) ϕ ψ ( g 2 ) .
(x) 
ϕ ψ ( f 1 f 2 ) ϕ ψ ( f 1 ) ϕ ψ ( f 2 ) with equality if ϕ ψ is one to one.
Definition 5 
([14]). An ( L , ) -fuzzy ( K , E ) -soft topology (briefly, ( L , K E ) -fs-topology) on a set X is a map T : K L ( L X ) E (where T k : = T ( k ) : ( L X ) E L is a map for each k K ) that satisfies the following conditions for each k K :
(SO1) 
T k ( 0 X ) = F k ( 1 X ) = 1 L ,
(SO2) 
T k ( f g ) T k ( f ) T k ( g ) , for each f , g ( L X ) E ,
(SO3) 
T k ( i Γ f i ) i Γ T k ( f i ) , f i ( L X ) E , i Γ
An ( L , K E ) -fs-topology is enriched if
(SR) 
T k ( β g ) T k ( g ) , g ( L X ) E and β L .
( X , T ) is said to be an ( L , ) -fuzzy ( K , E ) -soft topological space (briefly, ( L , K E ) -fs-topological space). Let ( X , T 1 ) be an ( L , K 1 E 1 ) -fs-topological space and ( Y , T 2 ) be an ( L , K 2 E 2 ) -fs-topological space. If ϕ : X Y , ψ : E 1 E 2 and η : K 1 K 2 are mappings, then ϕ ψ , η : ( X , T 1 ) ( Y , T 2 ) is L-fuzzy soft continuous if T k 1 ( ϕ ψ ( g ) ) T η ( k ) 2 ( g ) , g ( L Y ) E 2 , k K 1 .

3. ( L , ) -Fuzzy ( K , E ) -Soft Filter

In this section, let L be a stsc-quantale and order-dense chain lattice.
Definition 6.
An ( L , ) -fuzzy ( K , E ) -soft filter (briefly, ( L , K E ) -fs-filter) on a set X is a map F : K L ( L X ) E (where F k : = F ( k ) : ( L X ) E L is a map for each k K ) satisfies the following conditions for each k K :
(SF1) 
F k ( 0 X ) = 0 L and F k ( 1 X ) = 1 L ,
(SF2) 
F k ( f g ) F k ( f ) F k ( g ) , for each f , g ( L X ) E ,
(SF3) 
If f g , then F k ( f ) F k ( g ) .
An ( L , K E ) -fs-filter is stratified if,
(SS) 
F k ( β g ) β F k ( g ) , g ( L X ) E and β L .
( X , F ) is said to be an ( L , ) -fuzzy ( K , E ) -soft filtered set (briefly, ( L , K E ) -fs-filtered set).
Let F 1 and F 2 be two ( L , K E ) -fs-filters on X. We indicate that F 1 is finer than F 2 (or F 2 is coarser than F 1 ), denoted by F 2 F 1 iff ( F 2 ) k ( f ) ( F 1 ) k ( f ) , for each f ( L X ) E , k K .
Definition 7.
Let ( X , F ) be an ( L , K 1 E 1 ) -fs-filtered set and ( Y , G ) be an ( L , K 2 E 2 ) -fs-filtered set. Let ϕ : X Y , ψ : E 1 E 2 and η : K 1 K 2 be mappings. Then the mapping ϕ ψ , η : ( X , F ) ( Y , G ) is called L-fuzzy soft filter if F k ( ϕ ψ ( f ) ) G η ( k ) ( f ) , for each f ( L Y ) E 2 , k K 1 .
Theorem 1.
If { F i } i Γ is a family of ( L , K E ) -fs-filtered sets in a fixed set X. Define the mapping F = i Γ F i : K L ( L X ) E , where F : = F k = i Γ ( F i ) k : ( L X ) E L defined by: F k ( f ) = i Γ ( F i ) k ( f ) , for each f ( L X ) E , k K . Then F is an ( L , K E ) -fs-filter on X.
Proof. 
(SF1)  k K , we get F k ( 0 X ) = i Γ ( F i ) k ( 0 X ) = i Γ 0 L = 0 L and F k ( 1 X ) = i Γ ( F i ) k ( 1 X ) = i Γ 1 L = 1 L .
(SF2) For each f , g ( L X ) E , we have
F k ( f ) F k ( g ) = i Γ ( F i ) k ( f ) i Γ ( F i ) k ( g ) i Γ ( ( F i ) k ( f ) ( F i ) k ( g ) ) i Γ ( F i ) k ( f g ) = F k ( f g ) .
(SF3) If f g , then we have ( F i ) k ( f ) ( F i ) k ( g ) , i Γ , k K . Therefore,
F k ( f ) = i Γ ( F i ) k ( f ) i Γ ( F i ) k ( g ) = F k ( g ) .
Then F is an ( L , K E ) -fs-filter on X. □
Theorem 2.
Let ϕ : X Y , ψ : E 1 E 2 and η : K 1 K 2 . Let F be an ( L , K 1 E 1 ) -fs-filter on X. Define a map ϕ ψ , η ( F ) : K 2 L ( L Y ) E 2 (where ( ϕ ψ , η ( F ) ) k : = F η 1 ( k ) ( ϕ ψ ) ( g ) : ( L Y ) E 2 L is a map for each k K 2 ) by ( ϕ ψ , η ( F ) ) k ( g ) = F η 1 ( k ) ( ( ϕ ψ ) ( g ) ) . Then, ϕ ψ , η ( F ) is an ( L , K 2 E 2 ) -fs-filter on Y.
Proof. 
(SF1) It is clear.
(SF2) For k K 2 , f , g ( L Y ) E 2 , we have
( ϕ ψ , η ( F ) ) k ( f g ) = F η 1 ( k ) ( ϕ ψ ( f g ) ) = F η 1 ( k ) ( ϕ ψ ( f ) ϕ ψ ( g ) ) F η 1 ( k ) ( ϕ ψ ( f ) ) F η 1 ( k ) ( ϕ ψ ( g ) ) = ( ϕ ψ , η ( F ) ) k ( f ) ( ϕ ψ , η ( F ) ) k ( g ) .
(SF3) If f g , then
( ϕ ψ , η ( F ) ) k ( f ) = F η 1 ( k ) ( ( ϕ ψ ) ( f ) ) F η 1 ( k ) ( ( ϕ ψ ) ( g ) ) = ( ϕ ψ , η ( F ) ) k ( g ) .
Thus, ϕ ψ , η ( F ) is an ( L , K 2 E 2 ) -fs-filter on Y. □
We denote F k 0 = { f ( L X ) E : F k ( f ) > 0 L } .
Theorem 3.
Let { F i } i Γ be a collection of ( L , K E ) -fs-filters on X satisfying the next condition: (C) If f i ( F i ) k 0 for each i Γ , k K then we have i J f i 0 X for each J Γ , J is finite. Define a mapping i Γ F i : K L ( L X ) E (where ( i Γ F i ) k : = ( i Γ F i ) ( k ) : ( L X ) E L ) as:
( i Γ F i ) k ( f ) = { i J ( F i ) k ( f i ) } , if f = i J f i , f i ( F i ) k 0 , k K 0 L , otherwise
where is taken for each J Γ , J is finite such that f = i J f i . Then i Γ F i is the coarsest ( L , K E ) -fs-filter finer than F i , i Γ .
Proof. 
First: we will prove that, H k = ( i Γ F i ) k is an ( L , K E ) -fs-filter on X.
(SF1) It is trivial that H k ( 0 X ) = 0 L . Since 1 X = 1 X 1 X , we have H k ( 1 X ) = 1 L .
(SF2) For every finite index subsets M and J of Γ such that f = m M f m , g = j J g j , we have
f g = ( m M f m ) ( j J g j ) .
Furthermore, for each n M J , put f g = n M J h n , where
h n = f n , if n M ( M J ) g n , if n J ( M J ) f n g n , if n M J
We have
H k ( f g ) n M J ( F n ) k ( h n ) ( m M ( F m ) k ( f m ) ) ( j J ( F j ) k ( g j ) ) .
By ( L 4 ) of Definition 1, we have
H k ( f g ) H k ( f ) H k ( g ) .
(SF3) Suppose that f g . By the definition of H , there exists an index J Γ , J is finite and f = j J f j with H k ( f ) j J ( F j ) k ( f j ) . On the other hand, since g = f g = j J ( f j g ) , we have
H k ( g ) j J ( F j ) k ( f j g ) j J ( F j ) k ( f j ) .
By (L4), we have H k ( f ) H k ( g ) .
Second: we will show that H k ( F i ) k , for each i Γ , k K . For each f ( L X ) E , if ( F i ) k ( f ) = 0 L , it is trivial. If ( F i ) k ( f ) 0 L , for f = f 1 X , we have
H k ( f ) ( F i ) k ( f ) ( F i ) k ( 1 X ) = ( F i ) k ( f ) .
Third: for each ( L , K E ) -fs-filter G such that G k ( F i ) k , for each i Γ . We will show that G k H k . By the definition of H , there exists an index J Γ , J is finite and f = j J f j with H k ( f ) j J ( F j ) k ( f ) . On the other hand, since G k ( F i ) k , for each i J , we have
G k ( f ) j J G k ( f j ) j J ( F j ) k ( f j ) .
By (L4), we have G k ( f ) H k ( f ) . □
Theorem 4.
Let ϕ : X Y , ψ : E 1 E 2 and η : K 1 K 2 be maps. Let F be an ( L , K 2 E 2 ) -fs-filter on Y. We define a fuzzy soft mapping ϕ ψ , η ( F ) : K 1 L ( L X ) E 1 (where ( ϕ ψ , η ( F ) ) k : ( L X ) E 1 L is a map for each k K 1 ) by:
ϕ ψ , η ( F k ) ( f ) = { F η ( k ) ( g ) : f = ϕ ψ ( g ) } , if g 0 X 0 L , if g = 0 X .
Then, ϕ ψ , η ( F ) is an ( L , K 1 E 1 ) -fs-filter on X.
Proof. 
(SF1) Easily proved.
(SF2) For each f , g ( L X ) E 1 , we have
ϕ ψ , η ( F k ) ( f ) ϕ ψ , η ( F k ) ( g ) = ( { F η ( k ) ( f 1 ) : f = ϕ ψ ( f 1 ) } ) ( { F η ( k ) ( g 1 ) : g = ϕ ψ ( g 1 ) } ) = { F η ( k ) ( f 1 ) F η ( k ) ( g 1 ) : f g = ϕ ψ ( f 1 ) ϕ ψ ( g 1 ) } { F η ( k ) ( f 1 g 1 ) : f g = ϕ ψ ( f 1 g 1 ) } ϕ ψ , η ( F k ) ( f g ) .
(SF3) If f 1 f 2 , we have ϕ ψ , η ( F k ) ( f 1 ) = F k ( ϕ ψ , η ( f 1 ) ) F k ( ϕ ψ , η ( f 2 ) ) = ϕ ψ , η ( F k ) ( f 2 ) .

4. ( L , K E ) -fs-Topologies Induced by ( L , K E ) -fs-Filters

From an ( L , K E ) -fs-filter F : K L ( L X ) E , we can obtain an ( L , K E ) -fs-topology on X as in the next theorem:
Theorem 5.
Let ( X , F ) be an ( L , K E ) -fs-filtered set. Define T F : K L ( L X ) E (where ( T F ) k : = T F ( k ) : ( L X ) E L is a map for each k K ) as:
( T F ) k ( f ) = F k ( f ) , if f 0 X 1 L , if f = 0 X .
Then, ( X , T F ) is an ( L , K E ) -fs-topological space.
Proof. 
(SO1) and (SO2) are clear. (SO3) Let { f i : i Γ } ( L X ) E . Then f i i Γ f i , i Γ . By (SF3), we have
F k ( f i ) F k ( i Γ f i ) , i Γ .
Thus,
( T F ) k ( f i ) ( T F ) k ( i Γ f i ) , i Γ .
Thus,
i Γ ( T F ) k ( f i ) ( T F ) k ( i Γ f i ) .
Therefore, each ( L , K E ) -fs-filtered set produces an ( L , K E ) -fs-topological space. □
Theorem 6.
Let F = { F x : x X } be a family of ( L , K E ) -fs-filters x X . An operator ⊙ dominates *, which induces u v = { w L : u w v } . For every x X , H x : K L ( L X ) E , where H k x : = H x ( k ) : ( L X ) E L is a map for each k K satisfying the following conditions:
(H1) 
H k x ( 0 X ) = 0 L and H k x ( 1 X ) = 1 L .
(H2) 
H k x ( f g ) H k x ( f ) H k x ( g ) , f , g ( L X ) E .
(H3) 
H k x ( i Γ f i ) i Γ H k x ( f i ) , f i ( L X ) E , i Γ .
Define T F : K L ( L X ) E , where ( T F ) k : = T F ( k ) : ( L X ) E L is a map, k K defined by:
( T F ) k ( f ) = x X ( H k x ( f ) F k x ( f ) ) .
Then,
(i) 
T F is an ( L , K E ) -fs-topology.
(ii) 
If F x is stratified ( L , K E ) -fs-filter and H k x ( α g ) α H k x ( g ) , x X , then T F is an enriched ( L , K E ) -fs-topology.
Proof. 
For each k K we have
(SO1)
( T F ) k ( 0 X ) = x X ( H k x ( 0 X ) F k x ( 0 X ) ) = 1 L . and ( T F ) k ( 1 X ) = x X ( H k x ( 1 X ) F k x ( 1 X ) ) = 1 L .
(SO2)
g 1 , g 2 ( L X ) E and k K , we have
( T F ) k ( g 1 g 2 ) = x X ( H k x ( g 1 g 2 ) F k x ( g 1 g 2 ) ) x X ( H k x ( g 1 ) H k x ( g 2 ) F k x ( g 1 ) F k x ( g 2 ) ) x X ( ( H k x ( g 1 ) F k x ( g 1 ) ) ( H k x ( g 2 ) F k x ( g 2 ) ) ) , ( by Lemma 1 ( v ) ) x X ( H k x ( g 1 ) F k x ( g 1 ) ) x X ( H k x ( g 2 ) F k x ( g 2 ) ) = ( T F ) k ( g 1 ) ( T F ) k ( g 2 ) .
(SO3)
For each g i ( L X ) E , i Γ , we have
( T F ) k ( i Γ g i ) = x X ( H k x ( i Γ g i ) F k x ( i Γ g i ) ) x X ( i Γ H k x ( g i ) i Γ F k x ( g i ) ) x X ( H k x ( g i ) F k x ( g i ) ) , ( by Lemma 1 ( ix ) ) x X i Γ ( H k x ( g i ) F k x ( g i ) ) i Γ x X ( H k x ( g i ) F k x ( g i ) ) = i Γ ( T F ) k ( g i ) .
Hence, T F is an ( L , K E ) -fs-topology.
(ii) Let F x be a stratified ( L , K E ) -fs-filter and H k x ( α g ) α H k x ( g ) , for each x X , k K , α L , g ( L X ) E . Then,
( T F ) k ( α g ) = x X ( H k x ( α g ) F k x ( α g ) ) x X ( α H k x ( g ) α F k x ( g ) ) x X ( H k x ( g ) F k x ( g ) ) , ( by Lemma 1 ( vi ) ) = ( T F ) k ( g ) .
Theorem 7.
Let F = { F x : x X } be a family of ( L , K 1 E 1 ) -fs-filters for each x X and F = { F y : y Y } be a family of ( L , K 2 E 2 ) -fs-filters, y Y . An operator ⊙ dominates *, which induces u v = { w L : u w v } . For every x X , H x : K 1 L ( L X ) E 1 , where H k x : = H x ( k ) : ( L X ) E 1 L is a map for each k K 1 and for each y Y , H y : K 2 L ( L Y ) E 2 , where H k x : = H x ( k ) : ( L X ) E 2 L is a map for each k K 2 , and H x , H y satisfy the conditions (H1), (H2) and (H3) of Theorem 6. Let ϕ : X Y , ψ : E 1 E 2 and η : K 1 K 2 be maps. Then,
(i) 
( H k x ( ϕ ψ ( g ) ) H η ( k ) ϕ ( x ) ( g ) ) ( G η ( k ) ϕ ( x ) ( g ) ) F k x ( ϕ ψ ( ( g ) ) ) x X ( H η ( k ) ϕ ( x ) ( g ) G η ( k ) ϕ ( x ) ( g ) ) x X ( H k x ϕ ψ ( ( g ) ) F k x ϕ ψ ( ( g ) ) ) .
(ii) 
If H k x ( ϕ ψ ( g ) ) H η ( k ) ϕ ( x ) ( g ) , then G η ( k ) ϕ ( x ) ( g ) F k x ( ϕ ψ ( g ) ) ( T G ) η ( k ) ( g ) ( T F ) k
( ϕ ψ ( g ) ) .
(iii) 
If ϕ : ( X , F x ) ( Y , G ϕ ( x ) ) is an L-fuzzy soft filter map, then ϕ : ( X , T F ) ( Y , T G ) is an L-fuzzy soft continuous.
Proof. 
(i)
( H k x ( ϕ ψ ( g ) ) H η ( k ) ϕ ( x ) ( g ) ) ( G η ( k ) ϕ ( x ) ( g ) ) F k x ( ϕ ψ ( ( g ) ) ) ( H η ( k ) ϕ ( x ) ( g ) G η ( k ) ϕ ( x ) ( g ) ) ( H k x ( ϕ ψ ( ( g ) ) F k x ( ϕ ψ ( ( g ) ) ) ) , ( by Lemma 1 ( x ) ) x X ( H η ( k ) ϕ ( x ) ( g ) G η ( k ) ϕ ( x ) ( g ) ) x X ( H k x ( ϕ ψ ( ( g ) ) F k x ( ϕ ψ ( ( g ) ) ) ) .
(ii)
( T G ) η ( k ) ( g ) ( T F ) k ϕ ψ ( ( g ) ) = y Y ( H η ( k ) y ( g ) G η ( k ) y ( g ) ) x X ( H k x ( ϕ ψ ( ( g ) ) F k x ( ϕ ψ ( ( g ) ) ) ) ) x X ( H η ( k ) ϕ ( x ) ( g ) G η ( k ) ϕ ( x ) ( g ) ) x X ( H k x ( ϕ ψ ( ( g ) ) F k x ( ϕ ψ ( ( g ) ) ) ) x X ( H k x ϕ ψ ( ( g ) ) G η ( k ) ϕ ( x ) ( g ) ) x X ( H k x ϕ ψ ( ( g ) ) F k x ( ϕ ψ ( ( g ) ) ) ) ( H k x ϕ ψ ( ( g ) ) G η ( k ) ϕ ( x ) ( g ) ) ( H k x ϕ ψ ( ( g ) ) F k x ϕ ψ ( ( g ) ) ) , ( by Lemma 2 ( vii ) ) G η ( k ) ϕ ( x ) ( g ) F k x ( ϕ ψ ( g ) ) , ( by Lemma 2 ( vi ) ) .
(iii)
If ϕ : ( X , F x ) ( Y , G ϕ ( x ) ) is an L-fuzzy soft filter map, then G η ( k ) ϕ ( x ) ( g ) F k x ( ϕ ψ ( g ) ) = 1 L . Then from (ii), we have ( T G ) η ( k ) ( g ) ( T F ) k ϕ ψ ( ( g ) ) = 1 L . From Lemma 1(xi), we have ( T G ) η ( k ) ( g ) ( T F ) k ϕ ψ ( ( g ) ) . Thus, ϕ : ( X , T F ) ( Y , T G ) is an L-fuzzy soft continuous.

5. The Products of ( L , K E ) -fs-Filters

Theorem 8.
Let ( X , T ) be an ( L , K E ) -fs-topology and { F x : x X } be a family of ( L , K E ) -fs-filters for each x X . An operation * dominates ⊙. For each x X , we define N T x : K L ( L X ) E , where ( N T x ) k : = N T x ( k ) : ( L X ) E L is a map for each k K defined by:
( N T x ) k ( f ) = g f ( F k x ( g ) T k ( g ) ) .
Then:
(i) 
N T x is an ( L , K E ) -fs-filter on X.
(ii) 
If F x is a stratified ( L , K E ) -fs-filter and T is an enriched ( L , K E ) -fs-topology, then N T x is a stratified ( L , K E ) -fs-filter.
(iii) 
If F k x H k x , then ( T N T x ) k T k , k K .
(iv) 
If F k x H k x , then ( N T F x ) k F k x , k K .
Proof. 
(i)
(SF1) ( N T x ) k ( 0 X ) = F k x ( 0 X ) T k ( 0 X ) = 0 L . and ( N T x ) k ( 1 X ) = F k x ( 1 X ) T k ( 1 X ) = 1 L .
(SF2) For each x X , k K , f , g ( L X ) E , we have
( N T x ) k ( f ) ( N T x ) k ( g ) = ν f ( F k x ( ν ) T k ( ν ) ) μ g ( F k x ( μ ) T k ( μ ) ) = ν f μ g ( ( F k x ( ν ) T k ( ν ) ) ( F k x ( μ ) T k ( μ ) ) ) ν f μ g ( ( F k x ( ν ) F k x ( μ ) ) ( T k ( ν ) T k ( μ ) ) ) , ( sin ce dominates ) ν μ f g ( ( F k x ( ν μ ) ) ( T k ( ν μ ) ) ) h f g ( F k x ( h ) T k ( h ) ) = ( N T x ) k ( f g ) .
(SF3) It is easy.
(ii)
For each β L , k K , g ( L X ) E , we have
( N T x ) k ( β g ) = μ β g ( F k x ( μ ) T k ( μ ) ) β ν β g ( F k x ( β ν ) T k ( β ν ) ) β ν β g ( ( β F k x ( ν ) ) T k ( ν ) ) β ν g ( F k x ( ν ) T k ( ν ) ) , ( by Lemma 1 ( iv ) ) = β ( N T x ) k ( g ) .
(iii)
Since * dominates ⊙, by Lemma 1(iv), u v u v . Then,
( T N T x ) k ( f ) = x X ( H k x ( f ) ( N T x ) k ( f ) ) = x X ( H k x ( f ) g f ( F k x ( g ) T k ( g ) ) ) x X ( H k x ( f ) ( F k x ( f ) T k ( f ) ) ) x X ( H k x ( f ) ( F k x ( f ) T k ( f ) ) ) T k ( f ) .
(iv)
( N T F x ) k ( g ) = ν g ( F k x ( ν ) ( T F ) k ( ν ) ) = ν g ( F k x ( ν ) x X ( H k x ( ν ) ) F k x ( ν ) ) ν g ( F k x ( ν ) ( H k x ( ν ) ) F k x ( ν ) ) ν g ( F k x ( ν ) ( F k x ( ν ) ) F k x ( ν ) ) ν g F k x ( ν ) = F k x ( g ) .
Theorem 9.
Let ( X , T 1 ) be an ( L , K 1 E 1 ) -fs-topology on X and ( X , T 2 ) be an ( L , K 2 E 2 ) -fs-topology on Y. Let F = { F x : x X } be a family of ( L , K 1 E 1 ) -fs-filters for each x X and G = { G y : y Y } be a family of ( L , K 2 E 2 ) -fs-filters for each y Y . Let ϕ : X Y , ψ : E 1 E 2 and η : K 1 K 2 be maps. If the operation * dominates ⊙, we have
(i) 
( T η ( k ) 2 ( h ) T k 1 ( ϕ ψ ( h ) ) ) ( G η ( k ) ϕ ( x ) ( h ) F k x ϕ ψ ( h ) ) ( N T 2 ϕ ( x ) ) η ( k ) ( h ) ( N T 1 x ) k
( ϕ ψ ( h ) ) .
(ii) 
If ϕ : ( X , T 1 ) ( Y , T 2 ) is an L- fuzzy soft continuous and ϕ : ( X , F x ) ( Y , G ϕ ( x ) ) is an L-fuzzy soft filter map, then ϕ : ( X , N T 1 x ) ( Y , N T 2 ϕ ( x ) ) is an L-fuzzy soft filter map.
Proof. 
(i)
For each k K 1 , f ( L Y ) E 2 , we have
( N T 2 ϕ ( x ) ) η ( k ) ( h ) ( N T 1 x ) k ( ϕ ψ ( h ) ) = g h ( G η ( k ) ϕ ( x ) ( g ) T η ( k ) 2 ( g ) ) f ( ϕ ψ ( h ) ( F k x ( f ) T k 1 ( f ) ) g h ( G η ( k ) ϕ ( x ) ( g ) T η ( k ) 2 ( g ) ) ϕ ψ ( h ) ( ϕ ψ ( h ) ( F k x ( ϕ ψ ( g ) ) T k 1 ( ϕ ψ ( g ) ) ) g h ( G η ( k ) ϕ ( x ) ( g ) T η ( k ) 2 ( g ) ) g h ( F k x ( ϕ ψ ( g ) ) T k 1 ( ϕ ψ ( g ) ) ) ( G η ( k ) ϕ ( x ) ( h ) T η ( k ) 2 ( h ) ) ( F k x ( ϕ ψ ( h ) ) T k 1 ( ϕ ψ ( h ) ) ) , ( by Lemma 1 ( ix ) ) ( G η ( k ) ϕ ( x ) ( h ) F k x ( ϕ ψ ( h ) ) ) ( T η ( k ) 2 ( h ) ) T k 1 ( ϕ ψ ( h ) ) ) , ( by Lemma 1 ( v ) ) .
(ii)
Since ϕ : ( X , T 1 ) ( Y , T 2 ) is an L- fuzzy soft continuous, ϕ : ( X , F x ) ( Y , G ϕ ( x ) ) is an L-fuzzy soft filter map and by (i), we have
( N T 2 ϕ ( x ) ) η ( k ) ( h ) ( N T 1 x ) k ( ϕ ψ ( h ) ) ( T η ( k ) 2 ( h ) T k 1 ( ϕ ψ ( h ) ) ) ( G η ( k ) ϕ ( x ) ( h ) F k x ϕ ψ ( h ) ) = 1 L 1 L = 1 L .
Then, from Lemma 1(xi), we have ( N T 2 ϕ ( x ) ) η ( k ) ( h ) ( N T 1 x ) k ( ϕ ψ ( h ) ) .
Thus, ϕ : ( X , N T 1 x ) ( Y , N T 2 ϕ ( x ) ) is an L-fuzzy soft filter map. □
Theorem 10.
Let F = { F x : x X } and G = { G x : x X } be two families of ( L , K E ) -fs-filters satisfying the condition F k x ( f 1 ) G k x ( f 2 ) = 0 L , for each f 1 f 2 = 0 X , where an operation * dominates ⊙. Define F x G x : K L ( L X ) E as:
( F x G x ) k ( f ) = { F k x ( f 1 ) G k x ( f 2 ) : f 1 f 2 f } .
Let T 1 and T 2 be two ( L , K E ) -fs-topologies on X. We define T 1 T 2 : K L ( L X ) E as follows:
( T 1 T 2 ) k ( f ) = { T k 1 ( f 1 ) T k 2 ( f 2 ) : f 1 f 2 = f } .
Then, we have:
(i) 
F x G x is an ( L , K E ) -fs-filter on X, and it is finer than F x and G x . If = , then F x G x is the coarsest ( L , K E ) -fs-filter on X, and it is finer than F x and G x . Besides, if = and F x = G x , then F x F x = F x .
(ii) 
If F x or G x is a stratified ( L , K E ) -fs-filter, then F x G x is a stratified ( L , K E ) -fs-filter on X.
(iii) 
T 1 T 2 is an ( L , K E ) -fs-topology on X and it is finer than T 1 and T 2 . If = , then T 1 T 2 is the coarsest ( L , K E ) -fs-topology on X, and it is finer than T 1 and T 2 .
(iv) 
If T 1 or T 2 is an enriched ( L , K E ) -fs-topology, then T 1 T 2 is an enriched ( L , K E ) -fs-topology on X.
(v) 
T F G T F T G , where F G = { F x G x : x X } .
(vi) 
N T 1 T 2 x N T 1 x N T 2 x .
Proof. 
(i)
(SF1) and (SF3) are clear.
(SF2) For each f , g ( L X ) E and k K ,
( F x G x ) k ( f ) ( F x G x ) k ( g ) = { F k x ( f 1 ) G k x ( f 2 ) : f 1 f 2 f } { F k x ( g 1 ) G k x ( g 2 ) : g 1 g 2 g } = { ( F k x ( f 1 ) G k x ( f 2 ) ) ( F k x ( g 1 ) G k x ( g 2 ) ) : f 1 f 2 f , g 1 g 2 g } { ( F k x ( f 1 ) F k x ( g 1 ) ) ( G k x ( f 2 ) G k x ( g 2 ) ) : f 1 f 2 f , g 1 g 2 g } , ( since dominates ) { F k x ( f 1 g 1 ) G k x ( f 2 g 2 ) : ( f 1 f 2 ) ( g 1 g 2 ) f g } ( F x G x ) k ( f g ) .
If = , then for f = 1 X f , ( F x G x ) k ( f ) F k x ( 1 X ) G k x ( f ) = 1 L G k x ( f ) = G k x ( f ) and ( F x G x ) k ( f ) F k x ( f ) G k x ( 1 X ) = F k x ( f ) 1 L = F k x ( f ) . If H x is ( L , K E ) -fs-filter on X with F x H x and G x H x , we have F k x G k x H k x , k K . Then ( F k x G x ) k H k x , k K .
Moreover, if = and F x = G x , then
( F x F x ) k ( h ) = { F k x ( f ) F k x ( g ) : f g h } { F k x ( f g ) : f g h } F k x ( h ) .
Thus, F x F x = F x .
(ii)
Let F x be a stratified ( L , K E ) -fs-filter, then for each k K we have
β ( F x G x ) k ( g ) = β { F k x ( g 1 ) G k x ( g 2 ) : g 1 g 2 g } = { β ( F k x ( g 1 ) G k x ( g 2 ) ) : g 1 g 2 g } { ( β F k x ( g 1 ) ) G k x ( g 2 ) : g 1 g 2 g } ( by Lemma 1 ( iv ) ) { F k x ( β g 1 ) G k x ( g 2 ) : β g 1 g 2 β g } ( F x G x ) k ( β g ) .
Then, F x G x is a stratified ( L , K E ) -fs-filter on X. Similarly if G x is a stratified ( L , K E ) -fs-filter, then F x G x is a stratified ( L , K E ) -fs-filter on X.
(iii)
It can be proved by the same manner as in (i).
(iv)
Suppose that T 1 is an enriched ( L , K E ) -fs-topology on X. Then, k K we have
( T 1 T 2 ) k ( β g ) = { T k 1 ( g 1 ) T k 2 ( g 2 ) : g 1 g 2 = β g } { T k 1 ( β g 1 ) T k 2 ( g 2 ) : β g 1 g 2 = β g } { T k 1 ( g 1 ) T k 2 ( g 2 ) : g 1 g 2 = g } ( T 1 T 2 ) k ( g ) .
(v)
Since H k x ( g 1 g 2 ) H k x ( g 1 ) H k x ( g 2 ) H k x ( g 1 ) H k x ( g 2 ) and u v = { w : u w v } , by Theorem 6, we have:
( T F G ) k ( g ) = x X ( H k x ( g ) ( F x G x ) k ( g ) ) x X ( g 1 g 2 g H k x ( g 1 g 2 ) g 1 g 2 g ( F k x ( g 1 ) G k x ( g 2 ) ) ) x X ( g 1 g 2 g ( H k x ( g 1 ) H k x ( g 2 ) ) g 1 g 2 g ( F k x ( g 1 ) G k x ( g 2 ) ) ) x X g 1 g 2 g ( H k x ( g 1 ) F k x ( g 1 ) ) g 1 g 2 g ( F k x ( g 1 ) G k x ( g 2 ) ) ) x X g 1 g 2 g ( H k x ( g 1 ) F k x ( g 1 ) ) ( H k x ( g 2 ) G k x ( g 2 ) ) ) ( by Lemma 1 ( v ) ) g 1 g 2 g ( x X ( H k x ( g 1 ) F k x ( g 1 ) ) ( x X ( H k x ( g 1 ) G k x ( g 2 ) ) ) ) = g 1 g 2 g ( ( T F ) k ( g 1 ) ( T G ) k ( g 2 ) ) = ( T F T G ) k ( g ) .
(vi)
( N T 1 x N T 2 x ) k ( g ) = { ( N T 1 x ) k ( g 1 ) ( N T 2 x ) k ( g 2 ) : g 1 g 2 g } = { ( ν g 1 ( F k x ( ν ) T k 1 ( ν ) ) ( μ g 2 ( F k x ( μ ) T k 2 ( μ ) ) : g 1 g 2 g } { ( ν μ g 1 g 2 ( F k x ( ν ) F k x ( μ ) ( T k 1 ( ν ) ) T k 2 ( μ ) ) ) : g 1 g 2 g } { ν μ g 1 g 2 ( F k x ( ν μ ) ) ( T k 1 ( ν ) T k 2 ( μ ) ) : g 1 g 2 g } { F k x ( g 1 g 2 ) ( T 1 T 2 ) k ( g 1 g 2 ) ) : g 1 g 2 g } ( N T 1 T 2 x ) k ( g ) .

6. Conclusions

In this paper, we introduced the concept of a ( L , K E ) -fs-filter and investigated many of its properties. By using certain operations, we induced ( L , K E ) -fs-topologies from ( L , K E ) -fs-filters. In addition, we introduced the products of ( L , K E ) -fs-filters and the products of ( L , K E ) -fs-topologies and inspected their properties. We illustrated that the product of two ( L , K E ) -fs-filters (where either of them is stratified) is stratified, and the product of two ( L , K E ) -fs-topologies (where either of them is enriched) is enriched.
Since the ( L , K E ) -fs-filter is a useful tool for studying ( L , K E ) -fs-topology, we plan to study more properties about it. Our future work in this direction will be to present and study some type of convergence of an ( L , K E ) -fs-filter in an ( L , K E ) -fs-topological space.

Author Contributions

A.A.A.E.-L. and A.A.E.R. contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the editor and anonymous reviewers for their careful reading and constructive comments.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Molodtsov, D.A. Soft set theory-first results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef] [Green Version]
  2. Molodtsov, D.A. The description of a dependence with the help of soft sets. J. Comput. Syst. Sci. Int. 2001, 40, 977–984. [Google Scholar]
  3. Molodtsov, D.A. The Theory of Soft Sets; URSS Publishers: Moscow, Russia, 2004. (In Russian) [Google Scholar]
  4. Molodtsov, D.; Leonov, V.Y.; Kovkov, D.V. Soft sets technique and its application. Nechetkie Sist. Myagkie Vychisleniya 2006, 1, 8–19. [Google Scholar]
  5. Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602. [Google Scholar]
  6. Maji, P.K.; Biswas, R.; Roy, A.R. Soft set theory. Comput. Math. Appl. 2003, 45, 555–562. [Google Scholar] [CrossRef] [Green Version]
  7. Maji, P.K.; Roy, A.R.; Biswas, R. An application of soft sets in a decision making problem. Comput. Math. Appl. 2002, 44, 1077–1083. [Google Scholar] [CrossRef] [Green Version]
  8. Roy, A.R.; Maji, P.K. A fuzzy soft set theoretic approach to decision making problems. J. Comput. Appl. Math. 2007, 203, 412–418. [Google Scholar] [CrossRef] [Green Version]
  9. Ahmad, B.; Kharal, A. On Fuzzy Soft Sets. Adv. Fuzzy Syst. 2009, 2009, 586507. [Google Scholar] [CrossRef] [Green Version]
  10. Kharal, A.; Ahmad, B. Mappings on Fuzzy Soft Classes. Adv. Fuzzy Syst. 2009, 2009, 407890. [Google Scholar] [CrossRef]
  11. Majumdara, P.; Samanta, S.K. Generalised fuzzy soft sets. Comput. Math. Appl. 2010, 59, 1425–1432. [Google Scholar] [CrossRef] [Green Version]
  12. Çağman, N.; Enginoğlu, S.; Çitak, F. Fuzzy soft set theory and its applications. Iran. J. Fuzzy Syst. 2011, 8, 137–147. [Google Scholar]
  13. Shabir, M.; Naz, M. On soft topological spaces. Comput. Math. Appl. 2011, 61, 1786–1799. [Google Scholar] [CrossRef] [Green Version]
  14. Aygünoǧlu, A.; Çetkin, V.; Aygün, H. An introduction to fuzzy soft topological spaces. Hacettep J. Math. Stat. 2014, 43, 193–204. [Google Scholar] [CrossRef] [Green Version]
  15. Šostak, A.P. On a fuzzy topological structure. Suppl. Rend. Circ. Matem. Palermo2 Ser. II 1985, 11, 89–103. [Google Scholar]
  16. Chang, C.L. Fuzzy topological spaces. J. Math. Anal. Appl. 1968, 24, 182–190. [Google Scholar] [CrossRef] [Green Version]
  17. Oh, J.-M.; Kim, Y.C.; Ramadan, A.A. L-fuzzy (K,E)-soft quasi uniform spaces and L-fuzzy (K,E)-soft topogenous spaces. Int. J. Pure Appl. Math. 2016, 108, 831–847. [Google Scholar] [CrossRef] [Green Version]
  18. Ramadan, A.A.; Oh, J.-M. On L-fuzzy (K,E)-soft quasi-uniform spaces. Int. J. Pure Appl. Math. 2016, 108, 591–606. [Google Scholar]
  19. Çetkin, V.; Aygünoğlu, A.; Aygün, H. A topological view on application of L-fuzzy soft sets: Compactness. J. Intell. Fuzzy Syst. 2017, 32, 781–790. [Google Scholar] [CrossRef]
  20. Kandil, A.; El-Tantawy, O.A.; El-Sheikh, S.A.; El-Sayed, S.S. Fuzzy soft connected sets in fuzzy soft topological spaces II. J. Egypt. Math. Soc. 2017, 25, 171–177. [Google Scholar] [CrossRef]
  21. Ramadan, A.A.; Kim, Y.C. L-fuzzy (K,E)-soft quasi-uniform spaces induced by L-fuzzy (K,E)-soft pre-proximities. Int. J. Pure Appl. Math. 2017, 116, 61–73. [Google Scholar] [CrossRef] [Green Version]
  22. Ali, M.; Kılıçman, A.; Khameneh, A.Z. Separation Axioms of Interval-Valued Fuzzy Soft Topology via Quasi-Neighborhood Structure. Mathematics 2020, 8, 178. [Google Scholar] [CrossRef] [Green Version]
  23. Gao, R.; Wu, J. A Net with applications for continuity in a fuzzy soft topological space. Math. Probl. Eng. 2020, 2020, 9098410. [Google Scholar] [CrossRef]
  24. Dizman, T.S.; Ozturk, T.Y. Fuzzy bipolar soft topological spaces. TWMS J. Appl. Eng. Math. 2021, 11, 151–159. [Google Scholar]
  25. Höhle, U.; Šostak, A.P. Axiomatic foundations of fixed-basis fuzzy topology. In Chapter 3 in Mathematics of Fuzzy Sets, Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series; Kluwer Academic Publishers: Boston, MA, USA, 1999; pp. 123–273. [Google Scholar]
  26. Jager, G. Lattice-valued convergence spaces and regularity. Fuzzy Sets Syst. 2008, 159, 2488–2502. [Google Scholar] [CrossRef] [Green Version]
  27. Fang, J. Lattice-valued semiuniform convergence spaces. Fuzzy Sets Syst. 2012, 195, 33–57. [Google Scholar] [CrossRef]
  28. Li, L.; Jin, Q. Lattice-valued convergence spaces: Weaker regularity and p-regularity. Abstr. Appl. Anal. 2014, 2014, 328153. [Google Scholar] [CrossRef] [Green Version]
  29. Jager, G. Alexandrov L-filters and Alexandrov L-convergence spaces. J. Intell. Fuzzy Syst. 2018, 35, 3255–3266. [Google Scholar]
  30. Höhle, U.; Šostak, A.P. A general theory of fuzzy topological spaces. Fuzzy Sets Syst. 1995, 73, 131–149. [Google Scholar] [CrossRef]
  31. Luna-Torres, J.; Ochoa, C.O. L-filters and LF-topologies. Fuzzy Sets Syst. 2003, 140, 433–446. [Google Scholar] [CrossRef]
  32. Kim, Y.C.; Ko, J.M. Images and preimages of L-filterbases. Fuzzy Sets Syst. 2006, 157, 1913–1927. [Google Scholar] [CrossRef]
  33. Pang, B.; Zhao, Y. L-fuzzy N-convergence structures. J. Intell. Fuzzy Syst. 2016, 30, 3033–3043. [Google Scholar] [CrossRef]
  34. Abd El-latif, A.A.; Aygün, H.; Cetkin, V. On (L,M)-Double fuzzy filter spaces. Adv. Fuzzy Syst. 2018, 2018, 3871282. [Google Scholar] [CrossRef]
  35. Ramadan, A.A.; Usama, M.A.; Abd El-latif, A.A. L-fuzzy pre proximities, L-fuzzy filters and L-fuzzy grills. J. Egypt. Math. Soc. 2020, 28, 47. [Google Scholar] [CrossRef]
  36. Goguen, J.A. L-fuzzy sets. J. Math. Anal. Appl. 1967, 18, 145–175. [Google Scholar] [CrossRef] [Green Version]
  37. Hájek, P. Metamathematices of Fuzzy Logic; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
  38. Höhle, U.; Rodabaugh, S.E. Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. In The Handbooks of Fuzzy Sets Series 3; Kluwer Academic Publishers: Boston, MA, USA, 1999. [Google Scholar]
  39. Kim, Y.C.; Kim, Y.S. (L,⊙)-Fuzzy topologies induced by (L,⊙)-filters. Int. Math. Forum 2009, 4, 1337–1345. [Google Scholar]
  40. Kim, Y.C.; Ramadan, A.A. (K,E)-Soft topological and L-fuzzy (K,E)-soft neighborhood systems. Int. J. Pure Appl. Math. 2016, 18, 341–351. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Abd El-Latif, A.A.; Ramadan, A.A.E. (L,⊙)-Fuzzy (K,E)-Soft Filter. Mathematics 2021, 9, 2895. https://doi.org/10.3390/math9222895

AMA Style

Abd El-Latif AA, Ramadan AAE. (L,⊙)-Fuzzy (K,E)-Soft Filter. Mathematics. 2021; 9(22):2895. https://doi.org/10.3390/math9222895

Chicago/Turabian Style

Abd El-Latif, Ahmed Aref, and Ahmed Abd Elkader Ramadan. 2021. "(L,⊙)-Fuzzy (K,E)-Soft Filter" Mathematics 9, no. 22: 2895. https://doi.org/10.3390/math9222895

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop