Methods for Constructing Complex Solutions of Nonlinear PDEs Using Simpler Solutions
Abstract
:Contents
1. Introduction
1.1. Preliminary Remarks
- simple exact solutions can serve as a basis for constructing more complex solutions of the equations under consideration,
- exact solutions to some equations can serve as the basis for constructing solutions to other more complex equations.
1.2. Concept of ‘Exact Solution’ for Nonlinear PDEs
- (i)
- in terms of elementary functions, functions included in the equation (this is necessary when the equation contains arbitrary functions), and indefinite or/and definite integrals;
- (ii)
- through solutions of ordinary differential equations or systems of such equations.
2. Construction of Complex Solutions from Simple Solutions by Translation and Scale Transformations
2.1. Some Definitions. Simplest Transformations
2.2. Construction of Complex Solutions from Simpler Solutions. Examples
2.3. Generalization to Nonlinear Multidimensional Equations
2.4. Generalization to Nonlinear Systems of Coupled Equations
3. Construction of Complex Solutions by Adding Terms or Combining Two Solutions
3.1. Construction of Complex Solutions by Adding Terms to Simpler Solutions
3.2. Construction of Compound Solutions (Nonlinear Superposition of Solutions)
4. The Use of Complex-Valued Parameters for Constructing Exact Solutions
4.1. Linear Partial Differential Equations
4.2. Nonlinear Partial Differential Equations
5. Using Solutions of Simpler Equations for Construct Solutions to Complex Equations
5.1. Nonlinear Partial Differential Equations
5.2. Partial Differential Equations with Delay
5.3. Pantograph-Type Partial Differential Equations
5.4. Approach for Constructing Exact Solutions of Functional Partial Differential Equations
6. Brief Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: Boston, MA, USA, 1982. [Google Scholar]
- Bluman, G.W.; Cole, J.D. Similarity Methods for Differential Equations; Springer: New York, NY, USA, 1974. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Ibragimov, N.H. (Ed.) CRC Handbook of Lie Group Analysis of Differential Equations, Volume 1, Symmetries, Exact Solutions and Conservation Laws; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Andreev, V.K.; Kaptsov, O.V.; Pukhnachov, V.V.; Rodionov, A.A. Applications of Group-Theoretical Methods in Hydrodynamics; Kluwer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Benia, Y.; Ruggieri, M.; Scapellato, A. Exact Solutions for a Modified Schrödinger Equation. Mathematics 2019, 7, 908. [Google Scholar] [CrossRef] [Green Version]
- Bluman, G.W.; Cole, J.D. The general similarity solution of the heat equation. J. Math. Mech. 1969, 18, 1025–1042. [Google Scholar]
- Levi, D.; Winternitz, P. Nonclassical symmetry reduction: Example of the Boussinesq equation. J. Phys. A 1989, 22, 2915–2924. [Google Scholar] [CrossRef]
- Nucci, M.C.; Clarkson, P.A. The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh–Nagumo equation. Phys. Lett. A 1992, 164, 49–56. [Google Scholar] [CrossRef]
- Cherniha, R.; Serov, M.; Pliukhin, O. Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Clarkson, P.A.; Kruskal, M.D. New similarity reductions of the Boussinesq equation. J. Math. Phys. 1989, 30, 2201–2213. [Google Scholar] [CrossRef]
- Polyanin, A.D. Comparison of the effectiveness of different methods for constructing exact solutions to nonlinear PDEs. Generalizations and new solutions. Mathematics 2019, 7, 386. [Google Scholar] [CrossRef] [Green Version]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Nonlinear Partial Differential Equations, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Polyanin, A.D.; Zhurov, A.I. Methods of Separation of Variables and Exact Solutions to Nonlinear Equations of Mathematical Physics; IPMech RAS: Moscow, Russia, 2020. (In Russian) [Google Scholar]
- Galaktionov, V.A.; Svirshchevskii, S.R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
- Polyanin, A.D. Construction of exact solutions in implicit form for PDEs: New functional separable solutions of non-linear reaction-diffusion equations with variable coefficients. Int. J. Non-Linear Mech. 2019, 111, 95–105. [Google Scholar] [CrossRef]
- Polyanin, A.D. Functional separation of variables in nonlinear PDEs: General approach, new solutions of diffusion-type equations. Mathematics 2020, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Polyanin, A.D.; Zhurov, A.I. Separation of variables in PDEs using nonlinear transformations: Applications to reaction-diffusion type equations. Appl. Math. Lett. 2020, 100, 106055. [Google Scholar] [CrossRef]
- Sidorov, A.F.; Shapeev, V.P.; Yanenko, N.N. Method of Differential Constraints and Its Applications in Gas Dynamics; Nauka: Novosibirsk, Russia, 1984. (In Russian) [Google Scholar]
- Kudryashov, N.A. Methods of Nonlinear Mathematical Physics; Intellect Publ. House: Dolgoprudny, Russia, 2010. (In Russian) [Google Scholar]
- Conte, R.; Musette, M. The Painlevé Handbook, 2nd ed.; Springer: Dordrecht, The Netherlands, 2020. [Google Scholar]
- Ibragimov, N.H. Nonlinear self-adjointness in constructing conservation laws. Arch. ALGA 2011, 7, 1–99. [Google Scholar]
- Ibragimov, N.H. Method of conservation laws for constructing solutions to systems of PDEs. Discontinuity Nonlinearity Complex. 2012, 1, 353–365. [Google Scholar] [CrossRef]
- Tracinà, R.; Bruzon, M.S.; Gandarias, M.L.; Torrisi, M. Nonlinear self-adjointness, conservation laws, exact solutions of a system of dispersive evolution equations. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 3036–3043. [Google Scholar] [CrossRef]
- Dorodnitsyn, V.A. On invariant solutions of the equation of non-linear heat conduction with a source. USSR Comput. Math. Math. Phys. 1982, 22, 115–122. [Google Scholar] [CrossRef]
- Kudryashov, N.A. On exact solutions of families of Fisher equations. Theor. Math. Phys. 1993, 94, 211–218. [Google Scholar] [CrossRef]
- Galaktionov, V.A. Quasilinear heat equations with first-order sign-invariants and new explicit solutions. Nonlinear Anal. Theor. Meth. Appl. 1994, 23, 1595–1621. [Google Scholar] [CrossRef]
- Doyle, P.W.; Vassiliou, P.J. Separation of variables for the 1-dimensional non-linear diffusion equation. Int. J. Non-Linear Mech. 1998, 33, 315–326. [Google Scholar] [CrossRef]
- Pucci, E.; Saccomandi, G. Evolution equations, invariant surface conditions and functional separation of variables. Physica D 2000, 139, 28–47. [Google Scholar] [CrossRef]
- Estevez, P.G.; Qu, C.; Zhang, S. Separation of variables of a generalized porous medium equation with nonlinear source. J. Math. Anal. Appl. 2002, 275, 44–59. [Google Scholar] [CrossRef] [Green Version]
- Kaptsov, O.V.; Verevkin, I.V. Differential constraints and exact solutions of nonlinear diffusion equations. J. Phys. A Math. Gen. 2003, 36, 1401–1414. [Google Scholar] [CrossRef] [Green Version]
- Vaneeva, O.O.; Johnpillai, A.G.; Popovych, R.O.; Sophocleous, C. Extended group analysis of variable coefficient reaction-diffusion equations with power nonlinearities. J. Math. Anal. Appl. 2007, 330, 1363–1386. [Google Scholar] [CrossRef] [Green Version]
- Vaneeva, O.O.; Popovych, R.O.; Sophocleous, C. Extended group analysis of variable coefficient reaction-diffusion equations with exponential nonlinearities. J. Math. Anal. Appl. 2012, 396, 225–242. [Google Scholar] [CrossRef] [Green Version]
- Polyanin, A.D. Functional separable solutions of nonlinear reaction-diffusion equations with variable coefficients. Appl. Math. Comput. 2019, 347, 282–292. [Google Scholar] [CrossRef]
- Polyanin, A.D. Functional separable solutions of nonlinear convection-diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 2019, 73, 379–390. [Google Scholar] [CrossRef]
- Grundland, A.M.; Infeld, E. A family of non-linear Klein–Gordon equations and their solutions. J. Math. Phys. 1992, 33, 2498–2503. [Google Scholar] [CrossRef]
- Zhdanov, R.Z. Separation of variables in the non-linear wave equation. J. Phys. A 1994, 27, L291–L297. [Google Scholar] [CrossRef]
- Estévez, P.G.; Qu, C.Z. Separation of variables in nonlinear wave equations with variable wave speed. Theor. Math. Phys. 2002, 133, 1490–1497. [Google Scholar] [CrossRef]
- Hu, J.; Qu, C. Functionally separable solutions to nonlinear wave equations by group foliation method. J. Math. Anal. Appl. 2007, 330, 298–311. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.J.; Zhou, S. Group properties of generalized quasi-linear wave equations. J. Math. Anal. Appl. 2010, 366, 460–472. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.J.; Ivanova, N.M. Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations. J. Math. Phys. 2007, 48, 073507. [Google Scholar] [CrossRef] [Green Version]
- Borazjani, S.; Roberts, A.; Bedrikovetsky, P. Splitting in systems of PDEs for two-phase multicomponent flow in porous media. Appl. Math. Lett. 2016, 53, 25–32. [Google Scholar] [CrossRef]
- Polyanin, A.D. Construction of functional separable solutions in implicit form for non-linear Klein–Gordon type equations with variable coefficients. Int. J. Non-Linear Mech. 2019, 114, 29–40. [Google Scholar] [CrossRef]
- Zhurov, A.I.; Polyanin, A.D. Symmetry reductions and new functional separable solutions of nonlinear Klein–Gordon and telegraph type equations. Nonlinear Math. Phys. 2020, 27, 227–242. [Google Scholar] [CrossRef]
- Boussinesq, J. Recherches théorique sur l’écoulement des nappes d’eau infiltrées dans le sol et sur le débit des sources. J. Math. Pures Appl. 1904, 10, 5–78. [Google Scholar]
- Guderley, K.G. The Theory of Transonic Flow; Pergamon: Oxford, UK, 1962. [Google Scholar]
- Schlichting, H. Boundary Layer Theory; McGraw-Hill: NewYork, NY, USA, 1981. [Google Scholar]
- Aksenov, A.V.; Sudarikova, A.D.; Chicherin, I.S. The surface tension effect on viscous liquid spreading along a superhydrophobic surface. J. Phys. Conf. Ser. 2017, 788, 01200. [Google Scholar] [CrossRef] [Green Version]
- Aksenov, A.V.; Sudarikova, A.D.; Chicherin, I.S. Effect of the surface tension on the spreading of a viscous liquid along a superhydrophobic surface. I. Plane-parallel motion. Bull. NRNU MEPhI 2016, 5, 489–496. (In Russian) [Google Scholar]
- Barenblatt, G.I.; Zel’dovich, Y.B. On dipole-type solutions in problems of nonstationary filtration of gas under polytropic regime. Prikl. Math. Mech. (PMM) 1957, 21, 718–720. (In Russian) [Google Scholar]
- Pavlovskii, Y.N. Investigation of some invariant solutions to the boundary layer equations. Zhurn. Vychisl. Mat. Mat. Fiziki 1961, 1, 280–294. (In Russian) [Google Scholar]
- Titov, S.S. A method of finite-dimensional rings for solving nonlinear equations of mathematical physics. In Aerodynamics; Ivanova, T.P., Ed.; Saratov Univ.: Saratov, Russia, 1988; pp. 104–110. (In Russian) [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems; CRC Press: Boca Raton, FL, USA; London, UK, 2018. [Google Scholar]
- Dobrokhotov, S.Y.; Tirozzi, B. Localized solutions of one-dimensional non-linear shallow-water equations with velocity c = √x. Russ. Math. Surv. 2010, 65, 177–179. [Google Scholar] [CrossRef]
- Aksenov, A.V.; Dobrokhotov, S.Y.; Druzhkov, K.P. Exact step-like solutions of one-dimensional shallow-water equations over a sloping bottom. Math. Notes 2018, 104, 915–921. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Manzhirov, A.V. Handbook of Mathematics for Engineers and Scientists; Chapman & Hall/CRC Press: Boca Raton, FL, USA; London, UK, 2007. [Google Scholar]
- Polyanin, A.D.; Nazaikinskii, V.E. Handbook of Linear Partial Differential Equations for Engineers and Scientists, 2nd ed.; CRC Press: Boca Raton, FL, USA; London, UK, 2016. [Google Scholar]
- Loitsyanskiy, L.G. Mechanics of Liquids and Gases; Begell House: New York, NY, USA, 1995. [Google Scholar]
- Wu, J. Theory and Applications of Partial Functional Differential Equations; Springer: New York, NY, USA, 1996. [Google Scholar]
- Mei, M.; Lin, C.K.; Lin, C.T.; So, J.W.H. Traveling wavefronts for time-delayed reaction-diffusion equation: (I) Local nonlinearity. J. Diff. Equ. 2009, 247, 495–510. [Google Scholar] [CrossRef] [Green Version]
- Lv, G.; Wang, Z. Stability of traveling wave solutions to delayed evolution equation. J. Dyn. Control Syst. 2015, 21, 173–187. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. Nonlinear delay reaction-diffusion equations: Traveling-wave solutions in elementary functions. Appl. Math. Lett. 2015, 46, 38–43. [Google Scholar] [CrossRef]
- Meleshko, S.V.; Moyo, S. On the complete group classification of the reaction-diffusion equation with a delay. J. Math. Anal. Appl. 2008, 338, 448–466. [Google Scholar] [CrossRef] [Green Version]
- Polyanin, A.D.; Zhurov, A.I. Exact solutions of linear and nonlinear differential-difference heat and diffusion equations with finite relaxation time. Int. J. Non-Linear Mech. 2013, 54, 115–126. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 417–430. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Exact separable solutions of delay reaction–diffusion equations and other nonlinear partial functional-differential equations. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 409–416. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. New generalized and functional separable solutions to nonlinear delay reaction-diffusion equations. Int. J. Non-Linear Mech. 2014, 59, 16–22. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Nonlinear delay reaction-diffusion equations with varying transfer coefficients: Exact methods and new solutions. Appl. Math. Lett. 2014, 37, 43–48. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. The functional constraints method: Application to non-linear delay reaction-diffusion equations with varying transfer coefficients. Int. J. Non-Linear Mech. 2014, 67, 267–277. [Google Scholar] [CrossRef]
- Polyanin, A.D. Generalized traveling-wave solutions of nonlinear reaction-diffusion equations with delay and variable coefficients. Appl. Math. Lett. 2019, 90, 49–53. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. A method for constructing exact solutions of nonlinear delay PDEs. J. Math. Anal. Appl. 2021, 494, 124619. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. Construction of exact solutions to nonlinear PDEs with delay using solutions of simpler PDEs without delay. Commun. Nonlinear Sci. Numer. Simul. 2021, 95, 105634. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Generalized and functional separable solutions to non-linear delay Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2676–2689. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G.; Vyazmin, A.V. Exact solutions and qualitative features of nonlinear hyperbolic reaction-diffusion equations with delay. Theor. Found. Chem. Eng. 2015, 49, 622–635. [Google Scholar] [CrossRef]
- Long, F.-S.; Meleshko, S.V. On the complete group classification of the one-dimensional nonlinear Klein–Gordon equation with a delay. Math. Methods Appl. Sci. 2016, 39, 3255–3270. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. New exact solutions of nonlinear wave type PDEs with delay. Appl. Math. Lett. 2020, 108, 106512. [Google Scholar] [CrossRef]
- Ockendon, J.R.; Tayler, A.B. The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Lond. A 1971, 332, 447–468. [Google Scholar]
- Hall, A.J.; Wake, G.C. A functional differential equation arising in the modelling of cell growth. J. Aust. Math. Soc. Ser. B 1989, 30, 424–435. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.J.; Wake, G.C.; Gandar, P.W. Steady size distributions for cells in one dimensional plant tissues. J. Math. Biol. 1991, 30, 101–123. [Google Scholar] [CrossRef]
- Derfel, G.; van Brunt, B.; Wake, G.C. A cell growth model revisited. Func. Differ. Equ. 2012, 19, 71–81. [Google Scholar]
- Zaidi, A.A.; Van Brunt, B.; Wake, G.C. Solutions to an advanced functional partial differential equation of the pantograph type. Proc. R. Soc. A 2015, 471, 20140947. [Google Scholar] [CrossRef]
- Efendiev, M.; van Brunt, B.; Wake, G.C.; Zaidi, A.A. A functional partial differential equation arising in a cell growth model with dispersion. Math. Meth. Appl. Sci. 2018, 41, 1541–1553. [Google Scholar] [CrossRef]
- Ambartsumyan, V.A. On the fluctuation of the brightness of the Milky Way. Dokl. Akad. Nauk SSSR 1944, 44, 223–226. [Google Scholar]
- Dehghan, M.; Shakeri, F. The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics. Phys. Scr. 2008, 78, 065004. [Google Scholar] [CrossRef]
- Ajello, W.G.; Freedman, H.I.; Wu, J. A model of stage structured population growth with density depended time delay. SIAM J. Appl. Math. 1992, 52, 855–869. [Google Scholar]
- Mahler, K. On a special functional equation. J. Lond. Math. Soc. 1940, 1, 115–123. [Google Scholar] [CrossRef]
- Ferguson, T.S. Lose a dollar or double your fortune. In Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability, 3rd ed.; Lecam, L.M., Neyman, J., Scott, E.L., Eds.; Univ. California Press: Berkeley, CA, USA, 1972; pp. 657–666. [Google Scholar]
- Robinson, R.W. Counting labeled acyclic digraphs. In New Directions in the Theory of Graphs; Harari, F., Ed.; Academic Press: New York, NY, USA, 1973; pp. 239–273. [Google Scholar]
- Gaver, D.P. An absorption probablility problem. J. Math. Anal. Appl. 1964, 9, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhang, Y. State estimation of neural networks with both time-varying delays and norm-bounded parameter uncertainties via a delay decomposition approach. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3517–3529. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. Exact solutions of nonlinear partial differential equations with pantograph type variable delay. Bull. NRNU MEPhI 2020, 9, 315–328. (In Russian) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksenov, A.V.; Polyanin, A.D. Methods for Constructing Complex Solutions of Nonlinear PDEs Using Simpler Solutions. Mathematics 2021, 9, 345. https://doi.org/10.3390/math9040345
Aksenov AV, Polyanin AD. Methods for Constructing Complex Solutions of Nonlinear PDEs Using Simpler Solutions. Mathematics. 2021; 9(4):345. https://doi.org/10.3390/math9040345
Chicago/Turabian StyleAksenov, Alexander V., and Andrei D. Polyanin. 2021. "Methods for Constructing Complex Solutions of Nonlinear PDEs Using Simpler Solutions" Mathematics 9, no. 4: 345. https://doi.org/10.3390/math9040345
APA StyleAksenov, A. V., & Polyanin, A. D. (2021). Methods for Constructing Complex Solutions of Nonlinear PDEs Using Simpler Solutions. Mathematics, 9(4), 345. https://doi.org/10.3390/math9040345