Weighted Hybrid Feature Reduction Embedded with Ensemble Learning for Speech Data of Parkinson’s Disease
Abstract
:1. Introduction
2. Material and Methods
2.1. Data
2.2. The Proposed Method
Algorithm 1. The pseudo-code of the proposed algorithm |
Input: Data set X, labels Y |
Output: Final Prediction labels |
Begin |
1: Randomly divide dataset X into training data XR, test data XT, and validation data XV. |
2: Randomly select training sets as ( ) into where n is the number of subspaces, and rs = 0.8 |
3: for i = 1 to n (where n is the number of stacks or networks) |
Function = Hybrid-Feature-reduction () |
Feature extraction |
Calculate (matrix of intra-class variance) |
Calculate (matrix of inter-class variance) |
Calculate (Laplacian matrix) |
Calculate A (Affinity matrix) |
Solve for (The projection matrix) |
Feature Selection |
Initialize weight for each of the features |
Calculate (difference of sample and neighbor sample of the same class) |
Calculate (difference of sample and neighbor sample of the different classes) |
Calculate |
Select top feature where |
Weighted-boosting |
Assign equal weights to each of the training samples |
Train model |
Validate |
Find Miss-classified samples |
Calculated (Weights) |
Update weights |
Apply weighted-boosting |
end for |
4: Ensemble mapping |
Calculate (weight coefficient) |
Calculate (Predicted output) |
End |
2.3. Classifiers
2.4. Evaluation Criteria
2.5. Experimental Environment
3. Results
3.1. Comparison with Feature Extraction Methods
3.2. Comparison with Feature Selection Methods
3.3. Significance Analysis
3.4. Performance on AUC and Results Visualization
3.5. Comparison with State-of-the-Art Algorithms
- Relief-RF and Relief-SVM [41]: In this study, four feature reduction algorithms (LASSO, mRMR, Relief, and LLBFS (local learning-based feature selection) were used. These selected features were mapped to a binary classification response using RF and SVM classifiers and the best performance was achieved on the relief feature selection method with an SVM-linear classifier. The feature subsets were selected by using a cross-validation (CV) approach (only the training set). The CV process was repeated a total of ten times and the features which appeared most frequently were selected.
- mRMR [43]: The primary objective of this study was to compare the efficiency of feature reduction algorithms. The author used mRMR for feature selection with seven different classifiers (multilayer Perceptron, SVMs with RBF and linear kernels, logistic regression, naïve Bayes, K-nearest neighbor, and RF). Moreover, the results were combined using stacking strategies.
- LDA-NN-GA [4]: The author divides the dataset into test and training sets using the LOSO technique. Afterward, the LDA feature extraction method was used for feature reduction of the training dataset, and then the training dataset with reduced dimension was fed to the GA-optimized BP neural network to train the model, and finally, evaluate the performance using the test dataset.
- ReliefF-FC-SVM(RBF) [37]: This technique ranks the features using Fisher criterion (FC) based ReliefF algorithm. After that, top K features were selected for training and testing the model using the SVM-RBF classifier.
- SFFS-RF [42]: In this study, the author used the sequential floating feature selection (SFFS) method for feature selection and RF as a classifier.
- KPCA-SVM(RBF) [37]: For this study, a feature extraction method KPCA was used as a feature reduction method and an SVM with RBF kernel was used as a classifier.
3.6. Influence of Parameter on Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Babayev, R. Improving the Performance of Type-2 Diabetes Prediction Models with Automated Feature-Engineering Methods: A Design Science Research Study; Colorado Technical University: Colorado Springs, CO, USA, 2021. [Google Scholar]
- De la Fuente-Mella, H.; Rubilar, R.; Chahuán-Jiménez, K.; Leiva, V. Modeling COVID-19 cases statistically and evaluating their effect on the economy of countries. Mathematics 2021, 9, 1558. [Google Scholar] [CrossRef]
- Velasco, H.; Laniado, H.; Toro, M.; Catano-López, A.; Leiva, V.; Lio, Y. Modeling the Risk of Infectious Diseases Transmitted by Aedes aegypti Using Survival and Aging Statistical Analysis with a Case Study in Colombia. Mathematics 2021, 9, 1488. [Google Scholar] [CrossRef]
- Ali, L.; Zhu, C.; Zhang, Z.; Liu, Y. Automated detection of Parkinson’s disease based on multiple types of sustained phonations using linear discriminant analysis and genetically optimized neural network. IEEE J. Transl. Eng. Health Med. 2019, 7, 1–10. [Google Scholar] [CrossRef]
- Trier, Ø.D.; Jain, A.K.; Taxt, T. Feature extraction methods for character recognition-a survey. Pattern Recognit. 1996, 29, 641–662. [Google Scholar] [CrossRef]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Rovini, E.; Maremmani, C.; Moschetti, A.; Esposito, D.; Cavallo, F. Comparative motor pre-clinical assessment in Parkinson’s disease using supervised machine learning approaches. Ann. Biomed. Eng. 2018, 46, 2057–2068. [Google Scholar] [CrossRef]
- Sakar, C.O.; Kursun, O. Telediagnosis of Parkinson’s disease using measurements of dysphonia. J. Med. Syst. 2010, 34, 591–599. [Google Scholar] [CrossRef]
- Peker, M.; Sen, B.; Delen, D. Computer-aided diagnosis of Parkinson’s disease using complex-valued neural networks and mRMR feature selection algorithm. J. Healthc. Eng. 2015, 6, 281–302. [Google Scholar] [CrossRef] [Green Version]
- Benba, A.; Jilbab, A.; Hammouch, A. Hybridization of best acoustic cues for detecting persons with Parkinson’s disease. In Proceedings of the 2014 Second World Conference on Complex Systems (WCCS), Agadir, Morocco, 10–12 November; pp. 622–625.
- Shirvan, R.A.; Tahami, E. Voice analysis for detecting Parkinson’s disease using genetic algorithm and KNN classification method. In Proceedings of the 2011 18th Iranian Conference of Biomedical Engineering (ICBME), Tehran, Iran, 14–16 December 2011; pp. 278–283. [Google Scholar]
- Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In Proceedings of the 2014 Science and Information Conference, London, UK, 27–29 August 2014; pp. 372–378. [Google Scholar]
- Wang, X.; Paliwal, K.K. Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition. Pattern Recognit. 2003, 36, 2429–2439. [Google Scholar] [CrossRef]
- Chen, H.-L.; Huang, C.-C.; Yu, X.-G.; Xu, X.; Sun, X.; Wang, G.; Wang, S.-J. An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst. Appl. 2013, 40, 263–271. [Google Scholar] [CrossRef]
- Hariharan, M.; Polat, K.; Sindhu, R. A new hybrid intelligent system for accurate detection of Parkinson’s disease. Comput. Methods Programs Biomed. 2014, 113, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Tsanas, A.; Little, M.A.; McSharry, P.E.; Ramig, L.O. Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinson’s disease symptom severity. J. R. Soc. Interface 2011, 8, 842–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Wang, X.; Huang, G.-B.; Liu, T.; Tan, X. Taste recognition in E-tongue using local discriminant preservation projection. IEEE Trans. Cybern. 2018, 49, 947–960. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Peng, H.; Wei, J.; Ma, Q. Enhanced locality preserving projections using robust path based similarity. Neurocomputing 2011, 74, 598–605. [Google Scholar] [CrossRef]
- Uzer, M.S.; Inan, O.; Yılmaz, N. A hybrid breast cancer detection system via neural network and feature selection based on SBS, SFS and PCA. Neural Comput. Appl. 2013, 23, 719–728. [Google Scholar] [CrossRef]
- Ul Haq, A.; Li, J.; Memon, M.H.; Ali, Z.; Abbas, S.Z.; Nazir, S. Recognition of the Parkinson’s disease using a hybrid feature selection approach. J. Intell. Fuzzy Syst. 2020, 39, 1319–1339. [Google Scholar] [CrossRef]
- Kadam, V.J.; Kurdukar, A.A.; Jadhav, S.M. An Expert Diagnosis System for Parkinson’s Disease Using Bagging-Based Ensemble of Polynomial Kernel SVMs with Improved GA-SVM Features Selection. In Proceedings of the International Conference on Computational Science and Applications, Cagliari, Italy, 1–4 July 2020; pp. 227–234. [Google Scholar]
- Abuhasel, K.A.; Iliyasu, A.M.; Fatichah, C. A combined AdaBoost and NEWFM technique for medical data classification. In Information Science and Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 801–809. [Google Scholar]
- Li, Y.; Yang, L.; Wang, P.; Zhang, C.; Xiao, J.; Zhang, Y.; Qiu, M. Classification of Parkinson’s disease by decision tree based instance selection and ensemble learning algorithms. J. Med. Imaging Health Inform. 2017, 7, 444–452. [Google Scholar] [CrossRef]
- Lauraitis, A.; Maskeliūnas, R.; Damaševičius, R.; Krilavičius, T. Detection of speech impairments using cepstrum, auditory spectrogram and wavelet time scattering domain features. IEEE Access 2020, 8, 96162–96172. [Google Scholar] [CrossRef]
- Guimarães, M.T.; Medeiros, A.G.; Almeida, J.S.; y Martin, M.F.; Damaševičius, R.; Maskeliūnas, R.; Mattos, C.L.C.; Rebouças Filho, P.P. An Optimized Approach to Huntington’s Disease Detecting via Audio Signals Processing with Dimensionality Reduction. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Zhang, H.-H.; Yang, L.; Liu, Y.; Wang, P.; Yin, J.; Li, Y.; Qiu, M.; Zhu, X.; Yan, F. Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples. Biomed. Eng. Online 2016, 15, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Sakar, B.E.; Isenkul, M.E.; Sakar, C.O.; Sertbas, A.; Gurgen, F.; Delil, S.; Apaydin, H.; Kursun, O. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inform. 2013, 17, 828–834. [Google Scholar] [CrossRef]
- Little, M.; McSharry, P.; Hunter, E.; Spielman, J.; Ramig, L. Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. Nat. Preced. 2008. [Google Scholar] [CrossRef]
- Boersma, P.; Van Heuven, V. Speak and unSpeak with PRAAT. Glot Int. 2001, 5, 341–347. [Google Scholar]
- Rusz, J.; Tykalová, T.; Krupička, R.; Zárubová, K.; Novotný, M.; Jech, R.; Szabó, Z.; Růžička, E. Comparative analysis of speech impairment and upper limb motor dysfunction in Parkinson’s disease. J. Neural Transm. 2017, 124. [Google Scholar] [CrossRef]
- Zhan, A.; Little, M.A.; Harris, D.A.; Abiola, S.O.; Dorsey, E.; Saria, S.; Terzis, A. High frequency remote monitoring of Parkinson’s disease via smartphone: Platform overview and medication response detection. arXiv 2016, arXiv:1601.00960. [Google Scholar]
- Khan, T.; Westin, J.; Dougherty, M. Classification of speech intelligibility in Parkinson’s disease. Biocybern. Biomed. Eng. 2014, 34, 35–45. [Google Scholar] [CrossRef]
- Benba, A.; Jilbab, A.; Hammouch, A. Analysis of multiple types of voice recordings in cepstral domain using MFCC for discriminating between patients with Parkinson’s disease and healthy people. Int. J. Speech Technol. 2016, 19, 449–456. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: A new learning scheme of feedforward neural networks. In Proceedings of the 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541), Budapest, Hungary, 25–29 July 2004; pp. 985–990. [Google Scholar]
- Liu, Y.; Tan, X.; Li, Y.; Wang, P. Weighted Local Discriminant Preservation Projection Ensemble Algorithm With Embedded Micro-Noise. IEEE Access 2019, 7, 143814–143828. [Google Scholar] [CrossRef]
- Yang, S.; Zheng, F.; Luo, X.; Cai, S.; Wu, Y.; Liu, K.; Wu, M.; Chen, J.; Krishnan, S. Effective dysphonia detection using feature dimension reduction and kernel density estimation for patients with Parkinson’s disease. PLoS ONE 2014, 9, e88825. [Google Scholar] [CrossRef] [Green Version]
- El Moudden, I.; Ouzir, M.; ElBernoussi, S. Automatic speech analysis in patients with parkinson’s disease using feature dimension reduction. In Proceedings of the 3rd International Conference on Mechatronics and Robotics Engineering, Paris, France, 8–12 February 2017; pp. 167–171. [Google Scholar]
- El Moudden, I.; Ouzir, M.; ElBernoussi, S. Feature selection and extraction for class prediction in dysphonia measures analysis: A case study on Parkinson’s disease speech rehabilitation. Technol. Health Care 2017, 25, 693–708. [Google Scholar] [CrossRef]
- Lei, H.; Zhao, Y.; Wen, Y.; Luo, Q.; Cai, Y.; Liu, G.; Lei, B. Sparse feature learning for multi-class Parkinson’s disease classification. Technol. Health Care 2018, 26, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Tsanas, A.; Little, M.A.; McSharry, P.E.; Spielman, J.; Ramig, L.O. Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans. Biomed. Eng. 2012, 59, 1264–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galaz, Z.; Mekyska, J.; Mzourek, Z.; Smekal, Z.; Rektorova, I.; Eliasova, I.; Kostalova, M.; Mrackova, M.; Berankova, D. Prosodic analysis of neutral, stress-modified and rhymed speech in patients with Parkinson’s disease. Comput. Methods Programs Biomed. 2016, 127, 301–317. [Google Scholar] [CrossRef]
- Sakar, C.O.; Serbes, G.; Gunduz, A.; Tunc, H.C.; Nizam, H.; Sakar, B.E.; Tutuncu, M.; Aydin, T.; Isenkul, M.E.; Apaydin, H. A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform. Appl. Soft Comput. 2019, 74, 255–263. [Google Scholar] [CrossRef]
- Cigdem, O.; Demirel, H. Performance analysis of different classification algorithms using different feature selection methods on Parkinson’s disease detection. J. Neurosci. Methods 2018, 309, 81–90. [Google Scholar] [CrossRef]
- Tuncer, T.; Dogan, S.; Acharya, U.R. Automated detection of Parkinson’s disease using minimum average maximum tree and singular value decomposition method with vowels. Biocybern. Biomed. Eng. 2020, 40, 211–220. [Google Scholar] [CrossRef]
- Kursun, O.; Gumus, E.; Sertbas, A.; Favorov, O.V. Selection of vocal features for Parkinson’s Disease diagnosis. Int. J. Data Min. Bioinform. 2012, 6, 144–161. [Google Scholar] [CrossRef] [PubMed]
Datasets | Attributes | |||||
---|---|---|---|---|---|---|
Patients | Healthy People | Instances | Features | Classes | References | |
PARKINSON | 23 | 8 | 195 | 23 | 2 | [29] |
PSDMTSR | 20 | 20 | 1040 | 26 | 2 | [28] |
SelfData | 36 | 54 | 1170 | 26 | 2 | − |
Label | Prediction | ||
---|---|---|---|
Positive | Negative | ||
Real | positive | True Positive (TP) | False Negative (FN) |
negative | False Positive (FP) | True Negative (TN) |
Symbol | Meaning | Parameter Settings |
---|---|---|
Random sampling ratio | 0.8 | |
Number of subspaces | 5 | |
Penalty factor for | ||
Penalty factor for | ||
Penalty factor for | ||
Features after feature reduction | 5, 10, 15, 20, ….. | |
Nearest neighbor samples in affinity Matrix A | 5 | |
Kernel parameter of affinity Matrix A | ||
Fusion weight coefficient | Calculated by Bayesian fusion |
Dataset\Classifier | Acc | Pre | Rec | G-Mean | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SVM (linear) | SVM (RBF) | RF | ELM | SVM (linear) | SVM (RBF) | RF | ELM | SVM (linear) | SVM (RBF) | RF | ELM | SVM (linear) | SVM (RBF) | RF | ELM | ||
PARKINSONS | N_DR | 0.6833 | 0.7583 | 0.7583 | 0.7417 | 0.746 | 0.7463 | 0.7529 | 0.7647 | 0.8125 | 0.975 | 0.9625 | 0.9 | 0.5876 | 0.5629 | 0.5804 | 0.6185 |
PCA | 0.75 | 0.75 | 0.75 | 0.7167 | 0.7515 | 0.7297 | 0.7398 | 0.7386 | 0.9375 | 1 | 0.975 | 0.9 | 0.5929 | 0.5 | 0.5408 | 0.5612 | |
KPCA | 0.7167 | 0.675 | 0.7583 | 0.6917 | 0.7061 | 0.6727 | 0.7453 | 0.7431 | 0.9875 | 1 | 0.975 | 0.825 | 0.4157 | 0.1581 | 0.5629 | 0.5921 | |
LDA | 0.7083 | 0.7167 | 0.7417 | 0.6667 | 0.748 | 0.7093 | 0.7629 | 0.7061 | 0.8625 | 0.9875 | 0.9125 | 0.8625 | 0.5874 | 0.4157 | 0.6042 | 0.487 | |
LPP(S) | 0.7667 | 0.75 | 0.725 | 0.75 | 0.7591 | 0.7297 | 0.7145 | 0.7954 | 0.975 | 1 | 0.9875 | 0.8625 | 0.5842 | 0.5 | 0.4444 | 0.6729 | |
LPP(H) | 0.7417 | 0.7833 | 0.7417 | 0.7083 | 0.7533 | 0.7723 | 0.7337 | 0.7639 | 0.925 | 0.9625 | 0.975 | 0.8125 | 0.589 | 0.6396 | 0.5178 | 0.6374 | |
LDPP(S) | 0.7583 | 0.75 | 0.75 | 0.6917 | 0.7686 | 0.7309 | 0.7393 | 0.7371 | 0.925 | 1 | 0.975 | 0.8375 | 0.627 | 0.5 | 0.5408 | 0.5788 | |
LDPP(H) | 0.7667 | 0.7667 | 0.7917 | 0.725 | 0.7657 | 0.756 | 0.7715 | 0.7571 | 0.95 | 0.975 | 0.9875 | 0.875 | 0.6164 | 0.5842 | 0.6285 | 0.6098 | |
Proposed (S) | 0.8167 | 0.7583 | 0.8167 | 0.85 | 0.7899 | 0.7382 | 0.7921 | 0.8396 | 1 | 1 | 0.9875 | 0.975 | 0.6708 | 0.5244 | 0.6849 | 0.7649 | |
Proposed (H) | 0.85 | 0.8083 | 0.85 | 0.8917 | 0.8356 | 0.781 | 0.8194 | 0.9069 | 0.975 | 1 | 1 | 0.95 | 0.7649 | 0.6519 | 0.7416 | 0.8581 | |
PSDMTSR | N_DR | 0.6125 | 0.575 | 0.5625 | 0.6188 | 0.6152 | 0.5721 | 0.5545 | 0.6458 | 0.65 | 0.6375 | 0.6 | 0.625 | 0.6114 | 0.5716 | 0.5612 | 0.6187 |
PCA | 0.575 | 0.55 | 0.5813 | 0.575 | 0.5924 | 0.5561 | 0.5816 | 0.5914 | 0.6625 | 0.625 | 0.6625 | 0.5625 | 0.5683 | 0.5449 | 0.5755 | 0.5749 | |
KPCA | 0.5188 | 0.55 | 0.5688 | 0.5063 | 0.6633 | 0.6883 | 0.5655 | 0.496 | 0.35 | 0.4625 | 0.7 | 0.45 | 0.4905 | 0.543 | 0.5534 | 0.5031 | |
LDA | 0.6 | 0.5563 | 0.5938 | 0.55 | 0.6037 | 0.5515 | 0.592 | 0.5565 | 0.65 | 0.6125 | 0.6375 | 0.6 | 0.5979 | 0.5534 | 0.5921 | 0.5477 | |
LPP(S) | 0.5625 | 0.5625 | 0.5813 | 0.6 | 0.5828 | 0.5602 | 0.5891 | 0.6344 | 0.625 | 0.65 | 0.675 | 0.575 | 0.559 | 0.5557 | 0.5736 | 0.5995 | |
LPP(H) | 0.5438 | 0.5688 | 0.6063 | 0.5563 | 0.5486 | 0.5765 | 0.6068 | 0.5839 | 0.625 | 0.5875 | 0.625 | 0.575 | 0.5376 | 0.5684 | 0.606 | 0.5559 | |
LDPP(S) | 0.5688 | 0.5813 | 0.5 | 0.6 | 0.5618 | 0.5959 | 0.5082 | 0.6234 | 0.7125 | 0.65 | 0.5875 | 0.6125 | 0.5503 | 0.5772 | 0.4923 | 0.5999 | |
LDPP(H) | 0.5438 | 0.5 | 0.5438 | 0.5688 | 0.5943 | 0.5201 | 0.54 | 0.5819 | 0.5625 | 0.525 | 0.6 | 0.5375 | 0.5434 | 0.4994 | 0.5408 | 0.5679 | |
Proposed (S) | 0.7375 | 0.6625 | 0.6875 | 0.7563 | 0.7534 | 0.6628 | 0.6854 | 0.764 | 0.775 | 0.75 | 0.7375 | 0.7875 | 0.7365 | 0.6567 | 0.6857 | 0.7556 | |
Proposed (H) | 0.7125 | 0.6625 | 0.7063 | 0.7625 | 0.7219 | 0.6425 | 0.6773 | 0.8171 | 0.7375 | 0.7875 | 0.8375 | 0.7375 | 0.7121 | 0.6506 | 0.6939 | 0.7621 | |
SelfData | N_DR | 0.56 | 0.5433 | 0.5367 | 0.4867 | 0.3962 | 0.3305 | 0.3825 | 0.3687 | 0.3583 | 0.2417 | 0.2583 | 0.35 | 0.4988 | 0.4242 | 0.4319 | 0.4497 |
PCA | 0.5733 | 0.5467 | 0.54 | 0.5267 | 0.3628 | 0.4588 | 0.3669 | 0.4339 | 0.2083 | 0.2667 | 0.25 | 0.4417 | 0.4125 | 0.4422 | 0.4282 | 0.5076 | |
KPCA | 0.5867 | 0.5967 | 0.5367 | 0.58 | 0.3917 | 0.4417 | 0.3791 | 0.4619 | 0.0667 | 0.075 | 0.3083 | 0.1667 | 0.2494 | 0.2661 | 0.4609 | 0.3776 | |
LDA | 0.5867 | 0.5667 | 0.5133 | 0.49 | 0.3288 | 0.1742 | 0.3455 | 0.3256 | 0.1583 | 0.0833 | 0.2833 | 0.3333 | 0.3716 | 0.2722 | 0.4346 | 0.4451 | |
LPP(S) | 0.56 | 0.5067 | 0.5633 | 0.5033 | 0.3468 | 0.3575 | 0.4558 | 0.4105 | 0.1833 | 0.225 | 0.2917 | 0.5083 | 0.3856 | 0.3953 | 0.466 | 0.5041 | |
LPP(H) | 0.5833 | 0.59 | 0.5333 | 0.4533 | 0.2171 | 0.1485 | 0.3181 | 0.3044 | 0.0833 | 0.075 | 0.15 | 0.3083 | 0.2764 | 0.2646 | 0.344 | 0.4118 | |
LDPP(S) | 0.5967 | 0.5867 | 0.55 | 0.4867 | 0.3329 | 0.2432 | 0.2744 | 0.3615 | 0.1917 | 0.1333 | 0.2 | 0.3583 | 0.4076 | 0.3443 | 0.3958 | 0.4528 | |
LDPP(H) | 0.5667 | 0.5967 | 0.5233 | 0.4767 | 0.3078 | 0.3219 | 0.3032 | 0.3564 | 0.1417 | 0.2083 | 0.1833 | 0.4083 | 0.347 | 0.4222 | 0.3708 | 0.4618 | |
Proposed (S) | 0.6467 | 0.6267 | 0.6733 | 0.6733 | 0.5808 | 0.3405 | 0.6807 | 0.6816 | 0.1833 | 0.1 | 0.375 | 0.525 | 0.4186 | 0.3127 | 0.5719 | 0.6367 | |
Proposed (H) | 0.6133 | 0.64 | 0.6567 | 0.6733 | 0.4511 | 0.5592 | 0.6585 | 0.5945 | 0.1833 | 0.1667 | 0.3417 | 0.5167 | 0.4062 | 0.3991 | 0.5442 | 0.6339 |
Dataset\Classifier | Acc | Pre | Rec | G-Mean | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SVM (Linear) | SVM (RBF) | RF | ELM | SVM (Linear) | SVM (RBF) | RF | ELM | SVM (Linear) | SVM (RBF) | RF | ELM | SVM (Linear) | SVM (RBF) | RF | ELM | ||
PARKINSONS | N_DR | 0.6833 | 0.7583 | 0.7583 | 0.7417 | 0.746 | 0.7463 | 0.7529 | 0.7647 | 0.8125 | 0.975 | 0.9625 | 0.9 | 0.5876 | 0.5629 | 0.5804 | 0.6185 |
mRMR | 0.7167 | 0.6667 | 0.725 | 0.7417 | 0.7227 | 0.673 | 0.7198 | 0.761 | 0.95 | 0.975 | 0.975 | 0.9125 | 0.4873 | 0.2208 | 0.4684 | 0.6042 | |
ReliefF | 0.75 | 0.675 | 0.725 | 0.6917 | 0.7543 | 0.6758 | 0.728 | 0.7146 | 0.9375 | 0.9875 | 0.95 | 0.9125 | 0.5929 | 0.2222 | 0.5111 | 0.4776 | |
Pvalue | 0.7667 | 0.675 | 0.75 | 0.7167 | 0.7691 | 0.6758 | 0.7529 | 0.7505 | 0.95 | 0.9875 | 0.9625 | 0.8875 | 0.6164 | 0.2222 | 0.5593 | 0.5769 | |
SBS | 0.7583 | 0.675 | 0.725 | 0.7583 | 0.7691 | 0.6727 | 0.7279 | 0.7546 | 0.925 | 1 | 0.95 | 0.9625 | 0.627 | 0.1581 | 0.5111 | 0.5804 | |
SFS | 0.7917 | 0.675 | 0.7333 | 0.7333 | 0.7873 | 0.6727 | 0.7358 | 0.7602 | 0.95 | 1 | 0.95 | 0.9 | 0.6718 | 0.1581 | 0.5339 | 0.6 | |
SVM_FRE | 0.75 | 0.675 | 0.7333 | 0.6917 | 0.7396 | 0.6727 | 0.7265 | 0.7291 | 0.9875 | 1 | 0.975 | 0.85 | 0.5211 | 0.1581 | 0.4937 | 0.5646 | |
Proposed (S) | 0.8167 | 0.7583 | 0.8167 | 0.85 | 0.7899 | 0.7382 | 0.7921 | 0.8396 | 1 | 1 | 0.9875 | 0.975 | 0.6708 | 0.5244 | 0.6849 | 0.7649 | |
Proposed (H) | 0.85 | 0.8083 | 0.85 | 0.8917 | 0.8356 | 0.781 | 0.8194 | 0.9069 | 0.975 | 1 | 1 | 0.95 | 0.7649 | 0.6519 | 0.7416 | 0.8581 | |
PSDMTSR | N_DR | 0.6125 | 0.575 | 0.5625 | 0.6188 | 0.6152 | 0.5721 | 0.5545 | 0.6458 | 0.65 | 0.6375 | 0.6 | 0.625 | 0.6114 | 0.5716 | 0.5612 | 0.6187 |
mRMR | 0.5688 | 0.5375 | 0.6188 | 0.5813 | 0.597 | 0.45 | 0.6032 | 0.5986 | 0.4 | 0.175 | 0.675 | 0.5875 | 0.5431 | 0.3969 | 0.6162 | 0.5812 | |
ReliefF | 0.5938 | 0.4875 | 0.5313 | 0.6188 | 0.5314 | 0.2551 | 0.5305 | 0.633 | 0.525 | 0.3875 | 0.6125 | 0.6375 | 0.5898 | 0.4771 | 0.525 | 0.6185 | |
Pvalue | 0.5688 | 0.475 | 0.5625 | 0.6313 | 0.6023 | 0.3851 | 0.5681 | 0.6309 | 0.6125 | 0.25 | 0.625 | 0.6875 | 0.5671 | 0.4183 | 0.559 | 0.6287 | |
SBS | 0.5688 | 0.4813 | 0.5313 | 0.6125 | 0.5828 | 0.3078 | 0.5236 | 0.6198 | 0.5 | 0.2875 | 0.5875 | 0.625 | 0.5646 | 0.4405 | 0.5283 | 0.6124 | |
SFS | 0.55 | 0.4938 | 0.5563 | 0.575 | 0.5754 | 0.4937 | 0.5686 | 0.5737 | 0.4625 | 0.2625 | 0.575 | 0.625 | 0.543 | 0.4362 | 0.5559 | 0.5728 | |
SVM_FRE | 0.5375 | 0.5313 | 0.5375 | 0.5313 | 0.4834 | 0.5 | 0.5383 | 0.5395 | 0.45 | 0.4125 | 0.5875 | 0.5875 | 0.5303 | 0.5178 | 0.5352 | 0.5283 | |
Proposed (S) | 0.7375 | 0.6625 | 0.6875 | 0.7563 | 0.7534 | 0.6628 | 0.6854 | 0.764 | 0.775 | 0.75 | 0.7375 | 0.7875 | 0.7365 | 0.6567 | 0.6857 | 0.7556 | |
Proposed (H) | 0.7125 | 0.6625 | 0.7063 | 0.7625 | 0.7219 | 0.6425 | 0.6773 | 0.8171 | 0.7375 | 0.7875 | 0.8375 | 0.7375 | 0.7121 | 0.6506 | 0.6939 | 0.7621 | |
SelfData | N_DR | 0.56 | 0.5433 | 0.5367 | 0.4867 | 0.3962 | 0.3305 | 0.3825 | 0.3687 | 0.3583 | 0.2417 | 0.2583 | 0.35 | 0.4988 | 0.4242 | 0.4319 | 0.4497 |
mRMR | 0.5433 | 0.6 | 0.5267 | 0.5233 | 0.1642 | 0 | 0.3175 | 0.2822 | 0.1 | 0 | 0.1583 | 0.225 | 0.2896 | 0 | 0.3497 | 0.4031 | |
ReliefF | 0.5833 | 0.5933 | 0.5 | 0.5233 | 0.2722 | 0.025 | 0.3014 | 0.3798 | 0.1917 | 0.0083 | 0.2 | 0.2917 | 0.4023 | 0.0905 | 0.3742 | 0.4446 | |
Pvalue | 0.58 | 0.5933 | 0.5433 | 0.5 | 0.2889 | 0.075 | 0.3511 | 0.3865 | 0.25 | 0.0167 | 0.2167 | 0.35 | 0.4472 | 0.1277 | 0.4061 | 0.4583 | |
SBS | 0.5133 | 0.6 | 0.5067 | 0.5 | 0.2933 | 0 | 0.2931 | 0.3938 | 0.2917 | 0 | 0.25 | 0.4333 | 0.4391 | 0 | 0.4116 | 0.4857 | |
SFS | 0.5733 | 0.5967 | 0.5267 | 0.5033 | 0.2792 | 0.0333 | 0.3825 | 0.3697 | 0.1333 | 0.0083 | 0.2333 | 0.3417 | 0.3399 | 0.0908 | 0.4105 | 0.4569 | |
SVM_FRE | 0.5667 | 0.6 | 0.5433 | 0.52 | 0.1883 | 0 | 0.265 | 0.3789 | 0.175 | 0 | 0.1333 | 0.35 | 0.3806 | 0 | 0.33 | 0.4708 | |
Proposed (S) | 0.6467 | 0.6267 | 0.6733 | 0.6733 | 0.5808 | 0.3405 | 0.6807 | 0.6816 | 0.1833 | 0.1 | 0.375 | 0.525 | 0.4186 | 0.3127 | 0.5719 | 0.6367 | |
Proposed (H) | 0.6133 | 0.64 | 0.6567 | 0.6733 | 0.4511 | 0.5592 | 0.6585 | 0.594 | 0.1833 | 0.1667 | 0.3417 | 0.5167 | 0.4062 | 0.3991 | 0.5442 | 0.6339 |
Datasets | Classifiers\Methods | Methods | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N_DR | mRMR | ReliefF | p-Value | SBS | SFS | SVM_RFE | PCA | KPCA | LDA | LPP (S) | LPP (H) | LDPP (S) | LDPP (H) | |||
PARKINSONS | SVM (linear) | Proposed (S) | 0.045 | 0.013 | 0.07 | 0.168 | 0.242 | 0.52 | 0.087 | 0.196 | 0.009 | 0.051 | 0.279 | 0.041 | 0.111 | 0.111 |
Proposed (H) | 0.008 | 0.002 | 0.013 | 0.074 | 0.012 | 0.01 | 0.018 | 0.003 | <0.001 | 0.002 | 0.004 | 0.009 | 0.012 | 0.001 | ||
SVM (RBF) | Proposed (S) | 1 | <0.001 | 0.023 | 0.015 | 0.004 | 0.004 | 0.004 | 0.758 | 0.004 | 0.052 | 0.726 | 0.394 | 0.343 | 0.798 | |
Proposed (H) | 0.111 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | 0.025 | <0.001 | 0.012 | 0.01 | 0.193 | 0.066 | 0.052 | ||
RF | Proposed (S) | 0.045 | 0.017 | 0.032 | 0.053 | 0.003 | 0.015 | 0.008 | 0.022 | 0.045 | 0.041 | 0.024 | 0.019 | 0.011 | 0.279 | |
Proposed (H) | 0.007 | 0.003 | 0.003 | 0.018 | 0.003 | 0.007 | <0.001 | 0.003 | 0.003 | 0.006 | 0.005 | 0.002 | <0.001 | 0.01 | ||
ELM | Proposed (S) | 0.004 | 0.006 | <0.001 | 0.008 | 0.032 | 0.004 | <0.001 | <0.001 | 0.006 | <0.001 | 0.03 | 0.028 | 0.007 | <0.001 | |
Proposed (H) | <0.001 | 0.004 | <0.001 | <0.001 | 0.003 | 0.007 | 0.003 | <0.001 | 0.002 | 0.001 | 0.004 | 0.013 | 0.001 | <0.001 | ||
PSDMTSR | SVM (linear) | Proposed (S) | 0.005 | 0.003 | 0.014 | 0.004 | 0.002 | 0 | 0.002 | 0 | 0 | 0.004 | 0.004 | 0.002 | 0 | <0.001 |
Proposed (H) | 0.008 | 0.004 | 0.035 | 0 | 0.005 | <0.001 | 0.01 | 0.002 | 0 | 0.016 | 0.007 | 0.001 | 0.002 | <0.001 | ||
SVM (RBF) | Proposed (S) | 0.007 | 0.003 | <0.001 | <0.001 | <0.001 | <0.001 | 0.007 | 0.005 | 0.041 | <0.001 | 0.003 | 0.015 | 0.006 | 0.028 | |
Proposed (H) | 0.034 | 0.005 | 0.003 | 0.003 | <0.001 | <0.001 | 0.007 | 0.019 | 0.027 | 0.019 | 0.013 | 0.03 | 0.045 | 0.032 | ||
RF | Proposed (S) | 0.008 | 0.017 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | 0.028 | 0.002 | 0.009 | 0.009 | 0.022 | <0.001 | <0.001 | |
Proposed (H) | 0.002 | 0.013 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.004 | <0.001 | 0.003 | <0.001 | 0.022 | <0.001 | <0.001 | ||
ELM | Proposed (S) | 0.007 | <0.001 | 0.007 | 0.032 | 0.036 | <0.001 | <0.001 | 0.006 | <0.001 | <0.001 | 0.008 | <0.001 | <0.001 | 0.002 | |
Proposed (H) | 0.019 | <0.001 | 0.006 | 0.014 | 0.007 | <0.001 | <0.001 | 0.009 | <0.001 | <0.001 | 0.013 | <0.001 | 0.006 | <0.001 | ||
SelfData | SVM (linear) | Proposed (S) | 0.015 | 0.006 | 0.032 | 0.025 | 0.004 | 0.038 | 0.012 | 0.007 | 0.032 | 0.038 | 0.011 | 0.004 | 0.009 | 0.009 |
Proposed (H) | 0.065 | 0.031 | 0.204 | 0.195 | 0.013 | 0.14 | 0.072 | 0.058 | 0.247 | 0.21 | 0.061 | 0.108 | 0.138 | 0.061 | ||
SVM (RBF) | Proposed (S) | 0.016 | 0.087 | 0.042 | 0.063 | 0.087 | 0.108 | 0.087 | 0.006 | 0.147 | 0.027 | 0.004 | 0.066 | 0.044 | 0.147 | |
Proposed (H) | 0.009 | 0.013 | 0.01 | 0.016 | 0.013 | 0.013 | 0.013 | 0.003 | 0.028 | 0.004 | <0.001 | 0.003 | 0.045 | 0.057 | ||
RF | Proposed (S) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Proposed (H) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
ELM | Proposed (S) | <0.001 | <0.001 | <0.001 | 0.003 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Proposed (H) | <0.001 | 0.002 | <0.001 | 0.003 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Methods\Classifiers | SVM (Linear) | SVM (RBF) | RF | ELM | |
---|---|---|---|---|---|
N_DR | 0.5542 | 0.6109 | 0.5026 | 0.5835 | |
Feature Extraction | PCA | 0.5207 | 0.5953 | 0.5243 | 0.5543 |
KPCA | 0.549 | 0.5969 | 0.5163 | 0.4655 | |
LDA | 0.5429 | 0.6141 | 0.5408 | 0.5175 | |
LPP(S) | 0.5447 | 0.6281 | 0.5343 | 0.5841 | |
LPP(H) | 0.5498 | 0.5859 | 0.5131 | 0.5114 | |
LDPP(S) | 0.5557 | 0.6234 | 0.4722 | 0.55 | |
LDPP(H) | 0.5372 | 0.5422 | 0.5259 | 0.5137 | |
Feature Selection | mRMR | 0.5421 | 0.6234 | 0.606 | 0.4998 |
ReliefF | 0.5879 | 0.55 | 0.4775 | 0.5269 | |
Pvalue | 0.5474 | 0.5281 | 0.4719 | 0.5832 | |
SBS | 0.5534 | 0.5203 | 0.4739 | 0.5502 | |
SFS | 0.5793 | 0.5094 | 0.5218 | 0.5359 | |
SVM_FRE | 0.5422 | 0.6047 | 0.4864 | 0.4662 | |
Proposed | Simple minded (S) | 0.6655 | 0.6609 | 0.5401 | 0.6087 |
Heat kernel (H) | 0.6082 | 0.6859 | 0.5603 | 0.6455 |
Methods\Datasets | PSDMTSR | PARKINSONS | SelfData | |
---|---|---|---|---|
ReliefF | SVM (linear) | 0.5938 | 0.75 | 0.5833 |
RF | 0.5313 | 0.725 | 0.5 | |
mRMR | SVM (linear) | 0.5688 | 0.7167 | 0.5433 |
SVM (RBF) | 0.5375 | 0.6667 | 0.6 | |
RF | 0.6188 | 0.725 | 0.5267 | |
SFFS-RF | 0.6063 | 0.8083 | 0.6 | |
ReliefF-FC-SVM(RBF) | 0.6138 | 0.8167 | 0.6267 | |
LDA-NN-GA | 0.6138 | 0.8083 | 0.63 | |
KPCA-SVM(RBF) | 0.55 | 0.675 | 0.5967 | |
Proposed (S) | SVM (linear) | 0.7375 | 0.8167 | 0.6467 |
SVM (RBF) | 0.6625 | 0.7583 | 0.6267 | |
RF | 0.6875 | 0.8167 | 0.6733 | |
ELM | 0.7563 | 0.85 | 0.6733 | |
Proposed (H) | SVM (linear) | 0.7125 | 0.85 | 0.6133 |
SVM (RBF) | 0.6625 | 0.8083 | 0.64 | |
RF | 0.7063 | 0.85 | 0.6567 | |
ELM | 0.7625 | 0.8917 | 0.6733 |
Dataset | Classifiers\Methods | Methods | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ReliefF-SVM (Linear) | ReliefF-SVM (RBF) | mRMR-SVM (Linear) | mRMR-SVM (RBF) | mRMR-RF | LDA-NN-GA | ReliefF-FC-SVM (EBF) | SFFS-RF | KPCA-SVM (RBF) | |||
PARKINSONS | SVM (linear) | Proposed (S) | 0.07 | 0.057 | 0.013 | <0.001 | 0.032 | 0.84 | 0.07 | 0.057 | 0.013 |
Proposed (H) | 0.013 | 0.002 | 0.002 | <0.001 | 0.005 | 0.096 | 0.013 | 0.002 | 0.002 | ||
SVM (RBF) | Proposed (S) | 0.78 | 0.309 | 0.052 | <0.001 | 0.223 | 0.111 | 0.78 | 0.309 | 0.052 | |
Proposed (H) | 0.173 | 0.023 | 0.007 | <0.001 | 0.015 | 1 | 0.173 | 0.023 | 0.007 | ||
RF | Proposed (S) | 0.07 | 0.032 | 0.005 | <0.001 | 0.017 | 0.678 | 0.07 | 0.032 | 0.005 | |
Proposed (H) | 0.013 | 0.003 | <0.001 | <0.001 | 0.003 | 0.052 | 0.013 | 0.003 | <0.001 | ||
ELM | Proposed (S) | 0.009 | 0.005 | 0.003 | <0.001 | 0.003 | 0.138 | 0.009 | 0.005 | 0.003 | |
Proposed (H) | 0.003 | 0.004 | <0.001 | <0.001 | 0.001 | 0.023 | 0.003 | 0.004 | <0.001 | ||
PSDMTSR | SVM (linear) | Proposed (S) | 0.014 | <0.001 | 0.003 | <0.001 | 0.004 | 0.003 | 0.024 | 0.027 | 0.003 |
Proposed (H) | 0.035 | <0.001 | 0.004 | 0.002 | 0.034 | 0.027 | 0.052 | 0.045 | 0.004 | ||
SVM (RBF) | Proposed (S) | 0.137 | 0.011 | 0.067 | 0.003 | 0.111 | 0.09 | 0.309 | 0.235 | 0.041 | |
Proposed (H) | 0.259 | 0.027 | 0.034 | 0.005 | 0.226 | 0.177 | 0.177 | 0.31 | 0.027 | ||
RF | Proposed (S) | 0.022 | 0.002 | 0.025 | <0.001 | 0.017 | 0.01 | 0.075 | 0.045 | 0.016 | |
Proposed (H) | 0.014 | <0.001 | 0.006 | <0.001 | 0.013 | 0.007 | 0.044 | 0.029 | 0.005 | ||
ELM | Proposed (S) | 0.001 | <0.001 | <0.001 | <0.001 | 0.003 | 0.001 | 0.001 | 0.001 | <0.001 | |
Proposed (H) | 0.004 | <0.001 | <0.001 | <0.001 | 0.007 | 0.005 | 0.005 | 0.003 | <0.001 | ||
SelfData | SVM (linear) | Proposed (S) | 0.032 | <0.001 | 0.006 | 0.055 | 0.003 | 0.504 | 0.425 | 0.396 | 0.086 |
Proposed (H) | 0.204 | <0.001 | 0.031 | 0.509 | 0.01 | 0.475 | 0.565 | 0.8 | 0.44 | ||
SVM (RBF) | Proposed (S) | 0.083 | <0.001 | 0.005 | 0.087 | 0.011 | 0.343 | 1 | 0.485 | 0.147 | |
Proposed (H) | 0.035 | <0.001 | 0.004 | 0.013 | 0.002 | 0.496 | 0.373 | 0.358 | 0.028 | ||
RF | Proposed (S) | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | 0.006 | 0.003 | 0.087 | 0.002 | |
Proposed (H) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.137 | 0.095 | 0.23 | <0.001 | ||
ELM | Proposed (S) | 0.008 | <0.001 | 0.003 | <0.001 | <0.001 | 0.083 | 0.066 | 0.099 | 0.002 | |
Proposed (H) | 0.006 | <0.001 | <0.001 | 0.003 | <0.001 | 0.096 | 0.077 | 0.173 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hameed, Z.; Rehman, W.U.; Khan, W.; Ullah, N.; Albogamy, F.R. Weighted Hybrid Feature Reduction Embedded with Ensemble Learning for Speech Data of Parkinson’s Disease. Mathematics 2021, 9, 3172. https://doi.org/10.3390/math9243172
Hameed Z, Rehman WU, Khan W, Ullah N, Albogamy FR. Weighted Hybrid Feature Reduction Embedded with Ensemble Learning for Speech Data of Parkinson’s Disease. Mathematics. 2021; 9(24):3172. https://doi.org/10.3390/math9243172
Chicago/Turabian StyleHameed, Zeeshan, Waheed Ur Rehman, Wakeel Khan, Nasim Ullah, and Fahad R. Albogamy. 2021. "Weighted Hybrid Feature Reduction Embedded with Ensemble Learning for Speech Data of Parkinson’s Disease" Mathematics 9, no. 24: 3172. https://doi.org/10.3390/math9243172
APA StyleHameed, Z., Rehman, W. U., Khan, W., Ullah, N., & Albogamy, F. R. (2021). Weighted Hybrid Feature Reduction Embedded with Ensemble Learning for Speech Data of Parkinson’s Disease. Mathematics, 9(24), 3172. https://doi.org/10.3390/math9243172