Analysis of Key Factors for Supplier Selection in Taiwan’s Thin-Film Transistor Liquid-Crystal Displays Industry
Abstract
:1. Introduction
2. Literature Review
2.1. Research on Supplier Selection
2.2. Selection Criteria for Supplier Selection
2.3. Prototype Framework for Supplier Selection
3. Research Method
3.1. The DEMATEL Method
3.2. The DEMATEL Procedure
3.3. The DEMATEL Based on ANP (D-ANP)
4. Data Analysis and Results
4.1. Formal Framework for Supplier Selection and Collecting Data
4.2. Constructing the Casual Diagram of Selection Criteria
4.2.1. Establishing the Direct Influence Matrix
4.2.2. Establishing the Normalized Relationship Matrix
4.2.3. Establishing the Total Influence Matrix
4.2.4. Finding the Prominence and Relation Among the Criteria
4.2.5. Generating the Weighted Super Matrix
4.2.6. Generating the Limiting Super Matrix
4.3. Calculating and Ranking the Key Factors
5. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IHS Markit Limited. IHS Markit Report Fourth Quarter 2019 Results; IHS Markit Ltd.: London, UK, 2020. [Google Scholar]
- Global Small- to Mid-Size LCD Panel Shipments to Stay Steady in 2020–2025. Available online: https://www.daystar-display.com.tw/news/main_detail.php?id=96 (accessed on 20 December 2020).
- Zeng, J. 2018 Taiwan’s Display Panel Manufacturing Industry Analysis; Taiwan Economic Research Institute: Taipei, Taiwan, 2018. [Google Scholar]
- Amber. Science Policy Research and Information Center of Taiwan National Applied Research Laboratories, 2006. Available online: https://iknow.stpi.narl.org.tw/post/read.aspx?postid=2972 (accessed on 20 December 2020).
- Mohammed, A.; Harris, I.; Dukyil, A. A trasilient decision making tool for vendor selection: A hybrid-MCDM algorithm. Manag. Decis. 2019, 57, 372–395. [Google Scholar] [CrossRef]
- Ou Yang, Y.P.; Leu, J.D.; Tzeng, G.-H. A novel hybrid MCDM model combined with DEMATEL and ANP with applications. Int. J. Oper. Res. 2008, 5, 160–168. [Google Scholar]
- Yu, R. MCDM Combined with Fuzzy Decision Maps for the Structural Modeling Problem; National Taiwan University: Taipei, Taiwan, 2008. [Google Scholar] [CrossRef]
- Borda, J.C. Mémoire sur les élections par scrutin. Mém. Acad. R. Sci. Ann. 1784, 1781, 657–665. [Google Scholar]
- Ecer, F.; Pamucar, D. Sustainable supplier selection: A novel integrated fuzzy best worst method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo’B) multi-criteria model. J. Clean. Prod. 2020, 266, 121981. [Google Scholar] [CrossRef]
- Jedynak, M. Systematic review of the literature on supplier code of conduct. Int. J. Contemp. Manag. 2018, 17, 153–171. [Google Scholar] [CrossRef] [Green Version]
- Barak, S.; Javanmard, S. Outsourcing modelling using a novel interval-valued fuzzy quantitative strategic planning matrix (QSPM) and multiple criteria decision-making (MCDMs). Int. J. Prod. Econ. 2020, 222, 107494. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, G. A novel hybrid MCDM framework for WEEE recycling partner evaluation on the basis of green competencies. J. Clean. Prod. 2019, 241, 118017. [Google Scholar] [CrossRef]
- Aggarwal, R.; Singh Surya, P.; Kapur, P.K. Integrated dynamic vendor selection and order allocation problem for the time dependent and stochastic data. Benchmark. Int. J. 2018, 25, 777–796. [Google Scholar] [CrossRef]
- Mohammed, A.; Harris, I.; Govindan, K. A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation. Int. J. Prod. Econ. 2019, 217, 171–184. [Google Scholar] [CrossRef]
- Ang, S.; Zhu, Y.; Yang, F. Efficiency evaluation and ranking of supply chains based on stochastic multicriteria acceptability analysis and data envelopment analysis. Int. Trans. Oper. Res. 2019, 1–30. [Google Scholar] [CrossRef]
- Sen, D.K.; Datta, S.; Mahapatra, S.S. Sustainable supplier selection in intuitionistic fuzzy environment: A decision-making perspective. Benchmark. Int. J. 2018, 25, 545–574. [Google Scholar] [CrossRef]
- Yadav, V.; Sharma, M.K.; Singh, S. Intelligent evaluation of suppliers using extent fuzzy TOPSIS method. Benchmark. Int. J. 2018, 25, 259–279. [Google Scholar] [CrossRef]
- Fan, J.; Liu, X.; Wu, M.; Wang, Z. Green supplier selection with undesirable outputs DEA under Pythagorean fuzzy environment. J. Intell. Fuzzy Syst. 2019, 37, 2443–2452. [Google Scholar] [CrossRef]
- Fei, L. D-ANP: A multiple criteria decision making method for supplier selection. Appl. Intell. Int. J. Res. Intell. Syst. Real Life Complex Probl. 2020, 2537–2554. [Google Scholar] [CrossRef]
- Adetunji, O.; Bischoff, J.; Willy, C.J. Managing system obsolescence via multicriteria decision making. Syst. Eng. 2018, 21, 307–321. [Google Scholar] [CrossRef]
- Bai, C.; Sarkis, J. Integrating sustainability into supplier selection: A grey-based TOPSIS analysis. Technol. Econ. Dev. Econ. 2018, 24, 2202–2224. [Google Scholar] [CrossRef]
- Liu, T.; Deng, Y.; Chan, F. Evidential Supplier Selection Based on DEMATEL and Game Theory. Int. J. Fuzzy Syst. 2018, 20, 1321–1333. [Google Scholar] [CrossRef]
- Singh, R.K.; Kansara, S.; Vishwakarma, N.K. Vendor rating system for an Indian start-up: A combined AHP & TOPSIS approach. Meas. Bus. Excell. 2018, 22, 220–241. [Google Scholar] [CrossRef]
- Meade, L.; Sarkis, J. Analyzing organizational project alternatives for agile manufacturing processes: An analytical network approach. Int. J. Prod. Res. 1999, 37, 241–261. [Google Scholar] [CrossRef]
- Cheng, E.W.L.; Li, H. Application of ANP in process models: An example of strategic partnering. Build. Environ. 2007, 42, 278–287. [Google Scholar] [CrossRef]
- Asadabadi, M.R.; Chang, E.; Saberi, M.; Zhou, Z. Are MCDM methods useful? A critical review of Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP). Cogent Eng. 2019, 6, 1–12. [Google Scholar] [CrossRef]
- Lee, H.-S.; Tzeng, G.-H.; Yeih, W.; Wang, Y.-J.; Yang, S.-C. Revised DEMATEL: Resolving the Infeasibility of DEMATEL. Appl. Math. Model. 2013, 37, 6746–6757. [Google Scholar] [CrossRef]
- Dickson, G.W. An analysis of vendor selection systems and decisions. J. Purch. 1966, 2, 5–17. [Google Scholar] [CrossRef]
- Weber, C.A.; Current, J.R.; Benton, W. Vendor selection criteria and methods. Eur. J. Oper. Res. 1991, 50, 2–18. [Google Scholar] [CrossRef]
- Cutting-Decelle, A.-F.; Young, B.; Das, B.P.; Case, K.; Rahimifard, S.; Anumba, C.J.; Bouchlaghem, D. A review of approaches to supply chain communications: From manufacturing to construction. ITcon 2007, 12, 73–102. [Google Scholar]
- Chan Albert, P.C.; Chan Ada, P.L. Key performance indicators for measuring construction success. Benchmark. Int. J. 2004, 11, 203–221. [Google Scholar] [CrossRef]
- Li, C.; Tong, S.; Wang, K. Optimal Scheme for Process Quality and Cost Control by Integrating a Continuous Sampling Plan and the Process Yield Index. Discret. Dyn. Nat. Soc. 2018, 1–14. [Google Scholar] [CrossRef]
- Wang, C.-H.; Chen, K.-S. New process yield index of asymmetric tolerances for bootstrap method and six sigma approach. Int. J. Prod. Econ. 2020, 219, 216–223. [Google Scholar] [CrossRef]
- Ball, O.; Zylberberg, C. Towards a common framework for defining ancillary material quality across the development spectrum. Cytotherapy 2019, 21, 1234–1245. [Google Scholar] [CrossRef]
- Sunil Kumar, C.V.; Routroy, S. Measuring interdependencies of preferred supplier enablers. Benchmark. Int. J. 2018, 25, 2344–2369. [Google Scholar] [CrossRef]
- Gatto, A.; Drago, C. Measuring and modeling energy resilience. Ecol. Econ. 2020, 172, 106527. [Google Scholar] [CrossRef]
- Jain, N.; Singh, A.R. Sustainable supplier selection under must-be criteria through Fuzzy inference system. J. Clean. Prod. 2020, 248, 119275. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, F.; Li, G.Y.; Ma, Y.Z.; Tu, Y.L. Capability index of a complex-product machining process. Int. J. Prod. Res. 2012, 50, 3382–3394. [Google Scholar] [CrossRef]
- Kane, V. Process Capability Indices. J. Qual. Technol. 1986, 18, 41–52. [Google Scholar] [CrossRef]
- Mizuno, T.; Takauchi, K. Optimal export policy with upstream price competition. Manch. Sch. 2018, 88, 324–348. [Google Scholar] [CrossRef]
- Pang, Q.; Li, M.; Yang, T.; Shen, Y. Supply Chain Coordination with Carbon Trading Price and Consumers’ Environmental Awareness Dependent Demand. Math. Probl. Eng. 2018, 2018, 8749251. [Google Scholar] [CrossRef] [Green Version]
- Burda, A. Components and influencing factors of transport costs in logistics. Knowl. Horiz. Econ. 2018, 10, 56–60. [Google Scholar]
- Karimi, B.; Ghare Hassanlu, M.; Niknamfar, A.H. An integrated production-distribution planning with a routing problem and transportation cost discount in a supply chain. Assem. Autom. 2019, 39, 783–802. [Google Scholar] [CrossRef]
- Milewski, D. Impact of e-commerce on external transport costs. Sci. J. Marit. Univ. Szczec. 2019, 130, 147–153. [Google Scholar] [CrossRef]
- Mosca, A.; Vidyarthi, N.; Satir, A. Integrated transportation—Inventory models: A review. Oper. Res. Perspect. 2019, 6, 100101. [Google Scholar] [CrossRef]
- Kros, J.F.; Kirchoff, J.F.; Falasca, M. The impact of buyer-supplier relationship quality and information management on industrial vending machine benefits in the healthcare industry. J. Purch. Supply Manag. 2019, 25, 100506. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, L.; Qu, T.; Qi, Q. Strategic introduction of the marketplace channel considering logistics costs and product information. Proc. CIRP 2019, 83, 728–732. [Google Scholar] [CrossRef]
- Paul, S.K.; Asian, S.; Goh, M.; Torabi, S.A. Managing sudden transportation disruptions in supply chains under delivery delay and quantity loss. Ann. Oper. Res. 2019, 273, 783–814. [Google Scholar] [CrossRef] [Green Version]
- Qamar, A.; Hall, M.A.; Collinson, S. Lean versus agile production: Flexibility trade-offs within the automotive supply chain. Int. J. Prod. Res. 2018, 56, 3974–3993. [Google Scholar] [CrossRef]
- Camejo, A.B.; Moignier, A.; Delpon, G.; Chiavassa, S. 5 VMAT modulation indexes for predicting plan delivery accuracy: The ICO experience. Phys. Med. 2019, 68, 4. [Google Scholar] [CrossRef]
- Kogan, K.; Chernonog, T.; Avinadav, T. The effect of delivery deviations on the choice of a supplier and the supply-chain equilibrium. Appl. Math. Model. 2018, 62, 368–382. [Google Scholar] [CrossRef]
- Lee, N.C.-A.; Wang, E.T.G.; Grover, V. IOS drivers of manufacturer-supplier flexibility and manufacturer agility. J. Strateg. Inf. Syst. 2020, 29, 101594. [Google Scholar] [CrossRef]
- Song, J.M.; Chen, W.; Lei, L. Supply chain flexibility and operations optimisation under demand uncertainty: A case in disaster relief. Int. J. Prod. Res. 2018, 56, 3699–3713. [Google Scholar] [CrossRef]
- Nguyen, H.; Sharkey, T.C.; Wheeler, S.; Mitchell, J.E.; Wallace, W.A. Towards the development of quantitative resilience indices for Multi-Echelon Assembly Supply Chains. Omega 2020, 89, 102199. [Google Scholar] [CrossRef]
- Polater, A. Airports’ role as logistics centers in humanitarian supply chains: A surge capacity management perspective. J. Air Transp. Manag. 2020, 83, 101765. [Google Scholar] [CrossRef]
- Leber, M.; Selinšek, A. The influence of the supplier on the successful new product development. Ann. DAAAM Proc. 2019, 30, 38–45. [Google Scholar] [CrossRef]
- Wuttke, D.A.; Donohue, K.; Siemsen, E. Initiating Supplier New Product Development Projects: A Behavioral Investigation. Prod. Oper. Manag. 2018, 27, 80–99. [Google Scholar] [CrossRef]
- Sallati, C.; Bertazzi, J.d.A.; Schützer, K. Professional skills in the Product Development Process: The contribution of learning environments to professional skills in the Industry 4.0 scenario. Proc. CIRP 2019, 84, 203–208. [Google Scholar] [CrossRef]
- Spinardi, G. Performance-based design, expertise asymmetry, and professionalism: Fire safety regulation in the neoliberal era. Regul. Gov. 2019, 13, 520–539. [Google Scholar] [CrossRef]
- Nikoofal, M.E.; Gümüş, M. Supply Diagnostic Incentives under Endogenous Information Asymmetry. Prod. Oper. Manag. 2019, 28, 588–609. [Google Scholar] [CrossRef]
- Smolnik, T.; Bergmann, T. Structuring and managing the new product development process—Review on the evolution of the Stage-Gate® process. J. Bus. Chem. 2020, 17, 41–57. [Google Scholar] [CrossRef]
- Piehler, R.; Schade, M.; Hanisch, I.; Burmann, C. Reacting to negative online customer reviews: Effects of accommodative management responses on potential customers. J. Serv. Theory Pract. 2019, 29, 401–414. [Google Scholar] [CrossRef]
- DeTienne, K.B.; Westwood, J. An Empirical Study of Service Recovery Quality and Customer Retention. J. Manag. Res. 2019, 19, 235–249. [Google Scholar] [CrossRef]
- Abunadi, I. Enterprise Architecture Best Practices in Large Corporations. Information 2019, 10, 293. [Google Scholar] [CrossRef] [Green Version]
- Hakim, L. An empirical investigation of how information sharing affects cash flow performance through competitive capability. Supply Chain Manag. Int. J. 2019, 24, 710–728. [Google Scholar] [CrossRef]
- Han, W.; Huang, Y.; Macbeth, D. Performance measurement of cross-culture supply chain partnership: A case study in the Chinese automotive industry. Int. J. Prod. Res. 2018, 56, 2437–2451. [Google Scholar] [CrossRef] [Green Version]
- Moza Tahnoon Al, N.; Amrik, S.; Yaser, H.; Brian, F. Communication, coordination, decision-making and knowledge-sharing: A case study in construction management. J. Knowl. Manag. 2019, 23, 1764–1781. [Google Scholar] [CrossRef]
- McFarland, R.G.; Dixon, A.L. An updated taxonomy of salesperson influence tactics. J. Pers. Sell. Sales Manag. 2019, 39, 238–253. [Google Scholar] [CrossRef]
- Singh, J.; Flaherty, K.; Sohi, R.S.; Deeter-Schmelz, D.; Habel, J.; Le Meunier-FitzHugh, K.; Malshe, A.; Mullins, R.; Onyemah, V. Sales profession and professionals in the age of digitization and artificial intelligence technologies: Concepts, priorities, and questions. J. Pers. Sell. Sales Manag. 2019, 39, 2–22. [Google Scholar] [CrossRef]
- Fontela, E.; Gabus, A. The DEMATEL Observer; Battelle Institute, Geneva Research Center: Geneva, Switzerland, 1976. [Google Scholar]
- Fontela, E.; Gabus, A. DEMATEL, Innovative Methods, Report No. 2 Structural Analysis of the World Problematique; Battelle Geneva Research Institute: Geneva, Switzerland, 1974. [Google Scholar]
- Li, C.-W.; Tzeng, G.-H. Identification of a threshold value for the DEMATEL method using the maximum mean de-entropy algorithm to find critical services provided by a semiconductor intellectual property mall. Expert Syst. Appl. 2009, 36, 9891–9898. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS Publications: Pittsburgh, PA, USA, 1996; ISBN 0-9620317-9-8. [Google Scholar]
- Hu, Y.-C.; Chiu, Y.-J.; Hsu, C.-S.; Chang, Y.-Y. Identifying key factors for introducing GPS-based fleet management systems to the logistics industry. Math. Probl. Eng. 2015, 2015, 413203. [Google Scholar] [CrossRef] [Green Version]
- Truchon, M. Borda and the maximum likelihood approach to vote aggregation. Math. Soc. Sci. 2008, 55, 96–102. [Google Scholar] [CrossRef]
- Teng, J.Y. Multi-Criteria Decision Analysis Method and Application, 1st ed.; Din Mao Book Publishing Co., Ltd.: Taipei, Taiwan, 2012; ISBN 9789862268346. [Google Scholar]
- Saari, D.G. Mathematic structure of voting paradoxes. Econ. Theory 2000, 15, 1–53. [Google Scholar] [CrossRef]
Author(s) | Research Method |
---|---|
Adetunji et al. [20] | TOPSIS |
Aggarwal et al. [13] | Hybrid IDVSP and AOF approach |
Bai and Sarkis [21] | Grey-based TOPSIS |
Liu et al. [22] | Hybrid ANP, Entropy Weight, DEMATEL, Game Theory, Evidence Theory Approach |
Sen et al. [16] | IF-TOPSIS, IF-MOORA, IF-GRA |
Singh et al. [23] | AHP and TOPSIS |
Yadav et al. [17] | Fuzzy TOPSIS |
Ang et al. [15] | Two-Stage SMAA-DEA Model |
Fan et al. [18] | DEA |
Kumar and Dixi [12] | F-AHP, Modify VIKOR |
Mohammed et al. [5] | SRCC, ELECTRE, TOPSIS |
Mohammed et al. [14] | Hybrid Fuzzy AHP and TOPSIS Approach |
Barak and Javanmard [11] | Hybrid SWOT and IVF-MCDM Approach |
Fei [19] | ANP method based on D numbers |
No. | Criteria | References |
---|---|---|
1 | Process sampling defect rate. | Li et al. [32], Wang and Chen [33] |
2 | Quality system certification. | Ball and Zylberberg [34], Sunil Kumar and Routroy [35] |
3 | Ability to analyze and process abnormal raw materials. | Gatto and Drago [36], Jain and Singh [37] |
4 | Complex process capability index | Chen et al. [38], Kane [39] |
5 | Transaction prices. | Mizuno and Takauchi [40], Pang et al. [41] |
6 | Transportation costs. | Burda [42], Karim et al. [43] |
7 | Cost of returns. | Milewski [44], Mosca et al. [45] |
8 | Supplier cost information. | Kros et al. [46], Shi et al. [47] |
9 | Delivery reliability. | Paul et al. [48], Qamar et al. [49] |
10 | Delivery date accuracy. | Camejo et al. [50], Kogan et al. [51] |
11 | Supplier flexibility. | Lee et al. [52], Song et al. [53] |
12 | Ability to optimize production in a short time. | Nguyen et al. [54], Polater [55] |
13 | Ability to develop new product designs. | Leber and Selinšek. [56], Wuttke et al. [57] |
14 | Production and manufacturing expertise. | Sallati et al. [58], Spinardi [59] |
15 | Development process for building new products. | Nikoofal and Gümüş [60], Smolnik and Bergmann [61] |
16 | Speed in responding to customer complaints. | Piehler [62], DeTienne and Westwood [63] |
17 | Informational transparency within the industry. | Abunadi [64], Hakim [65] |
18 | Communication and coordination within the industry. | Han et al. [66], Moza et al. [67] |
19 | Professional competence of the sales staff. | McFarland and Dixon [68], Singh et al. [69] |
Score | Degree of Influence |
---|---|
0 | No influence |
5 | Moderate influence |
10 | Definitely influenced |
D | Dimension | Quality (D1) | Costs (D2) | Delivery Date Factors (D3) | Technological Abilities (D4) | Customer Service Ability (D5) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dimension | Criteria | C11 | C12 | C13 | C21 | C22 | C23 | C24 | C31 | C32 | C33 | C41 | C42 | C43 | C44 | C51 | C52 | C53 | C54 |
Quality (D1) | C11 | 0 | 6.60 | 6.60 | 5.70 | 3.10 | 5.20 | 4.80 | 6.00 | 6.50 | 5.50 | 5.60 | 5.00 | 5.70 | 5.50 | 3.30 | 3.30 | 3.10 | 3.20 |
C12 | 6.00 | 0 | 5.90 | 5.40 | 3.30 | 5.40 | 3.40 | 5.20 | 4.40 | 5.90 | 5.20 | 5.10 | 6.00 | 5.70 | 4.40 | 4.40 | 4.50 | 4.10 | |
C13 | 5.80 | 6.30 | 0 | 5.10 | 3.50 | 4.60 | 3.30 | 4.30 | 4.10 | 4.90 | 4.60 | 4.80 | 4.40 | 5.80 | 5.70 | 4.60 | 4.80 | 4.20 | |
Costs (D2) | C21 | 6.20 | 5.60 | 5.80 | 0 | 6.40 | 5.20 | 6.10 | 3.90 | 5.40 | 5.20 | 5.10 | 4.70 | 4.50 | 4.90 | 3.90 | 4.20 | 4.20 | 4.70 |
C22 | 4.00 | 2.70 | 3.60 | 6.30 | 0 | 5.90 | 5.70 | 4.20 | 4.60 | 4.50 | 3.60 | 3.60 | 3.70 | 3.50 | 3.50 | 3.30 | 3.10 | 3.00 | |
C23 | 2.60 | 3.40 | 3.80 | 6.50 | 5.70 | 0 | 5.20 | 2.80 | 3.00 | 2.60 | 2.50 | 2.80 | 2.40 | 2.20 | 3.70 | 4.00 | 4.70 | 2.60 | |
C24 | 2.90 | 3.30 | 3.80 | 6.20 | 9.80 | 5.10 | 0 | 3.50 | 3.20 | 3.80 | 3.80 | 4.00 | 4.10 | 4.30 | 3.60 | 3.80 | 4.70 | 2.90 | |
Delivery date factors (D3) | C31 | 6.70 | 6.40 | 6.10 | 7.40 | 7.00 | 6.40 | 5.00 | 0 | 7.90 | 6.60 | 5.70 | 4.30 | 3.80 | 4.30 | 5.30 | 4.70 | 4.10 | 4.70 |
C32 | 6.60 | 6.70 | 6.90 | 6.40 | 7.00 | 5.90 | 4.50 | 6.70 | 0 | 6.20 | 4.60 | 3.80 | 4.80 | 4.30 | 4.80 | 3.90 | 3.50 | 3.70 | |
C33 | 5.10 | 4.90 | 5.40 | 5.40 | 6.60 | 5.80 | 6.40 | 6.60 | 5.90 | 0.00 | 5.10 | 3.80 | 4.40 | 3.90 | 4.80 | 3.80 | 4.20 | 3.70 | |
Technological abilities (D4) | C41 | 5.60 | 5.80 | 6.40 | 5.60 | 3.30 | 4.30 | 3.60 | 4.90 | 5.20 | 5.00 | 0 | 4.90 | 6.40 | 4.90 | 4.60 | 2.90 | 3.40 | 3.10 |
C42 | 4.40 | 4.30 | 5.80 | 4.30 | 2.90 | 4.20 | 4.40 | 3.20 | 3.10 | 3.90 | 6.40 | 0 | 5.50 | 5.30 | 4.20 | 3.40 | 3.30 | 2.60 | |
C43 | 6.90 | 5.70 | 7.10 | 5.70 | 2.80 | 3.90 | 4.10 | 4.10 | 4.00 | 4.80 | 7.40 | 7.50 | 0 | 5.00 | 4.60 | 3.20 | 3.90 | 2.70 | |
C44 | 5.40 | 5.20 | 5.20 | 6.20 | 3.70 | 4.40 | 5.30 | 3.30 | 3.10 | 2.90 | 6.10 | 7.80 | 6.70 | 0.00 | 3.90 | 4.00 | 4.10 | 3.70 | |
Customer service ability (D5) | C51 | 4.50 | 4.90 | 5.10 | 4.60 | 4.30 | 5.20 | 3.70 | 4.40 | 3.40 | 4.60 | 2.80 | 3.90 | 2.20 | 2.60 | 0 | 4.50 | 6.00 | 8.10 |
C52 | 3.90 | 3.70 | 3.80 | 5.30 | 4.30 | 3.80 | 4.50 | 2.60 | 2.50 | 3.60 | 4.40 | 3.80 | 3.70 | 3.60 | 4.80 | 0 | 5.90 | 6.70 | |
C53 | 3.50 | 3.40 | 2.30 | 5.80 | 4.00 | 2.80 | 4.70 | 3.60 | 4.90 | 3.50 | 4.00 | 4.20 | 4.70 | 3.00 | 4.00 | 6.70 | 0 | 7.00 | |
C54 | 3.00 | 3.00 | 3.50 | 6.60 | 2.60 | 3.40 | 2.70 | 4.30 | 5.70 | 4.50 | 2.80 | 3.50 | 3.10 | 3.00 | 7.10 | 5.80 | 6.50 | 0 |
N | Dimension | Quality (D1) | Costs (D2) | Delivery Date Factors (D3) | Technological Abilities (D4) | Customer Service Ability (D5) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dimension | Criteria | C11 | C12 | C13 | C21 | C22 | C23 | C24 | C31 | C32 | C33 | C41 | C42 | C43 | C44 | C51 | C52 | C53 | C54 |
Quality (D1) | C11 | 0 | 0.068 | 0.068 | 0.059 | 0.032 | 0.054 | 0.050 | 0.062 | 0.067 | 0.057 | 0.058 | 0.052 | 0.059 | 0.057 | 0.034 | 0.034 | 0.032 | 0.033 |
C12 | 0.062 | 0 | 0.061 | 0.056 | 0.034 | 0.056 | 0.035 | 0.054 | 0.046 | 0.061 | 0.054 | 0.053 | 0.062 | 0.059 | 0.046 | 0.046 | 0.047 | 0.043 | |
C13 | 0.060 | 0.065 | 0 | 0.053 | 0.036 | 0.048 | 0.034 | 0.045 | 0.043 | 0.051 | 0.048 | 0.050 | 0.046 | 0.060 | 0.059 | 0.048 | 0.050 | 0.044 | |
Costs (D2) | C21 | 0.064 | 0.058 | 0.060 | 0 | 0.066 | 0.054 | 0.063 | 0.040 | 0.056 | 0.054 | 0.053 | 0.049 | 0.047 | 0.051 | 0.040 | 0.044 | 0.044 | 0.049 |
C22 | 0.041 | 0.028 | 0.037 | 0.065 | 0 | 0.061 | 0.059 | 0.044 | 0.048 | 0.047 | 0.037 | 0.037 | 0.038 | 0.036 | 0.036 | 0.034 | 0.032 | 0.031 | |
C23 | 0.027 | 0.035 | 0.039 | 0.067 | 0.059 | 0 | 0.054 | 0.029 | 0.031 | 0.027 | 0.026 | 0.029 | 0.025 | 0.023 | 0.038 | 0.041 | 0.049 | 0.027 | |
C24 | 0.030 | 0.034 | 0.039 | 0.064 | 0.102 | 0.053 | 0 | 0.036 | 0.033 | 0.039 | 0.039 | 0.041 | 0.043 | 0.045 | 0.037 | 0.039 | 0.049 | 0.030 | |
Delivery date factors (D3) | C31 | 0.070 | 0.066 | 0.063 | 0.077 | 0.073 | 0.066 | 0.052 | 0 | 0.082 | 0.068 | 0.059 | 0.045 | 0.039 | 0.045 | 0.055 | 0.049 | 0.043 | 0.049 |
C32 | 0.068 | 0.070 | 0.072 | 0.066 | 0.073 | 0.061 | 0.047 | 0.070 | 0 | 0.064 | 0.048 | 0.039 | 0.050 | 0.045 | 0.050 | 0.040 | 0.036 | 0.038 | |
C33 | 0.053 | 0.051 | 0.056 | 0.056 | 0.068 | 0.060 | 0.066 | 0.068 | 0.061 | 0 | 0.053 | 0.039 | 0.046 | 0.040 | 0.050 | 0.039 | 0.044 | 0.038 | |
Technological abilities (D4) | C41 | 0.058 | 0.060 | 0.066 | 0.058 | 0.034 | 0.045 | 0.037 | 0.051 | 0.054 | 0.052 | 0 | 0.051 | 0.066 | 0.051 | 0.048 | 0.030 | 0.035 | 0.032 |
C42 | 0.046 | 0.045 | 0.060 | 0.045 | 0.030 | 0.044 | 0.046 | 0.033 | 0.032 | 0.040 | 0.066 | 0 | 0.057 | 0.055 | 0.044 | 0.035 | 0.034 | 0.027 | |
C43 | 0.072 | 0.059 | 0.074 | 0.059 | 0.029 | 0.040 | 0.043 | 0.043 | 0.041 | 0.050 | 0.077 | 0.078 | 0 | 0.052 | 0.048 | 0.033 | 0.040 | 0.028 | |
C44 | 0.056 | 0.054 | 0.054 | 0.064 | 0.038 | 0.046 | 0.055 | 0.034 | 0.032 | 0.030 | 0.063 | 0.081 | 0.070 | 0 | 0.040 | 0.041 | 0.043 | 0.038 | |
Customer service ability (D5) | C51 | 0.047 | 0.051 | 0.053 | 0.048 | 0.045 | 0.054 | 0.038 | 0.046 | 0.035 | 0.048 | 0.029 | 0.040 | 0.023 | 0.027 | 0 | 0.047 | 0.062 | 0.084 |
C52 | 0.040 | 0.038 | 0.039 | 0.055 | 0.045 | 0.039 | 0.047 | 0.027 | 0.026 | 0.037 | 0.046 | 0.039 | 0.038 | 0.037 | 0.050 | 0 | 0.061 | 0.070 | |
C53 | 0.036 | 0.035 | 0.024 | 0.060 | 0.041 | 0.029 | 0.049 | 0.037 | 0.051 | 0.036 | 0.041 | 0.044 | 0.049 | 0.031 | 0.041 | 0.070 | 0 | 0.073 | |
C54 | 0.031 | 0.031 | 0.036 | 0.068 | 0.027 | 0.035 | 0.028 | 0.045 | 0.059 | 0.047 | 0.029 | 0.036 | 0.032 | 0.031 | 0.074 | 0.060 | 0.067 | 0 |
N*(I-N)−1 | Dimension | Quality (D1) | Costs (D2) | Delivery Date Factors (D3) | Technological Abilities (D4) | Customer Service Ability (D5) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dimension | Criteria | C11 | C12 | C13 | C21 | C22 | C23 | C24 | C31 | C32 | C33 | C41 | C42 | C43 | C44 | C51 | C52 | C53 | C54 |
Quality (D1) | C11 | 0.237 | 0.298 | 0.312 | 0.330 | 0.259 | 0.282 | 0.267 | 0.268 | 0.282 | 0.276 | 0.281 | 0.269 | 0.272 | 0.260 | 0.247 | 0.231 | 0.239 | 0.230 |
C12 | 0.292 | 0.230 | 0.301 | 0.324 | 0.256 | 0.281 | 0.251 | 0.258 | 0.259 | 0.276 | 0.274 | 0.267 | 0.272 | 0.259 | 0.255 | 0.240 | 0.250 | 0.237 | |
C13 | 0.279 | 0.281 | 0.233 | 0.309 | 0.248 | 0.263 | 0.240 | 0.240 | 0.247 | 0.257 | 0.259 | 0.255 | 0.248 | 0.251 | 0.258 | 0.234 | 0.244 | 0.231 | |
Costs (D2) | C21 | 0.295 | 0.286 | 0.302 | 0.274 | 0.290 | 0.282 | 0.279 | 0.248 | 0.270 | 0.272 | 0.275 | 0.265 | 0.260 | 0.253 | 0.253 | 0.240 | 0.249 | 0.244 |
C22 | 0.229 | 0.215 | 0.234 | 0.283 | 0.186 | 0.245 | 0.234 | 0.210 | 0.221 | 0.223 | 0.217 | 0.212 | 0.210 | 0.200 | 0.207 | 0.193 | 0.199 | 0.190 | |
C23 | 0.192 | 0.197 | 0.210 | 0.257 | 0.218 | 0.163 | 0.207 | 0.175 | 0.184 | 0.182 | 0.183 | 0.182 | 0.176 | 0.167 | 0.188 | 0.181 | 0.194 | 0.168 | |
C24 | 0.227 | 0.227 | 0.244 | 0.292 | 0.287 | 0.245 | 0.186 | 0.210 | 0.215 | 0.223 | 0.227 | 0.224 | 0.222 | 0.215 | 0.215 | 0.205 | 0.221 | 0.196 | |
Delivery date factors (D3) | C31 | 0.329 | 0.323 | 0.335 | 0.379 | 0.324 | 0.322 | 0.296 | 0.235 | 0.321 | 0.313 | 0.307 | 0.287 | 0.279 | 0.272 | 0.292 | 0.269 | 0.273 | 0.269 |
C32 | 0.313 | 0.311 | 0.327 | 0.352 | 0.309 | 0.302 | 0.277 | 0.287 | 0.231 | 0.295 | 0.283 | 0.269 | 0.275 | 0.260 | 0.273 | 0.248 | 0.254 | 0.246 | |
C33 | 0.286 | 0.281 | 0.299 | 0.328 | 0.294 | 0.289 | 0.282 | 0.274 | 0.276 | 0.222 | 0.275 | 0.256 | 0.259 | 0.244 | 0.261 | 0.237 | 0.250 | 0.236 | |
Technological abilities (D4) | C41 | 0.279 | 0.278 | 0.296 | 0.313 | 0.247 | 0.261 | 0.243 | 0.246 | 0.257 | 0.259 | 0.214 | 0.256 | 0.267 | 0.243 | 0.248 | 0.217 | 0.230 | 0.218 |
C42 | 0.241 | 0.238 | 0.264 | 0.272 | 0.218 | 0.234 | 0.227 | 0.207 | 0.213 | 0.224 | 0.252 | 0.184 | 0.236 | 0.225 | 0.221 | 0.200 | 0.207 | 0.192 | |
C43 | 0.299 | 0.285 | 0.312 | 0.323 | 0.249 | 0.265 | 0.255 | 0.246 | 0.253 | 0.264 | 0.294 | 0.288 | 0.213 | 0.252 | 0.255 | 0.226 | 0.242 | 0.221 | |
C44 | 0.275 | 0.270 | 0.284 | 0.318 | 0.249 | 0.260 | 0.258 | 0.229 | 0.236 | 0.237 | 0.273 | 0.283 | 0.270 | 0.194 | 0.240 | 0.227 | 0.236 | 0.223 | |
Customer service ability (D5) | C51 | 0.247 | 0.248 | 0.261 | 0.284 | 0.239 | 0.250 | 0.227 | 0.225 | 0.224 | 0.237 | 0.222 | 0.227 | 0.208 | 0.203 | 0.187 | 0.219 | 0.241 | 0.253 |
C52 | 0.231 | 0.226 | 0.238 | 0.277 | 0.228 | 0.226 | 0.224 | 0.197 | 0.204 | 0.217 | 0.227 | 0.217 | 0.213 | 0.204 | 0.224 | 0.165 | 0.230 | 0.230 | |
C53 | 0.232 | 0.228 | 0.230 | 0.288 | 0.231 | 0.222 | 0.231 | 0.211 | 0.232 | 0.221 | 0.229 | 0.225 | 0.227 | 0.202 | 0.221 | 0.234 | 0.176 | 0.237 | |
C54 | 0.226 | 0.224 | 0.239 | 0.293 | 0.217 | 0.226 | 0.211 | 0.217 | 0.238 | 0.229 | 0.215 | 0.217 | 0.210 | 0.200 | 0.249 | 0.224 | 0.239 | 0.170 |
Criteria | Sum of Columns | Sum of Rows | Prominence | Relation |
---|---|---|---|---|
Process sampling defect rate (C11) | 4.8397 | 4.7082 | 9.54791 | 0.13157 |
Quality system certification (C12) | 4.7807 | 4.6455 | 9.42620 | 0.13510 |
Ability to analyze and process abnormal raw materials (C13) | 4.5769 | 4.9220 | 9.49893 | −0.34507 |
Transaction prices (C21) | 4.8371 | 5.4959 | 10.33299 | −0.65880 |
Transportation costs (C22) | 3.9084 | 4.5497 | 8.45805 | −0.64134 |
Cost of returns (C23) | 3.4246 | 4.6177 | 8.04232 | −1.19317 |
Supplier cost information (C24) | 4.0800 | 4.3939 | 8.47389 | −0.31391 |
Delivery reliability (C31) | 5.4254 | 4.1833 | 9.60873 | 1.24208 |
Delivery date accuracy (C32) | 5.1127 | 4.3630 | 9.47572 | 0.74968 |
Supplier flexibility (C33) | 4.8468 | 4.4270 | 9.27384 | 0.41981 |
Ability to optimize production in a short time (C41) | 4.5711 | 4.5069 | 9.07802 | 0.06425 |
Ability to develop new product designs (C42) | 4.0544 | 4.3811 | 8.43543 | −0.32671 |
Production and manufacturing expertise (C43) | 4.7409 | 4.3162 | 9.05712 | 0.42476 |
Development process for building new products (C44) | 4.5643 | 4.1032 | 8.66750 | 0.46102 |
Speed in responding to customer complaints (C51) | 4.2001 | 4.2949 | 8.49502 | −0.09487 |
Informational transparency within the industry (C52) | 3.9813 | 3.9888 | 7.97010 | −0.00749 |
Communication and coordination within the industry (C53) | 4.0756 | 4.1740 | 8.24950 | −0.09838 |
Professional competence of the sales staff (C54) | 4.0435 | 3.9920 | 8.03547 | 0.05149 |
Dimension | Sum of Prominence of Criteria in Each Dimension | Ranking |
---|---|---|
Quality (D1) | 28.47304 | 3 |
Costs (D2) | 26.83336 | 5 |
Delivery date factors (D3) | 28.35829 | 4 |
Technological abilities (D4) | 35.23807 | 1 |
Customer service ability (D5) | 32.75009 | 2 |
Weighted Matrix | Dimension | Quality (D1) | Costs (D2) | Delivery Date Factors (D3) | Technological Abilities (D4) | Customer Service Ability (D5) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dimension | Criteria | C11 | C12 | C13 | C21 | C22 | C23 | C24 | C31 | C32 | C33 | C41 | C42 | C43 | C44 | C51 | C52 | C53 | C54 |
Quality (D1) | C11 | 0.050 | 0.064 | 0.063 | 0.060 | 0.057 | 0.061 | 0.061 | 0.064 | 0.065 | 0.062 | 0.062 | 0.061 | 0.063 | 0.063 | 0.058 | 0.058 | 0.057 | 0.058 |
C12 | 0.062 | 0.050 | 0.061 | 0.059 | 0.056 | 0.061 | 0.057 | 0.062 | 0.059 | 0.062 | 0.061 | 0.061 | 0.063 | 0.063 | 0.059 | 0.060 | 0.060 | 0.059 | |
C13 | 0.059 | 0.061 | 0.047 | 0.056 | 0.055 | 0.057 | 0.055 | 0.057 | 0.057 | 0.058 | 0.057 | 0.058 | 0.057 | 0.061 | 0.060 | 0.059 | 0.059 | 0.058 | |
Costs (D2) | C21 | 0.063 | 0.062 | 0.061 | 0.050 | 0.064 | 0.061 | 0.063 | 0.059 | 0.062 | 0.061 | 0.061 | 0.060 | 0.060 | 0.062 | 0.059 | 0.060 | 0.060 | 0.061 |
C22 | 0.049 | 0.046 | 0.048 | 0.052 | 0.041 | 0.053 | 0.053 | 0.050 | 0.051 | 0.050 | 0.048 | 0.048 | 0.049 | 0.049 | 0.048 | 0.048 | 0.048 | 0.048 | |
C23 | 0.041 | 0.042 | 0.043 | 0.047 | 0.048 | 0.035 | 0.047 | 0.042 | 0.042 | 0.041 | 0.041 | 0.042 | 0.041 | 0.041 | 0.044 | 0.045 | 0.046 | 0.042 | |
C24 | 0.048 | 0.049 | 0.049 | 0.053 | 0.063 | 0.053 | 0.042 | 0.050 | 0.049 | 0.050 | 0.050 | 0.051 | 0.051 | 0.052 | 0.050 | 0.051 | 0.053 | 0.049 | |
Delivery date factors (D3) | C31 | 0.070 | 0.070 | 0.068 | 0.069 | 0.071 | 0.070 | 0.067 | 0.056 | 0.074 | 0.071 | 0.068 | 0.065 | 0.065 | 0.066 | 0.068 | 0.067 | 0.066 | 0.067 |
C32 | 0.067 | 0.067 | 0.066 | 0.064 | 0.068 | 0.066 | 0.063 | 0.069 | 0.053 | 0.067 | 0.063 | 0.061 | 0.064 | 0.063 | 0.064 | 0.062 | 0.061 | 0.062 | |
C33 | 0.061 | 0.060 | 0.061 | 0.060 | 0.065 | 0.063 | 0.064 | 0.065 | 0.063 | 0.050 | 0.061 | 0.058 | 0.060 | 0.059 | 0.061 | 0.059 | 0.060 | 0.059 | |
Technological abilities (D4) | C41 | 0.059 | 0.060 | 0.060 | 0.057 | 0.054 | 0.056 | 0.055 | 0.059 | 0.059 | 0.058 | 0.047 | 0.058 | 0.062 | 0.059 | 0.058 | 0.054 | 0.055 | 0.055 |
C42 | 0.051 | 0.051 | 0.054 | 0.049 | 0.048 | 0.051 | 0.052 | 0.049 | 0.049 | 0.051 | 0.056 | 0.042 | 0.055 | 0.055 | 0.051 | 0.050 | 0.050 | 0.048 | |
C43 | 0.063 | 0.061 | 0.063 | 0.059 | 0.055 | 0.057 | 0.058 | 0.059 | 0.058 | 0.060 | 0.065 | 0.066 | 0.049 | 0.061 | 0.059 | 0.057 | 0.058 | 0.055 | |
C44 | 0.058 | 0.058 | 0.058 | 0.058 | 0.055 | 0.056 | 0.059 | 0.055 | 0.054 | 0.054 | 0.061 | 0.065 | 0.062 | 0.047 | 0.056 | 0.057 | 0.057 | 0.056 | |
Customer service ability (D5) | C51 | 0.052 | 0.053 | 0.053 | 0.052 | 0.053 | 0.054 | 0.052 | 0.054 | 0.051 | 0.054 | 0.049 | 0.052 | 0.048 | 0.049 | 0.044 | 0.055 | 0.058 | 0.063 |
C52 | 0.049 | 0.049 | 0.048 | 0.050 | 0.050 | 0.049 | 0.051 | 0.047 | 0.047 | 0.049 | 0.050 | 0.050 | 0.049 | 0.050 | 0.052 | 0.041 | 0.055 | 0.058 | |
C53 | 0.049 | 0.049 | 0.047 | 0.052 | 0.051 | 0.048 | 0.053 | 0.051 | 0.053 | 0.050 | 0.051 | 0.051 | 0.053 | 0.049 | 0.051 | 0.059 | 0.042 | 0.059 | |
C54 | 0.048 | 0.048 | 0.049 | 0.053 | 0.048 | 0.049 | 0.048 | 0.052 | 0.055 | 0.052 | 0.048 | 0.049 | 0.049 | 0.049 | 0.058 | 0.056 | 0.057 | 0.042 |
Weighted Matrix | Dimension | Quality (D1) | Costs (D2) | Delivery Date Factors (D3) | Technological Abilities (D4) | Customer Service Ability (D5) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dimension | Criteria | C11 | C12 | C13 | C21 | C22 | C23 | C24 | C31 | C32 | C33 | C41 | C42 | C43 | C44 | C51 | C52 | C53 | C54 |
Quality (D1) | C11 | 0.0503 | 0.0642 | 0.0634 | 0.0600 | 0.0569 | 0.0611 | 0.0607 | 0.0641 | 0.0645 | 0.0623 | 0.0624 | 0.0614 | 0.0631 | 0.0634 | 0.0576 | 0.0580 | 0.0572 | 0.0575 |
C12 | 0.0619 | 0.0495 | 0.0612 | 0.0589 | 0.0564 | 0.0607 | 0.0571 | 0.0616 | 0.0594 | 0.0623 | 0.0609 | 0.0609 | 0.0630 | 0.0631 | 0.0594 | 0.0601 | 0.0598 | 0.0593 | |
C13 | 0.0593 | 0.0605 | 0.0473 | 0.0562 | 0.0546 | 0.0570 | 0.0547 | 0.0574 | 0.0565 | 0.0581 | 0.0574 | 0.0581 | 0.0574 | 0.0611 | 0.0601 | 0.0586 | 0.0585 | 0.0578 | |
Costs (D2) | C21 | 0.0627 | 0.0617 | 0.0614 | 0.0498 | 0.0637 | 0.0610 | 0.0635 | 0.0593 | 0.0620 | 0.0614 | 0.0610 | 0.0604 | 0.0603 | 0.0617 | 0.0588 | 0.0602 | 0.0597 | 0.0612 |
C22 | 0.0487 | 0.0462 | 0.0476 | 0.0515 | 0.0408 | 0.0529 | 0.0532 | 0.0502 | 0.0507 | 0.0503 | 0.0482 | 0.0484 | 0.0487 | 0.0488 | 0.0483 | 0.0485 | 0.0477 | 0.0476 | |
C23 | 0.0407 | 0.0424 | 0.0427 | 0.0468 | 0.0480 | 0.0353 | 0.0471 | 0.0419 | 0.0421 | 0.0412 | 0.0407 | 0.0415 | 0.0408 | 0.0407 | 0.0437 | 0.0454 | 0.0465 | 0.0421 | |
C24 | 0.0481 | 0.0489 | 0.0495 | 0.0531 | 0.0631 | 0.0530 | 0.0423 | 0.0502 | 0.0493 | 0.0505 | 0.0503 | 0.0510 | 0.0513 | 0.0523 | 0.0502 | 0.0514 | 0.0530 | 0.0492 | |
Delivery date factors (D3) | C31 | 0.0699 | 0.0695 | 0.0681 | 0.0690 | 0.0712 | 0.0697 | 0.0673 | 0.0562 | 0.0736 | 0.0707 | 0.0682 | 0.0654 | 0.0647 | 0.0664 | 0.0679 | 0.0674 | 0.0655 | 0.0674 |
C32 | 0.0666 | 0.0669 | 0.0665 | 0.0641 | 0.0678 | 0.0655 | 0.0630 | 0.0685 | 0.0530 | 0.0666 | 0.0628 | 0.0613 | 0.0636 | 0.0633 | 0.0636 | 0.0623 | 0.0609 | 0.0617 | |
C33 | 0.0607 | 0.0604 | 0.0608 | 0.0597 | 0.0646 | 0.0625 | 0.0643 | 0.0654 | 0.0633 | 0.0501 | 0.0610 | 0.0584 | 0.0599 | 0.0594 | 0.0609 | 0.0593 | 0.0598 | 0.0590 | |
Technological abilities (D4) | C41 | 0.0592 | 0.0598 | 0.0602 | 0.0570 | 0.0543 | 0.0565 | 0.0553 | 0.0589 | 0.0589 | 0.0584 | 0.0474 | 0.0584 | 0.0618 | 0.0592 | 0.0577 | 0.0543 | 0.0551 | 0.0547 |
C42 | 0.0512 | 0.0512 | 0.0535 | 0.0494 | 0.0480 | 0.0508 | 0.0516 | 0.0495 | 0.0488 | 0.0505 | 0.0559 | 0.0421 | 0.0546 | 0.0548 | 0.0514 | 0.0501 | 0.0496 | 0.0482 | |
C43 | 0.0634 | 0.0613 | 0.0633 | 0.0588 | 0.0547 | 0.0573 | 0.0580 | 0.0587 | 0.0580 | 0.0597 | 0.0652 | 0.0658 | 0.0493 | 0.0614 | 0.0594 | 0.0567 | 0.0579 | 0.0554 | |
C44 | 0.0584 | 0.0582 | 0.0577 | 0.0579 | 0.0548 | 0.0563 | 0.0588 | 0.0548 | 0.0540 | 0.0536 | 0.0606 | 0.0646 | 0.0625 | 0.0474 | 0.0560 | 0.0568 | 0.0566 | 0.0559 | |
Customer service ability (D5) | C51 | 0.0524 | 0.0534 | 0.0531 | 0.0516 | 0.0526 | 0.0542 | 0.0516 | 0.0537 | 0.0513 | 0.0535 | 0.0492 | 0.0518 | 0.0482 | 0.0495 | 0.0435 | 0.0549 | 0.0577 | 0.0633 |
C52 | 0.0490 | 0.0487 | 0.0484 | 0.0505 | 0.0502 | 0.0490 | 0.0511 | 0.0472 | 0.0469 | 0.0490 | 0.0505 | 0.0496 | 0.0495 | 0.0496 | 0.0521 | 0.0412 | 0.0551 | 0.0577 | |
C53 | 0.0493 | 0.0492 | 0.0467 | 0.0523 | 0.0508 | 0.0480 | 0.0525 | 0.0505 | 0.0531 | 0.0499 | 0.0507 | 0.0514 | 0.0526 | 0.0492 | 0.0514 | 0.0585 | 0.0422 | 0.0594 | |
C54 | 0.0481 | 0.0482 | 0.0487 | 0.0533 | 0.0477 | 0.0490 | 0.0480 | 0.0519 | 0.0545 | 0.0518 | 0.0478 | 0.0494 | 0.0486 | 0.0488 | 0.0579 | 0.0563 | 0.0572 | 0.0425 |
Criteria | DEMATEL Prominence | Prominence Ranking | D-ANP Weight | D-ANP Weight Ranking | Borda Score | Overall Ranking |
---|---|---|---|---|---|---|
Process sampling defect rate (C11) | 9.54791 | 3 | 0.0606 | 3 | 6 | 3 |
Quality system certification (C12) | 9.42620 | 6 | 0.0598 | 6 | 12 | 6 |
Ability to analyze and process abnormal raw materials (C13) | 9.49893 | 4 | 0.0573 | 8 | 12 | 6 |
Transaction prices (C21) | 10.33299 | 1 | 0.0605 | 4 | 5 | 2 |
Transportation costs (C22) | 8.45805 | 13 | 0.0488 | 17 | 30 | 15 |
Cost of returns (C23) | 8.04232 | 16 | 0.0427 | 18 | 34 | 17 |
Supplier cost information (C24) | 8.47389 | 12 | 0.0508 | 13 | 25 | 12 |
Delivery reliability (C31) | 9.60873 | 2 | 0.0676 | 1 | 3 | 1 |
Delivery date accuracy (C32) | 9.47572 | 5 | 0.0638 | 2 | 7 | 4 |
Supplier flexibility (C33) | 9.27384 | 7 | 0.0605 | 4 | 11 | 5 |
Ability to optimize production in a short time (C41) | 9.07802 | 8 | 0.0572 | 9 | 17 | 9 |
Ability to develop new product designs (C42) | 8.43543 | 14 | 0.0507 | 14 | 28 | 14 |
Production and manufacturing expertise (C43) | 9.05712 | 9 | 0.0592 | 7 | 16 | 8 |
Development process for building new products (C44) | 8.66750 | 10 | 0.0569 | 10 | 20 | 10 |
Speed in responding to customer complaints (C51) | 8.49502 | 11 | 0.0524 | 11 | 22 | 11 |
Informational transparency within the industry (C52) | 7.97010 | 18 | 0.0497 | 16 | 34 | 17 |
Communication and coordination within the industry (C53) | 8.24959 | 15 | 0.0510 | 12 | 27 | 13 |
Professional competence of the sales staff (C54) | 8.03547 | 17 | 0.0506 | 15 | 32 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, J.-F.; Wang, C.-P.; Lin, M.-H.; Huang, S.-W. Analysis of Key Factors for Supplier Selection in Taiwan’s Thin-Film Transistor Liquid-Crystal Displays Industry. Mathematics 2021, 9, 396. https://doi.org/10.3390/math9040396
Tsai J-F, Wang C-P, Lin M-H, Huang S-W. Analysis of Key Factors for Supplier Selection in Taiwan’s Thin-Film Transistor Liquid-Crystal Displays Industry. Mathematics. 2021; 9(4):396. https://doi.org/10.3390/math9040396
Chicago/Turabian StyleTsai, Jung-Fa, Chin-Po Wang, Ming-Hua Lin, and Shih-Wei Huang. 2021. "Analysis of Key Factors for Supplier Selection in Taiwan’s Thin-Film Transistor Liquid-Crystal Displays Industry" Mathematics 9, no. 4: 396. https://doi.org/10.3390/math9040396
APA StyleTsai, J. -F., Wang, C. -P., Lin, M. -H., & Huang, S. -W. (2021). Analysis of Key Factors for Supplier Selection in Taiwan’s Thin-Film Transistor Liquid-Crystal Displays Industry. Mathematics, 9(4), 396. https://doi.org/10.3390/math9040396