Third Zadeh’s Intuitionistic Fuzzy Implication †
Abstract
:1. Introduction
2. Main Results
- Case 1.
- Let . Then
- 1.1.
- If , then
- 1.1.1.
- If , then
- 1.1.2.
- If , then(by the assumption in 1.1).
- 1.2.
- If , then
- Case 2.
- Let . Then
- 2.1.
- If , then
- 2.1.1.
- If , then
- 2.1.2.
- If , then
- 2.2.
- If , then
- 2.2.1.
- If , then(by the assumption in 2.2).
- 2.2.2.
- If , then
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Klir, G.; Yuan, B. Fuzzy Sets and Fuzzy Logic; Prentice Hall: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Chen, J.; Kundu, S. A sound and complete fuzzy logic system using Zadeh’s implication operator. Lect. Notes Comput. Sci. 1996, 1079, 233–242. [Google Scholar]
- Atanassov, K. On some intuitionistic fuzzy implication. C. R. L’Acad. Bulg. Sci. 2006, 59, 21–26. [Google Scholar]
- Atanassov, K. Second Zadeh’s intuitionistic fuzzy implication. Notes Intuit. Fuzzy Sets 2011, 17, 11–14. [Google Scholar]
- Atanassov, K. Intuitionistic Fuzzy Sets: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Atanassov, K. On Intuitionistic Fuzzy Sets Theory; Springer: Berlin, Germany, 2012. [Google Scholar]
- Atanassov, K. Intuitionistic Fuzzy Logics; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Vassilev, P.; Atanassov, K. Extensions and Modifications of Intuitionistic Fuzzy Sets; Academic Publishing House “Marin Drinov”: Sofia, Bulgaria, 2019. [Google Scholar]
- Atanassova, L. A new intuitionistic fuzzy implication. Cybern. Inf. Technol. 2009, 9, 21–25. [Google Scholar]
- Atanassova, L. On some properties of intuitionistic fuzzy negation ¬@. Notes Intuit. Fuzzy Sets 2009, 15, 32–35. [Google Scholar]
- Atanassova, L. On two modifications of the intuitionistic fuzzy implication →@. Notes Intuit. Fuzzy Sets 2012, 18, 26–30. [Google Scholar]
- Atanassova, L. On the modal form of the intuitionistic fuzzy implications and . Issues Intuit. Fuzzy Sets Gen. Nets 2013, 10, 5–11. [Google Scholar]
- Atanassova, L. Remark on Dworniczak’s intuitionistic fuzzy implications. Part 1. Notes Intuit. Fuzzy Sets 2015, 21, 18–23. [Google Scholar]
- Atanassova, L. Remark on Dworniczak’s intuitionistic fuzzy implications. Part 2. Issues Intuit Fuzzy Sets Gen. Nets 2016, 12, 61–67. [Google Scholar]
- Dworniczak, P. Some remarks about the L. Atanassova’s paper “A new intuitionistic fuzzy implication”. Cybern. Inf. Technol. 2010, 10, 3–9. [Google Scholar]
- Dworniczak, P. On one class of intuitionistic fuzzy implications. Cybern. Inf. Technol. 2010, 10, 13–21. [Google Scholar]
- Dworniczak, P. On some two-parametric intuitionistic fuzzy implications. Notes Intuit. Fuzzy Sets 2011, 17, 8–16. [Google Scholar]
- Implications Over Intuitionistic Fuzzy Sets. From Ifigenia, the Wiki for Intuitionistic Fuzzy Sets and Generalized Nets. Available online: http://ifigenia.org/wiki/Implications_over_intuitionistic_fuzzy_sets (accessed on 10 March 2021).
- Rasiova, H.; Sikorski, R. The Mathematics of Metamathematics; Polish Academy of Sciences: Warszawa, Poland, 1963. [Google Scholar]
- Angelova, N.; Stoenchev, M. Intuitionistic fuzzy conjunctions and disjunctions from first type. Annu. Inform. Sect. Union Sci. Bulg. 2016, 8, 1–17. [Google Scholar]
- Angelova, N.; Stoenchev, M.; Todorov, V. Intuitionistic fuzzy conjunctions and disjunctions from second type. Issues Intuit. Fuzzy Sets Gen. Nets 2017, 13, 143–170. [Google Scholar]
- Angelova, N.; Stoenchev, M. Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes Intuit. Fuzzy Sets 2017, 23, 29–41. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanassov, K. Third Zadeh’s Intuitionistic Fuzzy Implication. Mathematics 2021, 9, 619. https://doi.org/10.3390/math9060619
Atanassov K. Third Zadeh’s Intuitionistic Fuzzy Implication. Mathematics. 2021; 9(6):619. https://doi.org/10.3390/math9060619
Chicago/Turabian StyleAtanassov, Krassimir. 2021. "Third Zadeh’s Intuitionistic Fuzzy Implication" Mathematics 9, no. 6: 619. https://doi.org/10.3390/math9060619
APA StyleAtanassov, K. (2021). Third Zadeh’s Intuitionistic Fuzzy Implication. Mathematics, 9(6), 619. https://doi.org/10.3390/math9060619