Sehgal–Guseman-Type Fixed Point Theorem in b-Rectangular Metric Spaces
Abstract
:1. Introduction and Preliminaries
- (b1)
- if and only if ;
- (b2)
- ;
- (b3)
- (b-triangular inequality).
- (r1)
- if and only if ;
- (r2)
- ;
- (r3)
- (rectangular inequality).
- (rb1)
- if and only if ;
- (rb2)
- ;
- (rb3)
- (b-rectangular inequality).
- (i)
- The sequence converges to both 0 and 2, and it is not a Cauchy sequence;
- (ii)
- There is no such that . Hence, the corresponding topology is not Hausdorff;
- (iii)
- , however, there does not exist such that ;
- (iv)
- , but . Hence, d is not a continuous function.
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sehgal, V.M. A fixed point theorem for mappings with a contractive iterate. Proc. Am. Math. Soc. 1969, 23, 631–634. [Google Scholar] [CrossRef]
- Guseman, L.F. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 1970, 26, 615–618. [Google Scholar] [CrossRef]
- Matkowski, J. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 1977, 62, 344–348. [Google Scholar] [CrossRef]
- Shatanawi, W.; Karapinar, E.; Aydi, H.; Fulga, A. Wardowski type contractions with applications on Caputo type nonlinear fractional differential equations. Univ. Politech. Buchar. Sci. Bull.-Ser. Appl. 2020, 82, 157–170. [Google Scholar]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debr. 2000, 57, 31–37. [Google Scholar]
- Bakhtin, I.A. The contraction principle in quasimetric spaces. Funct. Anal. 1980, 30, 26–37. [Google Scholar]
- George, R.; Radenović, S.; Reshma, K.P. Rectangular b-metric spaces and contraction principle. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]
- Ding, H.S.; Ozturk, V.; Radenović, S. On some new fixed point results in b-rectangular metric spaces. J. Nonlinear Sci. Appl. 2015, 8, 378–386. [Google Scholar] [CrossRef]
- Zheng, D.W.; Wang, P.; Citakovic, N. Meir-Keeler theorem in b-rectangular metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 1786–1790. [Google Scholar] [CrossRef] [Green Version]
- Mitrović, Z.D. A note on a Banachs fixed point theorem in b-rectangular metric space and b-metric space. Math. Slovaca 2018, 68, 1113–1116. [Google Scholar] [CrossRef]
- Czerwik, S. Contraction mappings in b-metric spaces. Actc Math. Inf. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Karapinar, E. A Short Survey on the Recent Fixed Point Results on b-Metric Spaces. Constr. Math. Anal. 2018, 1, 15–44. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.S.; Imdad, M.; Radenović, S.; Vujakovic, J. On some fixed point results in b-metric, rectangular and b-rectangular metric spaces. Arab. J. Math. Sci. 2016, 22, 151–164. [Google Scholar]
- Nazam, M.; Hussain, N.; Hussain, A.; Arshad, M. Fixed point theorems for weakly beta-admissible pair of F-contractions with application. Nonlinear Anal. Model. Control 2019, 24, 898–918. [Google Scholar] [CrossRef]
- Sarma, I.R.; Rao, J.M.; Rao, S.S. Contractions over generalized metric spaces. J. Nonlinear Sci. Appl. 2009, 2, 180–182. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, D.; Ye, G.; Liu, D. Sehgal–Guseman-Type Fixed Point Theorem in b-Rectangular Metric Spaces. Mathematics 2021, 9, 3149. https://doi.org/10.3390/math9243149
Zheng D, Ye G, Liu D. Sehgal–Guseman-Type Fixed Point Theorem in b-Rectangular Metric Spaces. Mathematics. 2021; 9(24):3149. https://doi.org/10.3390/math9243149
Chicago/Turabian StyleZheng, Dingwei, Guofei Ye, and Dawei Liu. 2021. "Sehgal–Guseman-Type Fixed Point Theorem in b-Rectangular Metric Spaces" Mathematics 9, no. 24: 3149. https://doi.org/10.3390/math9243149
APA StyleZheng, D., Ye, G., & Liu, D. (2021). Sehgal–Guseman-Type Fixed Point Theorem in b-Rectangular Metric Spaces. Mathematics, 9(24), 3149. https://doi.org/10.3390/math9243149