A New Family of Zeta Type Functions Involving the Hurwitz Zeta Function and the Alternating Hurwitz Zeta Function
Abstract
:1. Introduction
Family of Zeta Functions
2. A New Family of Zeta Type Functions
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Apostol, T.M. On the Lerch Zeta function. Pac. J. Math. 1951, 1, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Bayad, A.; Simsek, Y. Values of twisted Barnes zeta functions at negative integers. Russ. J. Math. Phys. 2013, 20, 129–137. [Google Scholar] [CrossRef]
- Bayad, A.; Simsek, Y. Note on the Hurwitz Zeta Function of Higher Order. AIP Conf. Proc. 2011, 1389, 389–391. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. The multiple Hurwitz zeta function and the multiple Hurwitz–Euler eta function. Taiwan. J. Math. 2011, 15, 501–522. [Google Scholar] [CrossRef]
- Comtet, L. Advanced Combinatorics; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Erdelyi, A. Higher Transcendental Functions; Bateman, H., Ed.; McGraw-Hill Book Company: New York, NY, USA, 1953; Volumes I–III. [Google Scholar]
- Hwang, K.-W.; Ryoo, C.S. Some Properties for Multiple Twisted (p,q)-L-Function and Carlitz’s Type Higher-Order Twisted (p,q)-Euler Polynomials. Mathematics 2019, 7, 1205. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Kim, D.; Kim, M.-S. Special values and integral representations for the Hurwitz-type Euler zeta functions. arxiv 2015, arXiv:1508.04084. [Google Scholar]
- Kim, T.; Rim, S.H.; Simsek, Y.; Kim, D. On the analogs of Bernoulli and Euler numbers, related identities and zeta and l-functions. J. Korean Math. Soc. 2008, 45, 435–453. [Google Scholar] [CrossRef] [Green Version]
- Kruchinin, D.; Kruchinin, V.; Simsek, Y. Generalized Tepper’s identity and its application. Mathematics 2020, 8, 243. [Google Scholar] [CrossRef] [Green Version]
- Kucukoglu, I.; Simsek, Y.; Srivastava, H.M. A new family of Lerch-type zeta functions interpolating a certain class of higher-order Apostol-type numbers and Apostol-type polynomials. Quaest. Math. 2019, 42, 465–478. [Google Scholar] [CrossRef]
- Kucukoglu, I.; Simsek, Y. Identities for Dirichlet and Lambert-type series arising from the numbers of a certain special word. Appl. Anal. Discret. Math. 2019, 13, 787–804. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.M.; Srivastava, H.M. Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind. Appl. Math. Comput. 2011, 217, 5702–5728. [Google Scholar] [CrossRef]
- Milne-Thomson, L.M. The Calculus of Finite Differences; Macmillan and Co.: London, UK, 1933. [Google Scholar]
- Ozden, H.; Simsek, Y. Modification and unification of the Apostol-type numbers and polynomials and their applications. Appl. Math. Comput. 2014, 235, 338–351. [Google Scholar] [CrossRef]
- Roman, S. The Umbral Calculus; Dover Publ. Inc.: New York, NY, USA, 2005. [Google Scholar]
- Simsek, Y. q-Analogue of the twisted l-series and q-twisted Euler numbers. J. Number Theory 2005, 110, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y. On twisted q-Hurwitz zeta function and q-two-variable L-function. Appl. Math. Comput. 2007, 187, 466–473. [Google Scholar] [CrossRef]
- Simsek, Y. q-Hardy Berndt type sums associated with q-Genocchi type zeta and q-l-functions. Nonlinear Anal. 2009, 71, e377–e395. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y. Twisted p-adic (h,q)-L-functions. Comput. Math. Appl. 2010, 59, 2097–2110. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y. Special functions related to Dedekind-type DC-sums and their applications. Russ. J. Math. Phys. 2010, 17, 495–508. [Google Scholar] [CrossRef]
- Simsek, Y. Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications. Fixed Point Theory Appl. 2013, 87, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y. New families of special numbers for computing negative order Euler numbers and related numbers and polynomials. Appl. Anal. Discret. Math. 2018, 12, 1–35. [Google Scholar] [CrossRef]
- Simsek, Y. Explicit formulasfor p-adic integrals: Approach to p-adic distributions and some families of special numbers and polynomials. Montes Taurus J. Pure Appl. Math. 2019, 1, 1–76. [Google Scholar]
- Simsek, Y. New classes of recurrence relations involving hyperbolic functions, special numbers and polynomials. Appl. Anal. Discrete Math. AADM 3138.
- Simsek, Y.; Srivastava, H.M. A family of p-adic twisted interpolation functions associated with the modified Bernoulli numbers. Appl. Math. Comput. 2010, 216, 2976–2987. [Google Scholar] [CrossRef]
- Simsek, Y.; Cangul, I.N.; Kurt, V.; Kim, D. q-Genocchi numbers and polynomials associated with q-Genocchi-type l-functions. Adv. Differ. Equ. 2008, 815750. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y.; Kim, D.; Rim, S.H. On the two-variable Dirichlet q-L-series. Adv. Stud. Contemp. Math. 2005, 10, 131–142. [Google Scholar]
- Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5, 390–444. [Google Scholar]
- Srivastava, H.M.; Choi, J. Series Associated with the Zeta and Related Functions; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2001. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Srivastava, H.M.; Kim, T.; Simsek, Y. q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series. Russ. J. Math. Phys. 2005, 12, 241–268. [Google Scholar]
- Srivastava, H.M.; Saxena, R.K.; Pogany, T.K.; Saxena, R. Integral and computational representations of the extended Hurwitz–Lerch zeta function. Integral Transform. Spec. Funct. 2011, 22, 487–506. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ozden, H.; Cangul, I.N.; Simsek, Y. A unified presentation of certain meromorphic functions related to the families of the partial zeta type functions and the L-functions. Appl. Math. Comput. 2012, 219, 3903–3913. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Simsek, Y. A New Family of Zeta Type Functions Involving the Hurwitz Zeta Function and the Alternating Hurwitz Zeta Function. Mathematics 2021, 9, 233. https://doi.org/10.3390/math9030233
Kim D, Simsek Y. A New Family of Zeta Type Functions Involving the Hurwitz Zeta Function and the Alternating Hurwitz Zeta Function. Mathematics. 2021; 9(3):233. https://doi.org/10.3390/math9030233
Chicago/Turabian StyleKim, Daeyeoul, and Yilmaz Simsek. 2021. "A New Family of Zeta Type Functions Involving the Hurwitz Zeta Function and the Alternating Hurwitz Zeta Function" Mathematics 9, no. 3: 233. https://doi.org/10.3390/math9030233
APA StyleKim, D., & Simsek, Y. (2021). A New Family of Zeta Type Functions Involving the Hurwitz Zeta Function and the Alternating Hurwitz Zeta Function. Mathematics, 9(3), 233. https://doi.org/10.3390/math9030233