The Mean Values of Character Sums and Their Applications
Abstract
:1. Introduction
2. Several Lemmas
3. Proofs of the Theorems
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Chen, Z.Y. Some new hybrid power mean formulae of trigonometric sums. Adv. Differ. Equ. 2020, 2020, 220. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.Y. A linear Recurrence Formula Involving Cubic Gauss Sums and Kloosterman Sums. Acta Math. Sin. Chin. Ser. 2018, 61, 67–72. [Google Scholar]
- Chowla, S.; Cowles, J.; Cowles, M. On the number of zeros of diagonal cubic forms. J. Number Theory 1977, 9, 502–506. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.P.; Yi, Y. On Dirichlet characters of polynomials. Bull. Lond. Math. Soc. 2002, 34, 469–473. [Google Scholar]
- Zhang, W.P.; Yao, W.L. A note on the Dirichlet characters of polynomials. Acta Arith. 2004, 115, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.P.; Hu, J.Y. The number of solutions of the diagonal cubic congruence equation mod p. Math. Rep. 2018, 20, 70–76. [Google Scholar]
- Chen, L. On the classical Gauss sums and their some properties. Symmetry 2018, 10, 625. [Google Scholar] [CrossRef] [Green Version]
- Bourgain, J.; Garaev, Z.M.; Konyagin, V.S. On the hidden shifted power problem. SIAM J. Comput. 2012, 41, 1524–1557. [Google Scholar] [CrossRef]
- Granville, A.; Soundararajan, K. Large character sums: Pretentious characters and the Pólya-Vinogradov theorem. J. Am. Math. Soc. 2007, 20, 357–384. [Google Scholar] [CrossRef]
- Berndt, B.C.; Evans, R.J. The determination of Gauss sums. Bull. Am. Math. Soc. 1981, 5, 107–128. [Google Scholar] [CrossRef] [Green Version]
- Frei, G. The Reciprocity Law from Euler to Eisenstein. In The Intersection of History and Mathematics; Birkhäuser Verlag, 1994; pp. 67–90. Available online: https://sci-hub.ren/10.1007/978-3-0348-7521-9_6 (accessed on 10 January 2021). [CrossRef]
- Shen, S.; Zhang, W.P. The Generalized Quadratic Gauss Sum and Its Fourth Power Mean. Mathematics 2019, 7, 258. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.P.; Samad, A.; Chen, Z.Y. New Identities Dealing with Gauss Sums. Symmetry 2020, 12, 1416. [Google Scholar] [CrossRef]
- Zhang, W.P.; Li, H.L. Elementary Number Theory; Shaanxi Normal University Press: Xi’an, China, 2008. [Google Scholar]
- Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
- Ireland, K.; Rosen, M. A Classical Introduction to Modern Number Theory; Springer: New York, NY, USA, 1982. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Meng, Y. The Mean Values of Character Sums and Their Applications. Mathematics 2021, 9, 318. https://doi.org/10.3390/math9040318
Zhang J, Meng Y. The Mean Values of Character Sums and Their Applications. Mathematics. 2021; 9(4):318. https://doi.org/10.3390/math9040318
Chicago/Turabian StyleZhang, Jiafan, and Yuanyuan Meng. 2021. "The Mean Values of Character Sums and Their Applications" Mathematics 9, no. 4: 318. https://doi.org/10.3390/math9040318
APA StyleZhang, J., & Meng, Y. (2021). The Mean Values of Character Sums and Their Applications. Mathematics, 9(4), 318. https://doi.org/10.3390/math9040318