Performance Assessment of Supervised Classifiers for Designing Intrusion Detection Systems: A Comprehensive Review and Recommendations for Future Research
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
4. Results and Discussion
4.1. Intergroup Performance Analysis
4.2. Intragroup Performance Analysis
4.3. Detailed Performance Reading of All the Classifiers
5. J48Consolidated—A C4.5 Classifier Based on C4.5
5.1. Detection Capabilities of J48Consolidated
5.2. Classification Output of J48Consolidated
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Description |
TT | Testing Time |
ACC | Accuracy |
KV | Kappa Value |
MAE | Mean Absolute Error |
RMSE | Root Mean Squared Error |
RAE | Relative Absolute Error |
RRSE | Root Relative Squared Error |
FPR | False Positive Rate |
PRE | Precession |
ROC | Receiver Operating Curve |
MCC | Matthews Correlation Coefficient |
PRC | Precision Recall Curve |
TOPSIS | Techniques for Order Preference by Similarity to the Ideal Solution |
IDS | Intrusion Detection System |
IoT | Internet of Things |
LWL | Locally Weighted Learning |
RLKNN | Rseslib K-Nearest Neighbor |
CR | Conjunctive Rule |
DTBL | Decision Table |
DTNB | Decision Table Naïve Bayes |
FURIA | Fuzzy Rule Induction |
NNGE | Nearest Neighbor with Generalization |
OLM | Ordinal Learning Method |
RIDOR | RIpple-DOwn Rule learner |
BFT | Best-First Decision Tree |
CDT | Criteria Based Decision Tree |
LADT | Logit Boost based Alternating Decision Tree |
LMT | Logistic Model Trees |
NBT | Naïve Bayes based Decision Tree |
REPT | Reduces Error Pruning Tree |
RF | Random Forest |
RT | Random Tree |
SC | Simple Cart |
CHIRP | Composite Hypercubes on Iterated Random Projections |
FLR | Fuzzy Lattice Reasoning |
HP | Hyper Pipes |
VFI | Voting Feature Intervals |
TP | True Positives |
TN | True Negatives |
TPR | True Positive Rate |
TNR | True Negative Rate |
FT | Functional Trees |
References
- Chavhan, S.; Gupta, D.; Chandana, B.N.; Khanna, A.; Rodrigues, J.J.P.C. IoT-based Context-Aware Intelligent Public Transport System in a metropolitan area. IEEE Internet Things J. 2019, 7, 6023–6034. [Google Scholar] [CrossRef]
- Chen, Q.; Bridges, R.A. Automated behavioral analysis of malware: A case study of wannacry ransomware. In Proceedings of the 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017, Cancun, Mexico, 18–21 December 2017; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, December 2017; Volume 2017, pp. 454–460. [Google Scholar]
- Liang, W.; Li, K.C.; Long, J.; Kui, X.; Zomaya, A.Y. An Industrial Network Intrusion Detection Algorithm Based on Multifeature Data Clustering Optimization Model. IEEE Trans. Ind. Inform. 2020, 16, 2063–2071. [Google Scholar] [CrossRef]
- Jiang, K.; Wang, W.; Wang, A.; Wu, H. Network Intrusion Detection Combined Hybrid Sampling with Deep Hierarchical Network. IEEE Access 2020, 8, 32464–32476. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Wang, X. Intrusion Detection for IoT Based on Improved Genetic Algorithm and Deep Belief Network. IEEE Access 2019, 7, 31711–31722. [Google Scholar] [CrossRef]
- Yang, H.; Wang, F. Wireless Network Intrusion Detection Based on Improved Convolutional Neural Network. IEEE Access 2019, 7, 64366–64374. [Google Scholar] [CrossRef]
- Lever, J.; Krzywinski, M.; Altman, N. Model selection and overfitting. Nat. Methods 2016, 13, 703–704. [Google Scholar] [CrossRef]
- Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Pes, B. Learning from high-dimensional biomedical datasets: The issue of class imbalance. IEEE Access 2020, 8, 13527–13540. [Google Scholar] [CrossRef]
- Wang, S.; Yao, X. Multiclass imbalance problems: Analysis and potential solutions. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2012, 42, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.K.; Basu, M. Complexity measures of supervised classification problems. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 289–300. [Google Scholar]
- Kelly, M.G.; Hand, D.J.; Adams, N.M. Supervised classification problems: How to be both judge and jury. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin, Germany, 1999; Volume 1642, pp. 235–244. [Google Scholar]
- Kuncheva, L.I. Combining Pattern Classifiers: Methods and Algorithms: Second Edition; Wiley: Hoboken, NJ, USA, 2014; Volume 9781118315, ISBN 9781118914564. [Google Scholar]
- Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 4–37. [Google Scholar] [CrossRef] [Green Version]
- Lashkari, A.H.; Gil, G.D.; Mamun, M.S.I.; Ghorbani, A.A. Characterization of tor traffic using time based features. In Proceedings of the ICISSP 2017 3rd International Conference on Information Systems Security and Privacy, Porto, Portugal, 19–21 February 2017; SciTePress: Setúbal, Portugal, 2017; Volume 2017-Janua, pp. 253–262. [Google Scholar]
- Robert, C. Machine Learning, a Probabilistic Perspective. CHANCE 2014, 27, 62–63. [Google Scholar] [CrossRef]
- Maindonald, J. Pattern Recognition and Machine Learning; Journal of Statistical Software: Los Angeles, CA, USA, 2007; Volume 17. [Google Scholar]
- Frasca, T.M.; Sestito, A.G.; Versek, C.; Dow, D.E.; Husowitz, B.C.; Derbinsky, N. A Comparison of Supervised Learning Algorithms for Telerobotic Control Using Electromyography Signals. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, AAAI 2016, Phoenix, AZ, USA, 12–17 February 2016; pp. 4208–4209. Available online: www.aaai.org (accessed on 12 May 2020).
- Soru, T.; Ngomo, A.C.N. A comparison of supervised learning classifiers for link discovery. ACM Int. Conf. Proceeding Ser. 2014, 41–44. [Google Scholar] [CrossRef]
- Arriaga-Gómez, M.F.; De Mendizábal-Vázquez, I.; Ros-Gómez, R.; Sánchez-Ávila, C. A comparative survey on supervised classifiers for face recognition. In Proceedings of the International Carnahan Conference on Security Technology, Hatfield, UK, 13–16 October 2014; Volume 2014, pp. 1–6. [Google Scholar]
- Shiraishi, T.; Motohka, T.; Thapa, R.B.; Watanabe, M.; Shimada, M. Comparative assessment of supervised classifiers for land use-land cover classification in a tropical region using time-series PALSAR mosaic data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1186–1199. [Google Scholar] [CrossRef]
- Micó, L.; Oncina, J. Comparison of fast nearest neighbour classifiers for handwritten character recognition. Pattern Recognit. Lett. 1998, 19, 351–356. [Google Scholar] [CrossRef]
- Sianaki, O.A. Intelligent Decision Support System for Energy Management in Demand Response Programs and Residential and Industrial Sectors of the Smart Grid. Ph.D. Thesis, Curtin University, Bentley, WA, Australia, 2015. [Google Scholar]
- Hwang, C.; Masud, A. Multiple Objective Decision Making—Methods and Applications: A State-Of-The-Art Survey; Springer: New York, NY, USA, 2012. [Google Scholar]
- Radanliev, P.; De Roure, D.; Page, K.; Van Kleek, M.; Santos, O.; Maddox, L.; Burnap, P.; Anthi, E.; Maple, C. Design of a dynamic and self-adapting system, supported with artificial intelligence, machine learning and real-time intelligence for predictive cyber risk analytics in extreme environments—Cyber risk in the colonisation of Mars. Saf. Extrem. Environ. 2021, 1–12. [Google Scholar] [CrossRef]
- Wu, X.; Kumar, V.; Ross, Q.J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. in Comput. Eng. 2007, 160, 3–24. [Google Scholar]
- Demusar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Chand, N.; Mishra, P.; Krishna, C.R.; Pilli, E.S.; Govil, M.C. A comparative analysis of SVM and its stacking with other classification algorithm for intrusion detection. In Proceedings of the 2016 International Conference on Advances in Computing, Communication and Automation, ICACCA, Dehradun, India, 8–9 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Htike, K.K.; Khalifa, O.O. Comparison of supervised and unsupervised learning classifiers for human posture recognition. In Proceedings of the International Conference on Computer and Communication Engineering (ICCCE 2010), Kuala Lumpur, Malaysia, 11–13 May 2010. [Google Scholar] [CrossRef]
- Tuysuzoglu, G.; Yaslan, Y. Gözetimli Siniflandiricilar ve Topluluk Temelli Sözlükler ile Biyomedikal Veri Siniflandirilmasi. In Proceedings of the 25th Signal Processing and Communications Applications Conference, SIU 2017, Antalya, Turkey, 15–18 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Gu, S.; Jin, Y. Multi-train: A semi-supervised heterogeneous ensemble classifier. Neurocomputing 2017, 249, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Labatut, V.; Cherifi, H. Accuracy Measures for the Comparison of Classifiers. arXiv 2012, arXiv:abs/1207.3790. [Google Scholar]
- Caruana, R.; Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd International Conference on Machine Learning, Hong Kong, China, 18–22 December 2006; Volume 148, pp. 161–168. [Google Scholar]
- Amancio, D.R.; Comin, C.H.; Casanova, D.; Travieso, G.; Bruno, O.M.; Rodrigues, F.A.; Da Fontoura Costa, L. A systematic comparison of supervised classifiers. PLoS ONE 2014, 9, e94137. [Google Scholar] [CrossRef]
- Araar, A.; Bouslama, R. A comparative study of classification models for detection in ip networks intrusions. J. Theor. Appl. Inf. Technol. 2014, 64, 107–114. [Google Scholar]
- Gharibian, F.; Ghorbani, A.A. Comparative study of supervised machine learning techniques for intrusion detection. In Proceedings of the Fifth Annual Conference on Communication Networks and Services Research (CNSR 2007), Fredericton, NB, Canada, 14–17 May 2007; pp. 350–355. [Google Scholar]
- Panda, M.; Patra, M.R. A comparative study of data mining algorithms for network intrusion detection. In Proceedings of the 1st International Conference on Emerging Trends in Engineering and Technology, ICETET 2008, Maharashtra, India, 16–18 July 2008; pp. 504–507. [Google Scholar]
- Srinivasulu, P.; Nagaraju, D.; Kumar, P.R.; Rao, K.N. Classifying the network intrusion attacks using data mining classification methods and their performance comparison. Int. J. Comput. Sci. Netw. Secur. 2009, 9, 11–18. [Google Scholar]
- Wu, S.Y.; Yen, E. Data mining-based intrusion detectors. Expert Syst. Appl. 2009, 36, 5605–5612. [Google Scholar] [CrossRef]
- Jalil, K.A.; Kamarudin, M.H.; Masrek, M.N. Comparison of machine learning algorithms performance in detecting network intrusion. In Proceedings of the 2010 International Conference on Networking and Information Technology, Manila, Philippines, 11–12 June 2010; pp. 221–226. [Google Scholar] [CrossRef]
- Amudha, P.; Rauf, H.A. Performance analysis of data mining approaches in intrusion detection. In Proceedings of the 2011 International Conference on Process Automation, Control and Computing, Coimbatore, India, 20–22 July 2011. [Google Scholar]
- China Appala Naidu, R.; Avadhani, P.S. A comparison of data mining techniques for intrusion detection. In Proceedings of the IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), Ramanathapuram, India, 23–25 August 2012; pp. 41–44. [Google Scholar]
- Kalyani, G. Performance Assessment of Different Classification Techniques for Intrusion Detection. IOSR J. Comput. Eng. 2012, 7, 25–29. [Google Scholar] [CrossRef]
- Thaseen, S.; Kumar, C.A. An analysis of supervised tree based classifiers for intrusion detection system. In Proceedings of the 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering, Salem, India, 21–22 February 2013; pp. 294–299. [Google Scholar]
- Revathi, S.; Malathi, A. A Detailed Analysis on NSL-KDD Dataset Using Various Machine Learning Techniques for Intrusion Detection. Int. J. Eng. Res. Technol. 2013, 2, 1848–1853. [Google Scholar]
- Robinson, R.R.R.; Thomas, C. Ranking of machine learning algorithms based on the performance in classifying DDoS attacks. In Proceedings of the 2015 IEEE Recent Advances in Intelligent Computational Systems, RAICS 2015, Trivandrum, Kerala, 10–12 December 2015; pp. 185–190. [Google Scholar]
- Choudhury, S.; Bhowal, A. Comparative analysis of machine learning algorithms along with classifiers for network intrusion detection. In Proceedings of the 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), Avadi, India, 6–8 May 2015; pp. 89–95. [Google Scholar]
- Jain, A.; Rana, J.L. Classifier Selection Models for Intrusion Detection System (Ids). Inform. Eng. Int. J. 2016, 4, 1–11. [Google Scholar]
- Bostani, H.; Sheikhan, M. Modification of supervised OPF-based intrusion detection systems using unsupervised learning and social network concept. Pattern Recognit. 2017, 62, 56–72. [Google Scholar] [CrossRef]
- Belavagi, M.C.; Muniyal, B. Performance Evaluation of Supervised Machine Learning Algorithms for Intrusion Detection. Procedia Comput. Sci. 2016, 89, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Almseidin, M.; Alzubi, M.; Kovacs, S.; Alkasassbeh, M. Evaluation of Machine Learning Algorithms for Intrusion Detection System. In Proceedings of the 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 14–16 September 2017. [Google Scholar]
- Amira, A.S.; Hanafi, S.E.O.; Hassanien, A.E. Comparison of classification techniques applied for network intrusion detection and classification. J. Appl. Log. 2017, 24, 109–118. [Google Scholar]
- Aksu, D.; Üstebay, S.; Aydin, M.A.; Atmaca, T. Intrusion detection with comparative analysis of supervised learning techniques and fisher score feature selection algorithm. In Communications in Computer and Information Science; Springer: Berlin, Germany, 2018; Volume 935, pp. 141–149. [Google Scholar]
- Nehra, D.; Kumar, K.; Mangat, V. Pragmatic Analysis of Machine Learning Techniques in Network Based IDS. In Proceedings of the International Conference on Advanced Informatics for Computing Research; Springer: Berlin/Heidelberg, Germany, 2019; pp. 422–430. [Google Scholar]
- Mahfouz, A.M.; Venugopal, D.; Shiva, S.G. Comparative Analysis of ML Classifiers for Network Intrusion Detection; Springer: Berlin/Heidelberg, Germany, 2020; pp. 193–207. [Google Scholar]
- Rajagopal, S.; Siddaramappa Hareesha, K.; Panduranga Kundapur, P. Performance analysis of binary and multiclass models using azure machine learning. Int. J. Electr. Comput. Eng. 2020, 10, 978. [Google Scholar] [CrossRef] [Green Version]
- Ahmim, A.; Ferrag, M.A.; Maglaras, L.; Derdour, M.; Janicke, H. A Detailed Analysis of Using Supervised Machine Learning for Intrusion Detection; Springer: Berlin/Heidelberg, Germany, 2020; pp. 629–639. [Google Scholar]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques.”; Morgan Kaufmann: Burlington, VT, USA, 2016; p. 128. [Google Scholar]
- Su, J.; Zhang, H.; Ling, C.X.; Matwin, S. Discriminative parameter learning for Bayesian networks. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1016–1023. [Google Scholar]
- Yu, S.-Z. Hidden semi-Markov models. Artif. Intell. 2010, 174, 215–243. [Google Scholar] [CrossRef] [Green Version]
- Ghahramani, Z. An introduction to Hidden Markov Models and Bayesian Networks. In Hidden Markov Models; World Scientific: Singapore, 2001; Volume 15. [Google Scholar]
- Zhang, H. Exploring conditions for the optimality of naïve bayes. Proc. Int. J. Pattern Recognit. Artif. Intell. 2005, 19, 183–198. [Google Scholar] [CrossRef]
- John, G.H.; Langley, P. Estimating Continuous Distributions in Bayesian Classifiers George. Proc. Elev. Conf. Uncertain. Artif. Intell. 1995, 42, 338–345. [Google Scholar]
- Puurula, A. Scalable Text Classification with Sparse Generative Modeling. In Lecture Notes in Computer Science; Springer: New York, NY, USA, 2012; pp. 458–469. [Google Scholar]
- Balakrishnama, S.; Ganapathiraju, A. Linear Discriminant Analysis—A Brief Tutorial; Institute for Signal and information Processing: Philadelphia, PA, USA, 1998; Volume 18, pp. 1–8. [Google Scholar]
- Fan, R.E.; Chang, K.W.; Hsieh, C.J.; Wang, X.R.; Lin, C.J. LIBLINEAR: A library for large Linear Classification. J. Mach. Learn. Res. 2008, 9, 1871–1874. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Kleinbaum, D.G.; Klein, M. Introduction to Logistic Regression; Springer: New York, NY, USA, 2010; pp. 1–39. [Google Scholar]
- Windeatt, T. Accuracy/diversity and ensemble MLP classifier design. IEEE Trans. Neural Netw. 2006, 17, 1194–1211. [Google Scholar] [CrossRef]
- Hertz, J.; Krogh, A.; Palmer, R.G. Introduction to the Theory of Neural Computation; Elsevier Science Publishers: Amsterdam, The Netherlands, 2018; ISBN 9780429968211. [Google Scholar]
- Yang, Q.; Cheng, G. Quadratic Discriminant Analysis under Moderate Dimension. Stat. Theory. 2018. Available online: http://arxiv.org/abs/1808.10065 (accessed on 12 May 2020).
- Frank, E. Fully Supervised Training of Gaussian Radial Basis Function Networks in WEKA; University of Waikato: Hamilton, New Zealand, 2014; Volume 04. [Google Scholar]
- Schwenker, F.; Kestler, H.A.; Palm, G. Unsupervised and Supervised Learning in Radial-Basis-Function Networks. In Self-Organizing Neural Networks; Physica Verlag: Heidelberg, Germany, 2002; pp. 217–243. [Google Scholar]
- Kyburg, H.E. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference by Judea Pearl. J. Philos. 1991, 88, 434–437. [Google Scholar] [CrossRef]
- Kecman, V. Support Vector Machines—An Introduction; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–47. [Google Scholar]
- Keerthi, S.S.; Shevade, S.K.; Bhattacharyya, C.; Murthy, K.R.K. Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput. 2001, 13, 637–649. [Google Scholar] [CrossRef]
- Aha, D.W.; Kibler, D.; Albert, M.K. Instance-Based Learning Algorithms. In Machine Learning; Springer: Berlin, Germany, 1991; Volume 6, pp. 37–66. [Google Scholar]
- Cleary, J.G.; Trigg, L.E. K*: An Instance-based Learner Using an Entropic Distance Measure. In Machine Learning Proceedings 1995; Morgan Kaufmann: New York, NY, USA, 1995. [Google Scholar]
- Wojna, A.; Latkowski, R. Rseslib 3: Library of rough set and machine learning methods with extensible architecture. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2019; Volume 10810 LNCS, pp. 301–323. [Google Scholar]
- Frank, E.; Hall, M.; Pfahringer, B. Locally Weighted Naive Bayes; University of Waikato: Hamilton, New Zealand, 2012. [Google Scholar]
- Atkeson, C.G.; Moore, A.W.; Schaal, S. Locally Weighted Learning. Artif. Intell. Rev. 1997, 11, 11–73. [Google Scholar] [CrossRef]
- Zimek EM (Documentation for extended WEKA including Ensembles of Hierarchically Nested Dichotomies). Available online: http://www.dbs.ifi.lmu.de/~zimek/diplomathesis/implementations/EHNDs/doc/weka/clusterers/FarthestFirst.html (accessed on 12 May 2020).
- Kohavi, R. The power of decision tables. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 1995; Volume 912, pp. 174–189. [Google Scholar]
- Hall, M.A.; Frank, E. Combining naive bayes and decision tables. In Proceedings of the FLAIRS Conference, Coconut Grove, FL, USA, 15–17 May 2008; Volume 2118, pp. 318–319. [Google Scholar]
- Hühn, J.; Hüllermeier, E. FURIA: An algorithm for unordered fuzzy rule induction. Data Min. Knowl. Discov. 2009, 19, 293–319. [Google Scholar] [CrossRef] [Green Version]
- Cohen, W.W. Fast Effective Rule Induction. In Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, CA, USA, 9–12 July 1995. [Google Scholar]
- Stefanowski, J. Rough set based rule induction techniques for classification problems. In Rough Set Based Rule Induction Techniques for Classification Problems; Intelligent Techniques & Soft Computing: Aachen, Germany, 1998; Volume 1, pp. 109–113. [Google Scholar]
- Sylvain, R. Nearest Neighbor with Generalization; University of Canterbury: Christchurch, New Zealand, 2002. [Google Scholar]
- Martin, B. Instance-Based Learning: Nearest Neighbor with Generalization; University of Waikato: Hamilton, New Zealand, 1995. [Google Scholar]
- Ben-David, A. Automatic Generation of Symbolic Multiattribute Ordinal Knowledge-Based DSSs: Methodology and Applications. Decis. Sci. 1992, 23, 1357–1372. [Google Scholar] [CrossRef]
- Holte, R.C. Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Mach. Learn. 1993, 11, 63–90. [Google Scholar] [CrossRef]
- Frank, E.; Wang, Y.; Inglis, S.; Holmes, G.; Witten, I.H. Using model trees for classification. Mach. Learn. 1998, 32, 63–76. [Google Scholar] [CrossRef]
- Thangaraj, M. Vijayalakshmi Performance Study on Rule-based Classification Techniques across Multiple Database Relations. Int. J. Appl. Inf. Syst. 2013, 5, 1–7. [Google Scholar]
- Pawlak, Z. Rough set theory and its applications to data analysis. Cybern. Syst. 1998, 29, 661–688. [Google Scholar] [CrossRef]
- Frank, E. ZeroR. Weka 3.8 Documentation. 2019. Available online: https://weka.sourceforge.io/doc.stable-3-8/weka/classifiers/rules/ZeroR.html (accessed on 12 May 2020).
- Suthaharan, S. Decision Tree Learning. In Machine Learning Models and Algorithms for Big Data Classification. Integrated Series in Information Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 237–269. [Google Scholar]
- Abellán, J.; Moral, S. Building Classification Trees Using the Total Uncertainty Criterion. Int. J. Intell. Syst. 2003, 18, 1215–1225. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.N.; Islam, M.Z. Forest PA: Constructing a decision forest by penalizing attributes used in previous trees. Expert Syst. Appl. 2017, 89, 389–403. [Google Scholar] [CrossRef]
- Gama, J. Functional trees. Mach. Learn. 2004, 55, 219–250. [Google Scholar] [CrossRef]
- Salzberg, S.L. C4.5: Programs for Machine Learning by J. Ross Quinlan. In Machine Learning; Morgan Kaufmann Publishers, Inc.: New York, NY, USA, 1993; Volume 16, pp. 235–240. [Google Scholar]
- Ibarguren, I.; Pérez, J.M.; Muguerza, J.; Gurrutxaga, I.; Arbelaitz, O. Coverage-based resampling: Building robust consolidated decision trees. Knowledge-Based Syst. 2015, 79, 51–67. [Google Scholar] [CrossRef]
- Hayashi, Y.; Tanaka, Y.; Takagi, T.; Saito, T.; Iiduka, H.; Kikuchi, H.; Bologna, G.; Mitra, S. Recursive-rule extraction algorithm with J48graft and applications to generating credit scores. J. Artif. Intell. Soft Comput. Res. 2016, 6, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Holmes, G.; Pfahringer, B.; Kirkby, R.; Frank, E.; Hall, M. Multiclass alternating decision trees. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2002; Volume 2430, pp. 161–172. [Google Scholar]
- Landwehr, N.; Hall, M.; Frank, E. Logistic model trees. Mach. Learn. 2005, 59, 161–205. [Google Scholar] [CrossRef] [Green Version]
- Sumner, M.; Frank, E.; Hall, M. Speeding up Logistic Model Tree induction. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Samos, Greece, 18–20 July 2005; Volume 3721 LNAI, pp. 675–683. [Google Scholar]
- Jiang, L.; Li, C. Scaling up the accuracy of decision-tree classifiers: A naive-bayes combination. J. Comput. 2011, 6, 1325–1331. [Google Scholar] [CrossRef]
- Kalmegh, S. Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News. Int. J. Innov. Sci. Eng. Technol. 2015, 2, 438–446. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780128042915. [Google Scholar]
- Islam, Z.; Giggins, H. Knowledge Discovery through SysFor: A Systematically Developed Forest of Multiple Decision Trees kDMI: A Novel Method for Missing Values Imputation Using Two Levels of Horizontal Partitioning in a Data set View project A Hybrid Clustering Technique Combining a Novel Genetic Algorithm with K-Means View project Knowledge Discovery through SysFor-a Systematically Developed Forest of Multiple Decision Trees. 2011. Available online: https://www.researchgate.net/publication/236894348 (accessed on 11 May 2020).
- Wilkinson, L.; Anand, A.; Tuan, D.N. CHIRP: A new classifier based on composite hypercubes on iterated random projections. In Proceedings of the Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011; pp. 6–14. [Google Scholar]
- Athanasiadis, I.N.; Kaburlasos, V.G.; Mitkas, P.A.; Petridis, V. Applying Machine Learning Techniques on Air Quality Data for Real-Time Decision Support 1 Introduction 2 Decision support systems for assessing air quality in real—time 3 The σ—FLNMAP Classifier. First Int. Symp. Inf. Technol. Environ. Eng. 2003, 2–7. Available online: http://www.academia.edu/download/53083886/Applying_machine_learning_techniques_on_20170511-3627-1jgoy73.pdf (accessed on 11 May 2020).
- Deeb, Z.A.; Devine, T. Randomized Decimation HyperPipes; Penn State University: University Park, PA, USA, 2010. [Google Scholar]
- Demiröz, G.; Altay Güvenir, H. Classification by voting feature intervals. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 1997; Volume 1224, pp. 85–92. [Google Scholar]
- Ingre, B.; Yadav, A. Performance analysis of NSL-KDD dataset using ANN. In Proceedings of the 2015 International Conference on Signal Processing and Communication Engineering Systems, Guntur, India, 2–3 January 2015; pp. 92–96. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, L.M.; Taha, D.B.; Mahmod, M.S. A comparison study for intrusion database (KDD99, NSL-KDD) based on self organization map (SOM) artificial neural network. J. Eng. Sci. Technol. 2013, 8, 107–119. [Google Scholar]
- Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009; pp. 1–6. [Google Scholar]
- Shiravi, A.; Shiravi, H.; Tavallaee, M.; Ghorbani, A.A. Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 2012, 31, 357–374. [Google Scholar] [CrossRef]
- Gharib, A.; Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. An Evaluation Framework for Intrusion Detection Dataset. In Proceedings of the ICISS 2016—2016 International Conference on Information Science and Security, Jaipur, India, 19–22 December 2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017. [Google Scholar]
- Panigrahi, R.; Borah, S. Design and Development of a Host Based Intrusion Detection System with Classification of Alerts; Sikkim Manipal University: Sikkim, India, 2020. [Google Scholar]
- Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization. In Proceedings of the ICISSP 2018, Madeira, Portugal, 22–24 January 2018; pp. 108–116. [Google Scholar]
Inferences/Observations/Limitations/Research Gaps | With 20 features, BayesNet shows the highest amount of accuracy of 99.3% for classifying DDoS attacks, and PART shows 98.9% for classifying Probe attacks. No class imbalance issue was found. Tested on an older dataset, which is now obsolete. Completely ignored U2R and R2L attacks. Hence, classifiers performance may vary with the inclusion of U2R and R2L instances | Gaussian classifier seems to be effective for R2L and Probe attacks with the highest detection rate of 0.136 and 0.874, respectively. Naïve Bayes proved suitable for U2R attacks with the highest detection rate of 0.843, Decision Tree and Random Forest classified DoS attacks with the highest detection rate of 0.972. Considering the highest detection rate of three training sets is not convincing. Instead, the average detection rate could have highlighted better classifiers for the given scenario. | A decent number of performance measures were used to analyze the classifiers, Other state-of-the-art classifiers are missing from the comparison. Dataset sample size, number of features considered are not precise. Although the Naïve Bayes proved to be a better classifier in FP Rate, the ID3 performs far ahead than the Naïve Bayes. Class imbalance issues are not considered during evaluation. | The accuracy of the induction tree is promising, with an overall rate of 99.839/%. Although it is appreciable that the induction tree performs well in the class imbalance KDD’99 dataset, the size of the training set and the class-wise breakup of training stances are not precise. The reason for considering different training instances for three different classifiers is not clear. Considering the ROC area, it is evident that the Induction tree correctly classified Neptune, Smurf, pod, teardrop, port sweep, and back attack instances. | C4.5 scores the highest average accuracy of 64.94% as compared to 62.7% of SVM. Considering attacks accuracy, C4.5 seems to be suitable for detecting Probe, DoS, and U2R attacks, whereas SVM classifies R2L threats better. Class imbalance issue is not addressed. | J48 (C4.5) proved to be an accurate classifier for classifying test instances. Data extraction and the preprocessing procedure is not clearly defined. The training set is a high-class imbalance, so the evaluation of the classifiers in terms of accuracy and detection rate is not sufficient. |
Performance measures used | Accuracy Kappa Mean Absolute Error Root Mean Squared Error | Detection Rate | Accuracy, Kappa, RMSE, Precision Recall, FP Rate Precision, Recall FN Rate, F-Measure | Accuracy, MA Error, RMS Error RA Error, RRS Error, TP Rate FP Rate, Precision, Recall, F-Measure, ROC Area | Accuracy Detection Rate FP Rate | Accuracy Detection Rate FP Rate |
Dataset, Features and Sample Size | Dataset: KDD’99 FS procedure: Information Gain Number of Features Selected: 20 Training instances: 492,842 Testing Instances: N/A | Dataset: KDD’99 Features Selected: All features Training instances: 270,000 Testing Instances: 311,029 | Dataset: KDD’99 Features Selected: All features | Dataset: KDD’99 Features Selected: All features Training instances: N/A Testing Instances: 19,870 | Dataset: KDD’99 Features Selected: All features Training instances: N/A | Dataset: KDD’99 Features Selected: All features Training instances: 311,029 Testing Instances: 494,014 |
Classification Type | Multi Class Normal DoS Probe | Multi Class Normal DoS Probe U2R R2L | Multi-Class Normal DoS Probe U2R R2L | Multi-Class Normal Neptune Smurf guess_passwd Pod | Multi-Class Normal DoS Probe U2R R2L | Multi-Class Normal DoS Probe U2R R2L |
Classifiers Evaluated | J48 (C4.5), BayesNet, Naïve Bayes, Part, Multilayer Perceptron, SVM | Gaussian, Naïve Bayes, Decision Tree (C4.5), Random Forest | Naïve Bayes J48(C4.5) ID3 | Induction Tree Naïve Bayes ANN | C4.5 SVM | SVM J48 (C4.5) Multilayer Perceptron |
Author/Year/Reference | Araar et al. (2005) [36] | Gharibian et al. (2007) [37] | Panda et al. (2008) [38] | Srinivasulu et al. (2009) [39] | Wu et al. (2009) [40] | Jalil et al. (2010) [41] |
Inferences/Observations/Limitations/Research Gaps | Random Forest appears to be effective for detecting DoS and Probe attacks. NB Tree is useful for detecting R2L and U2R attacks The classifiers’ performances are measured in a binary environment. Performance many vary in a multiclass environment with a very high-class imbalance rate. | C5.0 decision tree shows the highest detection rate of 98.75% for the KDD dataset’s testing samples. Both DoS and Probe attacks are detected with 99.56% and 97.25% of the detection rate. The sample size and the basis of selecting the sample size in not defined in the research. | J48 evolved as the best classifier with 99.13% accuracy. OneR is very fast in classifying instances. The basis of sampling, training, and testing size is not mentioned. How the classifiers will behave in a class imbalance situation is not defined. | Brilliantly evaluated. It can be extended to other groups of classifiers. NBTree achieves 97.76% highest accuracy. | Random Forest proves to provide a high accuracy rate for classifying threats. Considering 15 features, Random Forest shows an accuracy rate of 99.8% for Normal, 99.1% for DoS, 98.9% for Probe, 98.7% for U2R, and 97.9% for R2L. Average accuracy of Random forest achieves 98.88% for 15 features of NSL-KDD dataset | kNN proved to be the best classifier in terms of accuracy. No benchmark datasets were used for the evaluation of classifiers. Class imbalance issue has not been explored. |
Performance measures used | Accuracy Detection Rate FP Rate Testing time | Detection Rate | Testing time, Accuracy, TP Rate FP Rate, MA Error, RMS Error, RA Error, RRS Error | Training time, Accuracy, MAE, RMSE, Kappa, Recall, Precision, F-Measure, Precision, FP Rate | Accuracy | Accuracy |
Dataset, Features and Sample Size | Dataset: KDD’99 Feature Selection Technique: CFS Features: 7 Training instances: N/A Testing Instances: N/A | Dataset: KDD’99 Feature Selection Technique: N/A Training instances: N/A Testing Instances: N/A | Dataset: NSLKDD Training instances: N/A Testing instances: 2747 | Dataset: NSL-KDD Feature election Techniques: CONS: 12 features, CFS: 3 features Training instances: 25,192 Testing instances: 11,850 | Dataset: NSL-KDD Feature Selection Techniques: CFS Features: 15 Training instances: 125,937 Testing instances: 22,544 | Dataset: Artificial Dataset Feature Selection Scheme: CFS Features: 2 to 10 Training instances: N/A Testing instances: N/A |
Classification Type | Binary Class Normal Instances of any one other class. | Multi-Class Normal DoS Probe | N/A | Multi-Class Normal DoS Probe U2R R2L | Multi-Class Normal DoS Probe U2R R2L | N/A |
Classifiers Evaluated | J48, Naïve Bayes, NB Tree, Random Forest | SVM, Ripper Rule, C5.0 decision tree | Naive Bayes, J48, OneR, PART, RBF Network | ADTree, C4.5, LADTree, NBTree, Random Tree, Random Forest, REP Tree | Random Forest J48 SVM CART Naïve Bayes | Naïve Bayes, Bayes Net, C4.5, Random Forest, CART, kNN, Logistic Regression, MLP, SVM |
Author/Year/Reference | Amudha et al. (2011) [42] | Naidu et al. (2012) [43] | Kalyani et al. (2012) [44] | Thaseen et al. (2013) [45] | Revathi et al. (2013) [46] | Amancio et al. (2014) [35] |
Inferences/Observations/ Limitations/Research Gaps | Random Forest shows the highest accuracy of 97.75% and 100% for the LLsDDoS and CAIDA Conficker dataset. J48 and Random Forest both show equal highest accuracy of 99.26% for the CAIDA DDoS 2007 dataset. Class imbalance issue has not been addressed. The type of classification, whether binary or multiclass, is not clear. | Random Forest shows the highest amount of accuracy of 91.52%. Considering False Positive Rate, BayesNet seems to be better. The test could have been conducted with varying sample sizes or with the maximum sample size possible to confirm the suitable classifier. | Proposed two IDS models for classifying the different type of attack instances. Random Forest and Fuzzy Logic seem to be ideal classifiers for classifying various attacks. The training time of a classifier does not provide a clear picture of designing an IDS. Hence, testing time per instance would provide a precise result. | PART shows the highest accuracy of 99.97% Many other prominent classifiers are missed from the evaluation. Tested on an obsolete dataset. Declaring the best classifier just based on accuracy may not reveal the real capabilities of the classifier. Other measures, such as ROC and PRC values, should be considered for judging the classifiers’ performance in class imbalance learning. | Random Forest proved to be the best classifier, among others. The class imbalance issue found as NSL-KDD is a class imbalance dataset. A similar test on other state-of-the-art classifiers are required | Random Forest shows the highest accuracy of 93.77% Class imbalance issues found with Normal-U2R and Normal-R2L instances. Tested on an obsolete dataset |
Performance measures used | Accuracy FN Rate FP Rate Precision Recall | Training Time, Sensitivity, Specificity, Accuracy, FP Rate, Kappa, F-Measure, Precision, ROC, | TP Rate FP Rate Training Time | Accuracy, Recall, Precision, F-Measure, TP Rate, TN Rate ROC Area Kappa | Accuracy F-Measure ROC Value Precision Recall | Accuracy, FP Rate, FN Rate, TP Rate, Precision, ROC value, RMS Error |
Dataset, Features and Sample Size | Datasets: LLsDDoS, CAIDA, DdoS2007, Conficker Feature Selection Procedure: Manual, Features Selected: 7 Training and Testing Instances: N/A | Dataset: NSL-KDD Features Selected: All features Training instances: 1166 Testing instances: 7456 | Dataset: KDD’99 Feature Selection Technique: Information Gain Features: 20 Training and Testing instances: N/A | Dataset: KDD’99 No. of Features: All features Training and Testing instances: N/A | Dataset: NSL-KDD No. of Features selected: All Training and Testing instances: N/A | Dataset: KDD’99 No. of features: All Training instances: 148,753 Testing instances: 60,000 |
Classification Type | N/A | Multi-Class, Normal, DoS Probe U2R R2L | Multi-Class Normal, DoS Probe U2R R2L | Multi-Class Normal DoS Probe U2R R2L | Multi-Class Normal DoS Probe U2R R2L | Multi-Class Normal DoS Probe U2R R2L |
Classifiers Evaluated | Naïve Bayes, RBF Network, Multilayer Perceptron, BayesNet, IBK, J48 (C4.5), Random Forest | BayesNet, Logistic, IBk, JRip, PART, J48, Random Forest, Random Tree, REPTree | Bayes Net, Naïve Bayes, C4.5, ID3, NBTree, Fuzzy Logic SVM, Decision Table, JRip, OneR, MLP, IBk | Decision Table, JRip, ZeroR, OneR, PART, BayesNet, Naïve Bayes, MLP, SMO, Simple Logistic, IBk Kstar, LWL | Logistic Regression Gaussian Naïve Bayes, SVM, Random Forest | J48 (C4.5), Random Forest, Random Tree, Decision Table, Multilayer Perceptron, Naïve Bayes, BayesNet |
Author/Year/Reference | Robinson et al. (2015) [47] | Choudhury et al. (2015) [48] | Jain et al. (2016) [49] | Bostani et al. (2017) [50] | Belavagi et al. (2016) [51] | Almseidin et al. (2017) [52] |
Inferences/Observations/Limitations/Research Gaps | The best classifier to classify attacks of the NSL-KDD dataset in an anomalous traffic condition: DOS attacks—Multilayer Perceptron, Probe attacks—BFTree, U2R attacks—J48, R2L attacks—Naïve Bayes. Overall, all the classifiers except Naïve Bayes worked well with the NSL-KDD dataset. No performance measures were used to validate the classifiers in this class imbalance situation; therefore, the classifier seems to be ideal, but it may not be consistent in this scenario. | Decision Tree shows the highest accuracy of 99%. Class imbalance issue, not present. Class wise samples contradict the total training data size. | Random Forest proved to be the best classifier, among others. The class imbalance issue found as NSL-KDD was a class imbalance dataset. Similarly, the U2R and R2L attacks were not perfectly detected due to inherent class-imbalance issue. A similar test on other state-of-the-art classifiers is required | With all the features of the NSL-KDD dataset, the J48 classifier outperforms all other classifiers. With a reduced feature set through information gain feature selection, the IBk seems to be a better classifier. The under-sampling of highly dominant classes and over a sampling of poor classes improves the detection accuracy of R2L and U2R attacks. | The two-class decision forest model evolved as the best detection scheme with a detection accuracy of 99.2%. The generic, exploits, shellcode, and worms attacks were also detected with 99%, 94.49%, 91.79% and 90.9% accuracy, respectively. The evaluation has been carried out with the cutting-edged Microsoft Azure Machine Learning Studio to handle huge instances of the UNSW NB-15 dataset. | The Random Forest emerged as the best classifier for multi attacks scenarios. On the other hand, in a binary attack scenario, the C4.5 was found to be the best classifier for detection. |
Performance measures used | Accuracy FP Rate TP Rate FN Rate Precision Recall F-Score | Accuracy Recall Precision F-Measure | Accuracy F-Measure Precision Recall | Accuracy, True Positive Rate, False Positive Rate, Precision, Recall F-Measure, ROC Area | Accuracy, Precision, Recall, F1-Score, AUC, False Alarm Rate, Training Time, Testing Time | Detection Rate, True Negative Rate, False Alarm Rate, Accuracy, Training Time, Testing Time |
Dataset, Features and Sample Size | Dataset: NSL-KDD Feature Selection Technique: Sequential Floating Forward Selection (SFFS), No of Features: 26 Training instances: 125,973 Testing instances: 22,544 | Dataset: CICIDS 2017 Feature Selection Techniques: Fisher Score, No of Features: 30, Training instances: 203,171 Testing instances: 22,575 | Dataset: KDD’ 99, NSL-KDD, No. of features: All Testing instances: KDD’ 99 Sample Size: 494,021 NSL-KDD Sample Size: 125,973 | Dataset: NSL-KDD Separately evaluated on Information Gain Feature Selection and All Features, 10-fold cross validation on instances of the dataset | Dataset: UNSW NB-15 Feature Selection Scheme: Mutual information Training samples: 1,75,341 Testing samples: 82,332 | Dataset: CICIDS2017, Feature Selection Techniques: Manual feature selection. Features having unique values for each instance of the dataset has been considered. Training instances: 40,000 Testing instances: 40,000 |
Classification Type | Multi-Class Normal DoS Probe U2R R2L | Binary Benign DoS | Multi-Class Normal DoS Probe U2R R2L | Multi-Class Normal DoS Probe U2R R2L | Multi-Class Normal, Analysis, Backdoor, Reconnaissance, Shellcode, Worms, DOS, Fuzzers, Generic, Exploits | Multi-Class Benign, DoS, PortScan, Bot, Brute Force, Web Attacks, Infiltration |
Classifiers Evaluated | Naïve Bayes BF Tree J48 Multilayer Perceptron NB Tree RFT | SVM IBk(k-NN) Decision Tree | Random Forest J48 (C4.5) BayesNet Naïve Bayes SVM | Naïve Bayes, Logistic Regression, MLP, SVM, IBk, J48 (C4.5) | Average Perceptron, Bayes point machine, Boosted Decision Tree, Decision Forest, Decision Jungle, Locally deep SVM, Logistic Regression | J48 (C4.5), ForestPA, Random Forest, REP Tree, Jrip, FURIA, RIdor, MLP, RBF, LIBSVM, SVM, Naïve Bayes |
Author/Year/Reference | Aziz et al. (2017) [53] | Aksu et al. (2018) [54] | Nehra et al. (2019) [55] | Mahfouz et al. (2020) [56] | Rajagopal et al. (2020) [57] | Ahmim et al. (2020) [58] |
Sl. No. | Name of Classifiers | Short Name |
---|---|---|
1 | Discriminative Multinomial Naive Bayes [60] | DMNB |
2 | Hidden Markov Models [61,62] | HMM |
3 | Naive Bayes [63,64] | NB |
4 | Sparse Generative Model [65] | SGM |
Sl. No. | Name of Classifiers | Short Name |
---|---|---|
1 | Linear Discriminant Analysis [66] | LDA |
2 | LibLINEAR [67] | LLNR |
3 | LibSVM [68] | LSVM |
4 | Logistic Regression [69] | LR |
5 | Multilayer Perceptron—With one hidden layer [70] | MLPH |
6 | Multilayer Perceptron—Back Propagation Neural Network [71] | MLPB |
7 | Quadratic Discriminant Analysis [72] | QDA |
8 | Radial Basis Function [73] | RBF |
9 | Radial Basis Function Network [74] | RBFN |
10 | Simple Logistic Regression [75] | SLR |
11 | Sequential Minimal Optimization [76,77] | SMO |
Sl. No. | Name of Classifiers | Short Name |
---|---|---|
1 | IB1 (Nearest Neighbor approach) [78] | IB1 |
2 | IBk (k-nearest neighbor approach) [78] | IBK |
3 | IBkLG (k-nearest neighbor with Log and Gaussian kernel) [78] | IBKLG |
4 | KStar [79] | KSTAR |
5 | Local Knn [80] | LKNN |
6 | Locally Weighted Learning [81,82] | LWL |
7 | Rseslib Knn [80] | RLKNN |
Sl. No. | Name of Classifiers | Short Name |
---|---|---|
1 | Conjunctive Rule [83] | CR |
2 | Decision Table [84] | DTBL |
3 | Decision Table Naïve Bayes hybrid classifier [85] | DTNB |
4 | Fuzzy Rule Induction [86] | FURIA |
5 | JRip [87] | JRIP |
6 | MODLEM [88] | MODLEM |
7 | Nearest Neighbor with Generalization [89,90] | NNGE |
8 | Ordinal Learning Method [91] | OLM |
9 | OneR [92] | ONER |
10 | PART [93] | PART |
11 | RIpple-DOwn Rule learner [94] | RIDOR |
12 | Rough Set [95] | ROUGHS |
13 | ZeroR [96] | ZEROR |
Sl. No. | Name of Classifiers | Short Name |
---|---|---|
1 | Best-First Decision Tree [97] | BFT |
2 | Criteria Based Decision Tree [98] | CDT |
3 | ForestPA [99] | FPA |
4 | Functional Tree [100] | FT |
5 | J48 [101] | J48 |
6 | J48Consolidated [101,102,103] | J48C |
7 | J48Graft [104] | J48G |
8 | Logit Boost-based Alternating Decision Tree [105] | LADT |
9 | Logistic Model Trees [106,107] | LMT |
10 | Naïve Bayes based Decision Tree [108] | NBT |
11 | Reduces Error Pruning Tree [109] | REPT |
12 | Random Forest [110,111] | RF |
13 | Random Tree [111] | RT |
14 | Simple Cart [112] | SC |
15 | SysFor [113] | SF |
Sl. No. | Name of Classifiers | Short Name |
---|---|---|
1 | Composite Hypercubes on Iterated Random Projections [114] | CHIRP |
2 | Fuzzy Lattice Reasoning [115] | FLR |
3 | Hyper Pipes [116] | HP |
4 | Voting Feature Intervals [117] | VFI |
Datasets | Sample Size | Training Instances | Testing Instances |
---|---|---|---|
NSLKDD | 7781 | 5135 | 2646 |
ISCXIDS2012 | 5494 | 3626 | 1868 |
CICIDS2017 | 8917 | 5885 | 3032 |
Input: | ||||||||||||||||||||||||
//Classifiers or classifiers groups | ||||||||||||||||||||||||
//Performance measures | ||||||||||||||||||||||||
Output: | ||||||||||||||||||||||||
Classifiers group with weights . | ||||||||||||||||||||||||
begin | ||||||||||||||||||||||||
Step 1. Decision matrix construction | ||||||||||||||||||||||||
. | // n = clasfiers and k = performance outcomes | |||||||||||||||||||||||
Step 2. Decision matrix normalization | ||||||||||||||||||||||||
fori: = 0 ton. | ||||||||||||||||||||||||
begin | ||||||||||||||||||||||||
forj: = 0 tok. | ||||||||||||||||||||||||
begin | ||||||||||||||||||||||||
. | ||||||||||||||||||||||||
end | ||||||||||||||||||||||||
end | ||||||||||||||||||||||||
Step 3. Formation of weighted normalized matrix | ||||||||||||||||||||||||
. | // Wj= weight allocated for performance matric j | |||||||||||||||||||||||
Step 4. Estimation of positive (A+) and negative (A−) ideal solution | ||||||||||||||||||||||||
, . | ||||||||||||||||||||||||
Step 5. Estimation of separation point of each classifier/classifier group | ||||||||||||||||||||||||
, //positive ideal solutions , //negative ideal solutions | ||||||||||||||||||||||||
Step 6. Weight estimation of classifiers | ||||||||||||||||||||||||
. | ||||||||||||||||||||||||
end |
Performance Measures | Weight Allocated |
---|---|
Testing Time | 1 |
Accuracy | 8 |
Kappa | 4 |
Mean Absolute Error (MAE) | 2 |
False Positive Rate (FPR) | 5 |
Precision | 7 |
Receiver Operating Curve (ROC) Value | 6 |
Matthews Correlation Coefficient (MCC) | 3 |
Input: | ||||||||||||||||||||
. | //Classifiers or classifiers groups | |||||||||||||||||||
. | //Classifiers’ weight for dataset d | |||||||||||||||||||
Output: | ||||||||||||||||||||
Classifiers/Classifier group labels with rank R | ||||||||||||||||||||
begin | ||||||||||||||||||||
Step 1. Import list of classifiers | ||||||||||||||||||||
Step 2. Import classifiers weights | ||||||||||||||||||||
Step 3. Calculate average weight of classifiers for each dataset | ||||||||||||||||||||
Step 4. Rank classifiers based on descending order of their weight | ||||||||||||||||||||
end |
Miscellaneous | Avg | 1.410 | 0.020 | 49.698 | 50.302 | 0.372 | 0.245 | 0.393 | 80.759 | 100.762 | 0.955 | 0.045 | 95.464 | 95.464 | 95.464 | 0.745 | 0.437 | 0.552 |
Max | 5.550 | 0.040 | 84.392 | 75.246 | 0.793 | 0.317 | 0.549 | 104.430 | 140.701 | 0.993 | 0.078 | 99.288 | 99.288 | 99.288 | 0.896 | 0.801 | 0.751 | |
Min | 0.010 | 0.010 | 24.754 | 15.609 | 0.071 | 0.062 | 0.250 | 20.571 | 64.082 | 0.922 | 0.007 | 92.167 | 92.167 | 92.167 | 0.538 | 0.180 | 0.285 | |
Decision Tree | Avg | 4.180 | 0.030 | 95.460 | 4.540 | 0.940 | 0.027 | 0.121 | 8.826 | 31.035 | 0.996 | 0.004 | 99.561 | 99.561 | 99.561 | 0.988 | 0.943 | 0.963 |
Max | 39.970 | 0.130 | 97.619 | 13.568 | 0.969 | 0.094 | 0.200 | 30.903 | 51.334 | 0.999 | 0.020 | 99.938 | 99.938 | 99.938 | 0.998 | 0.970 | 0.993 | |
Min | 0.020 | 0.001 | 86.432 | 2.381 | 0.823 | 0.013 | 0.090 | 4.160 | 23.006 | 0.980 | 0.001 | 98.002 | 98.002 | 98.002 | 0.971 | 0.841 | 0.886 | |
Rules | Avg | 1.590 | 0.040 | 82.121 | 17.859 | 0.763 | 0.081 | 0.200 | 26.846 | 51.314 | 0.988 | 0.012 | 98.754 | 98.754 | 98.754 | 0.898 | 0.767 | 0.799 |
Max | 7.620 | 0.200 | 97.241 | 74.339 | 0.964 | 0.304 | 0.433 | 100.000 | 111.128 | 0.999 | 0.100 | 99.935 | 99.935 | 99.935 | 0.993 | 0.965 | 0.976 | |
Min | 0.001 | 0.001 | 25.661 | 2.759 | 0.000 | 0.012 | 0.102 | 3.807 | 26.088 | 0.900 | 0.001 | 89.991 | 89.991 | 89.991 | 0.500 | 0.000 | 0.240 | |
Lazy | Avg | 48.960 | 15.560 | 90.730 | 9.270 | 0.876 | 0.050 | 0.165 | 16.474 | 42.355 | 0.996 | 0.004 | 99.601 | 99.601 | 99.601 | 0.969 | 0.876 | 0.919 |
Max | 333.500 | 67.290 | 95.729 | 34.467 | 0.944 | 0.209 | 0.313 | 68.821 | 80.239 | 0.999 | 0.012 | 99.880 | 99.880 | 99.880 | 0.991 | 0.945 | 0.971 | |
Min | 0.001 | 0.140 | 65.533 | 4.271 | 0.534 | 0.020 | 0.122 | 6.724 | 31.167 | 0.988 | 0.001 | 98.775 | 98.775 | 98.775 | 0.927 | 0.525 | 0.825 | |
Functions | Avg | 2.990 | 0.120 | 72.061 | 27.939 | 0.629 | 0.155 | 0.292 | 50.928 | 74.868 | 0.991 | 0.009 | 99.130 | 99.130 | 99.130 | 0.887 | 0.639 | 0.737 |
Max | 9.370 | 1.220 | 92.026 | 38.813 | 0.895 | 0.262 | 0.371 | 86.342 | 95.227 | 0.997 | 0.016 | 99.675 | 99.675 | 99.675 | 0.946 | 0.897 | 0.866 | |
Min | 0.020 | 0.001 | 61.187 | 7.974 | 0.501 | 0.032 | 0.179 | 10.509 | 45.804 | 0.984 | 0.003 | 98.400 | 98.400 | 98.400 | 0.770 | 0.520 | 0.510 | |
Bayes | Avg | 0.040 | 0.010 | 41.043 | 58.957 | 0.266 | 0.258 | 0.369 | 84.979 | 94.696 | 0.966 | 0.034 | 96.596 | 96.596 | 96.596 | 0.694 | 0.282 | 0.479 |
Max | 0.080 | 0.020 | 70.824 | 81.519 | 0.610 | 0.322 | 0.405 | 106.223 | 103.920 | 0.987 | 0.064 | 98.664 | 98.664 | 98.664 | 0.889 | 0.628 | 0.745 | |
Min | 0.010 | 0.001 | 18.481 | 29.176 | 0.000 | 0.176 | 0.309 | 57.835 | 79.140 | 0.936 | 0.013 | 93.591 | 93.591 | 93.591 | 0.500 | 0.000 | 0.240 | |
Performance Measures | Training Time (s) | Testing Time (s) | Model Accuracy (%) | M.C.R. (%) | Kappa Statistics | M.A.E. r | R.M.S.E. | R.A.E. (%) | R.R.S.E. (%) | True Positive Rate | False Positive Rate | Precision (%) | Sensitivity (%) | F-Measure | ROC Value | MCC Value | PRC Area |
Miscellaneous | Avg | 0.740 | 0.010 | 57.548 | 42.452 | 0.145 | 0.428 | 0.543 | 85.557 | 108.576 | 0.995 | 0.005 | 99.540 | 99.540 | 99.540 | 0.590 | 0.176 | 0.573 |
Max | 2.940 | 0.030 | 77.356 | 49.090 | 0.545 | 0.499 | 0.701 | 99.813 | 140.098 | 0.997 | 0.006 | 99.699 | 99.699 | 99.699 | 0.771 | 0.570 | 0.717 | |
Min | 0.001 | 0.001 | 50.910 | 22.645 | 0.000 | 0.226 | 0.476 | 45.281 | 95.152 | 0.994 | 0.003 | 99.406 | 99.406 | 99.406 | 0.500 | 0.000 | 0.500 | |
Decision Tree | Avg | 5.170 | 0.010 | 97.352 | 2.648 | 0.947 | 0.036 | 0.152 | 7.197 | 30.338 | 1.000 | 0.000 | 99.973 | 99.973 | 99.973 | 0.985 | 0.947 | 0.980 |
Max | 60.480 | 0.040 | 98.555 | 5.300 | 0.971 | 0.081 | 0.213 | 16.135 | 42.649 | 1.000 | 0.000 | 99.987 | 99.987 | 99.987 | 0.998 | 0.971 | 0.998 | |
Min | 0.020 | 0.001 | 94.700 | 1.445 | 0.894 | 0.021 | 0.107 | 4.175 | 21.384 | 1.000 | 0.000 | 99.951 | 99.951 | 99.951 | 0.968 | 0.895 | 0.954 | |
Rules | Avg | 0.610 | 0.020 | 89.960 | 10.031 | 0.800 | 0.114 | 0.243 | 22.758 | 48.564 | 0.999 | 0.001 | 99.907 | 99.907 | 99.907 | 0.905 | 0.808 | 0.890 |
Max | 3.430 | 0.160 | 97.912 | 50.910 | 0.958 | 0.500 | 0.529 | 100.000 | 105.702 | 1.000 | 0.004 | 99.982 | 99.982 | 99.982 | 0.992 | 0.959 | 0.991 | |
Min | 0.001 | 0.001 | 49.090 | 2.088 | 0.000 | 0.023 | 0.139 | 4.670 | 27.863 | 0.996 | 0.000 | 99.605 | 99.605 | 99.605 | 0.500 | 0.000 | 0.500 | |
Lazy | Avg | 14.070 | 9.220 | 92.551 | 7.449 | 0.851 | 0.089 | 0.252 | 17.747 | 50.293 | 0.999 | 0.001 | 99.923 | 99.923 | 99.923 | 0.940 | 0.855 | 0.920 |
Max | 92.180 | 29.720 | 97.323 | 17.827 | 0.946 | 0.273 | 0.367 | 54.614 | 73.282 | 1.000 | 0.002 | 99.972 | 99.972 | 99.972 | 0.990 | 0.946 | 0.987 | |
Min | 0.001 | 0.010 | 82.173 | 2.677 | 0.641 | 0.030 | 0.153 | 5.995 | 30.560 | 0.998 | 0.000 | 99.825 | 99.825 | 99.825 | 0.884 | 0.674 | 0.866 | |
Functions | Avg | 2.340 | 0.170 | 70.873 | 29.127 | 0.413 | 0.343 | 0.471 | 68.686 | 94.124 | 0.997 | 0.003 | 99.730 | 99.730 | 99.730 | 0.739 | 0.451 | 0.731 |
Max | 18.720 | 1.860 | 90.364 | 49.090 | 0.807 | 0.491 | 0.701 | 98.163 | 140.098 | 0.999 | 0.005 | 99.906 | 99.906 | 99.906 | 0.929 | 0.807 | 0.924 | |
Min | 0.010 | 0.001 | 50.910 | 9.636 | 0.000 | 0.170 | 0.302 | 33.986 | 60.396 | 0.995 | 0.001 | 99.498 | 99.498 | 99.498 | 0.500 | 0.000 | 0.500 | |
Bayes | Avg | 0.020 | 0.010 | 50.669 | 49.331 | 0.004 | 0.498 | 0.552 | 99.558 | 110.331 | 0.995 | 0.005 | 99.486 | 99.486 | 99.486 | 0.576 | 0.004 | 0.563 |
Max | 0.050 | 0.020 | 50.910 | 49.786 | 0.021 | 0.500 | 0.702 | 99.983 | 140.281 | 0.996 | 0.006 | 99.610 | 99.610 | 99.610 | 0.791 | 0.058 | 0.746 | |
Min | 0.001 | 0.001 | 50.214 | 49.090 | −0.005 | 0.493 | 0.500 | 98.603 | 99.969 | 0.994 | 0.004 | 99.373 | 99.373 | 99.373 | 0.500 | −0.043 | 0.500 | |
Performance Measures | Training Time (s) | Testing Time (s) | Model Accuracy (%) | M.C.R. (%) | Kappa Statistics | M.A.E. | R.M.S.E. | R.A.E. (%) | R.R.S.E. (%) | True Positive Rate | False Positive Rate | Precision (%) | Sensitivity (%) | F-Measure | ROC Value | MCC Value | PRC Area |
Miscellaneous | Avg | 0.750 | 0.020 | 98.961 | 1.039 | 0.987 | 0.079 | 0.141 | 33.502 | 41.113 | 1.000 | 0.000 | 99.989 | 99.989 | 99.989 | 0.996 | 0.988 | 0.987 |
Max | 2.900 | 0.030 | 99.835 | 1.847 | 0.998 | 0.225 | 0.323 | 95.108 | 93.957 | 1.000 | 0.000 | 99.998 | 99.998 | 99.998 | 1.000 | 0.998 | 0.999 | |
Min | 0.010 | 0.010 | 98.153 | 0.165 | 0.978 | 0.001 | 0.022 | 0.200 | 6.315 | 1.000 | 0.000 | 99.979 | 99.979 | 99.979 | 0.989 | 0.978 | 0.968 | |
Decision Tree | Avg | 19.150 | 0.040 | 99.635 | 0.365 | 0.996 | 0.002 | 0.030 | 0.856 | 8.847 | 1.000 | 0.000 | 99.996 | 99.996 | 99.996 | 0.999 | 0.996 | 0.997 |
Max | 258.830 | 0.180 | 99.868 | 0.693 | 0.998 | 0.005 | 0.044 | 1.888 | 12.889 | 1.000 | 0.000 | 99.999 | 99.999 | 99.999 | 1.000 | 0.998 | 1.000 | |
Min | 0.030 | 0.000 | 99.307 | 0.132 | 0.992 | 0.000 | 0.019 | 0.160 | 5.648 | 1.000 | 0.000 | 99.993 | 99.993 | 99.993 | 0.997 | 0.992 | 0.990 | |
Rules | Avg | 1.490 | 0.020 | 86.528 | 13.472 | 0.835 | 0.040 | 0.097 | 17.109 | 28.123 | 0.999 | 0.001 | 99.874 | 99.874 | 99.874 | 0.931 | 0.836 | 0.857 |
Max | 8.790 | 0.050 | 99.868 | 81.300 | 0.998 | 0.236 | 0.344 | 100.000 | 100.000 | 1.000 | 0.007 | 99.999 | 99.999 | 99.999 | 1.000 | 0.998 | 1.000 | |
Min | 0.000 | 0.000 | 18.701 | 0.132 | 0.000 | 0.001 | 0.020 | 0.200 | 5.861 | 0.993 | 0.000 | 99.258 | 99.258 | 99.258 | 0.500 | 0.000 | 0.173 | |
Lazy | Avg | 24.600 | 22.380 | 94.973 | 5.027 | 0.938 | 0.022 | 0.064 | 9.513 | 18.547 | 1.000 | 0.000 | 99.953 | 99.953 | 99.953 | 0.998 | 0.938 | 0.993 |
Max | 158.190 | 74.390 | 99.802 | 31.860 | 0.998 | 0.148 | 0.254 | 62.516 | 73.749 | 1.000 | 0.003 | 99.998 | 99.998 | 99.998 | 1.000 | 0.998 | 0.999 | |
Min | 0.000 | 0.030 | 68.140 | 0.198 | 0.609 | 0.001 | 0.024 | 0.239 | 6.918 | 0.997 | 0.000 | 99.703 | 99.703 | 99.703 | 0.991 | 0.606 | 0.982 | |
Functions | Avg | 18.420 | 0.430 | 86.702 | 13.298 | 0.837 | 0.065 | 0.166 | 27.680 | 48.178 | 0.999 | 0.001 | 99.876 | 99.876 | 99.876 | 0.933 | 0.843 | 0.871 |
Max | 115.950 | 4.470 | 99.373 | 73.450 | 0.992 | 0.210 | 0.458 | 88.857 | 133.270 | 1.000 | 0.007 | 99.995 | 99.995 | 99.995 | 0.999 | 0.992 | 0.998 | |
Min | 0.030 | 0.010 | 26.550 | 0.627 | 0.097 | 0.002 | 0.041 | 0.758 | 12.018 | 0.993 | 0.000 | 99.295 | 99.295 | 99.295 | 0.548 | 0.232 | 0.241 | |
Bayes | Avg | 0.030 | 0.020 | 43.041 | 56.959 | 0.347 | 0.172 | 0.265 | 72.822 | 77.112 | 0.994 | 0.006 | 99.440 | 99.440 | 99.440 | 0.711 | 0.345 | 0.472 |
Max | 0.070 | 0.070 | 98.318 | 89.116 | 0.980 | 0.246 | 0.353 | 104.155 | 102.627 | 1.000 | 0.010 | 99.985 | 99.985 | 99.985 | 0.999 | 0.979 | 0.996 | |
Min | 0.010 | 0.001 | 10.884 | 1.682 | 0.001 | 0.005 | 0.063 | 2.004 | 18.251 | 0.990 | 0.000 | 99.024 | 99.024 | 99.024 | 0.500 | 0.000 | 0.173 | |
Performance Measures | Training Time (s) | Testing Time (s) | Model Accuracy (%) | M.C.R. (%) | Kappa Statistics | M.A.E. | R.M.S.E. | R.A.E. (%) | R.R.S.E. (%) | True Positive Rate | False Positive Rate | Precision (%) | Sensitivity (%) | F-Measure | ROC Value | MCC Value | PRC Area |
PRC | 0.69 | 0.24 | 0.75 | 0.24 | 0.75 | 0.51 | 0.87 | 0.84 | 0.69 | 0.84 | 0.73 | 0.71 | 0.76 | 0.84 | 0.58 | 0.91 | 0.94 | 0.97 | 0.97 | 0.9 | 0.83 | 0.91 | 0.43 | 0.97 | 0.98 | 0.97 | ||||
MCC | 0.63 | 0 | 0.5 | 0 | 0.54 | 0.52 | 0.9 | 0.72 | 0.57 | 0.75 | 0.53 | 0.57 | 0.65 | 0.71 | 0.56 | 0.93 | 0.94 | 0.94 | 0.95 | 0.93 | 0.53 | 0.93 | 0.28 | 0.93 | 0.93 | 0.95 | ||||
ROC | 0.89 | 0.5 | 0.89 | 0.5 | 0.89 | 0.77 | 0.95 | 0.94 | 0.87 | 0.93 | 0.88 | 0.88 | 0.91 | 0.94 | 0.83 | 0.97 | 0.98 | 0.99 | 0.99 | 0.96 | 0.93 | 0.97 | 0.78 | 0.99 | 0.99 | 0.99 | ||||
PRE | 95.8231889 | 93.5908483 | 98.6636249 | 98.307638 | 98.399922 | 98.5560253 | 99.6748494 | 99.1972477 | 98.8933377 | 99.3702418 | 98.9777229 | 99.2017755 | 99.3570459 | 99.5277488 | 99.2714257 | 99.6310669 | 99.66243 | 99.6828219 | 99.7918892 | 99.7839184 | 98.7748687 | 99.8802779 | 89.9910501 | 99.0183819 | 99.282802 | 99.6497204 | ||||
FPR | 0.04176811 | 0.06409152 | 0.01336375 | 0.01692362 | 0.01600078 | 0.01443975 | 0.00325151 | 0.00802752 | 0.01106662 | 0.00629758 | 0.01022277 | 0.00798225 | 0.00642954 | 0.00472251 | 0.00728574 | 0.00368933 | 0.0033757 | 0.00317178 | 0.00208111 | 0.00216082 | 0.01225131 | 0.00119722 | 0.1000895 | 0.00981618 | 0.00717198 | 0.0035028 | ||||
RRSE | 79.1399 | 102.586 | 93.1367 | 103.92 | 81.8842 | 95.2269 | 45.804 | 66.1501 | 75.5902 | 62.0564 | 91.8191 | 76.9766 | 72.4047 | 66.2061 | 89.427 | 36.6378 | 36.0546 | 36.0659 | 31.1672 | 38.7481 | 80.2386 | 37.5756 | 87.5368 | 39.2184 | 36.9341 | 28.0692 | ||||
RAE | 70.4239 | 105.433 | 57.8345 | 106.223 | 61.3275 | 45.4247 | 10.5094 | 47.2252 | 59.8444 | 29.678 | 56.3749 | 62.3526 | 53.7548 | 47.3792 | 86.3418 | 6.7241 | 7.1712 | 7.1279 | 10.8788 | 7.521 | 68.8212 | 7.0727 | 76.422 | 22.9807 | 19.5085 | 5.2622 | ||||
RMSE | 0.309 | 0.4 | 0.363 | 0.405 | 0.319 | 0.371 | 0.179 | 0.258 | 0.295 | 0.242 | 0.358 | 0.3 | 0.282 | 0.258 | 0.349 | 0.143 | 0.141 | 0.141 | 0.122 | 0.151 | 0.313 | 0.147 | 0.341 | 0.153 | 0.144 | 0.109 | ||||
MAE | 0.214 | 0.32 | 0.176 | 0.322 | 0.186 | 0.138 | 0.032 | 0.143 | 0.182 | 0.09 | 0.171 | 0.189 | 0.163 | 0.144 | 0.262 | 0.02 | 0.022 | 0.022 | 0.033 | 0.023 | 0.209 | 0.022 | 0.232 | 0.07 | 0.059 | 0.016 | ||||
KV | 0.61 | 0 | 0.452 | 0 | 0.502 | 0.536 | 0.895 | 0.708 | 0.571 | 0.743 | 0.501 | 0.564 | 0.649 | 0.706 | 0.543 | 0.933 | 0.934 | 0.934 | 0.944 | 0.925 | 0.534 | 0.929 | 0.316 | 0.922 | 0.927 | 0.946 | ||||
MCR | 29.176 | 81.519 | 43.613 | 81.519 | 37.188 | 34.467 | 7.9743 | 21.958 | 31.859 | 19.539 | 38.813 | 32.351 | 26.493 | 22.071 | 34.618 | 5.102 | 4.9887 | 4.9887 | 4.2706 | 5.7067 | 34.467 | 5.3666 | 50.718 | 5.9335 | 5.5178 | 4.1194 | ||||
ACC | 70.824 | 18.481 | 56.387 | 18.481 | 62.812 | 65.533 | 92.026 | 78.042 | 68.141 | 80.461 | 61.187 | 67.649 | 73.507 | 77.929 | 65.382 | 94.898 | 95.011 | 95.011 | 95.729 | 94.293 | 65.533 | 94.633 | 49.282 | 94.067 | 94.482 | 95.881 | ||||
TT | 0.001 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 1.22 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.001 | 0.01 | 0.9 | 0.56 | 0.53 | 27.26 | 67.29 | 12.27 | 0.14 | 0.001 | 0.01 | 0.01 | 0.02 | ||||
Name of Classifiers | Bayes Group | DMNB | HMM | NB | SGM | Function-based | LDA | LLNR | LSVM | LR | MLP | MLP | QDA | RBF | RBFN | SLR | SMO | Lazy Groups | IB1 | IBK | IBKLG | KSTAR | LKNN | LWL | RLKNN | Rule-based | CR | DTBL | DTNB | FURIA |
PRC | 0.96 | 0.91 | 0.91 | 0.48 | 0.69 | 0.97 | 0.93 | 0.95 | 0.24 | 0.97 | 0.97 | 0.99 | 0.94 | 0.96 | 0.99 | 0.97 | 0.89 | 0.96 | 0.98 | 0.97 | 0.97 | 0.95 | 0.97 | 0.97 | 0.75 | 0.29 | 0.44 | 0.73 | ||
MCC | 0.96 | 0.94 | 0.93 | 0.46 | 0.74 | 0.97 | 0.95 | 0.96 | 0 | 0.95 | 0.94 | 0.95 | 0.93 | 0.97 | 0.97 | 0.96 | 0.84 | 0.96 | 0.96 | 0.95 | 0.95 | 0.96 | 0.92 | 0.94 | 0.8 | 0.18 | 0.18 | 0.59 | ||
ROC | 0.99 | 0.97 | 0.97 | 0.71 | 0.86 | 0.99 | 0.97 | 0.98 | 0.5 | 0.99 | 0.99 | 1 | 0.98 | 0.99 | 1 | 0.99 | 0.97 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 | 0.9 | 0.54 | 0.65 | 0.9 | ||
PRE | 99.8279894 | 99.8307215 | 99.8410367 | 98.6747335 | 99.41443 | 99.9249049 | 99.9048517 | 99.9345042 | 98.5119678 | 98.0019589 | 98.4703883 | 99.631803 | 99.4724522 | 99.9312084 | 99.9382843 | 99.8164556 | 99.3936835 | 99.8618703 | 99.8996154 | 99.8990746 | 99.9215602 | 99.6281227 | 99.6402261 | 99.9069906 | 95.9422283 | 92.1669683 | 94.459749 | 99.2879644 | ||
FPR | 0.00172011 | 0.00169279 | 0.00158963 | 0.01325267 | 0.0058557 | 0.00075095 | 0.00095148 | 0.00065496 | 0.01488032 | 0.01998041 | 0.01529612 | 0.00368197 | 0.00527548 | 0.00068792 | 0.00061716 | 0.00183544 | 0.00606317 | 0.0013813 | 0.00100385 | 0.00100926 | 0.0007844 | 0.00371877 | 0.00359774 | 0.00093009 | 0.04057772 | 0.07833032 | 0.05540251 | 0.00712036 | ||
RRSE | 29.1536 | 36.2284 | 37.9705 | 111.128 | 74.42 | 26.0876 | 32.7698 | 27.5715 | 100 | 29.3488 | 31.0348 | 26.7965 | 35.1255 | 26.726 | 23.0061 | 27.3993 | 51.3341 | 29.6896 | 28.125 | 31.0852 | 28.9906 | 29.0771 | 37.2188 | 30.567 | 64.0822 | 140.701 | 101.664 | 96.6 | ||
RAE | 7.1175 | 6.5746 | 7.2221 | 61.8613 | 27.7429 | 5.1261 | 5.3792 | 3.8067 | 100 | 6.1856 | 8.6064 | 7.66 | 9.4388 | 4.16 | 5.3558 | 5.6998 | 30.9031 | 5.9875 | 9.7965 | 8.5333 | 6.4623 | 4.838 | 12.3021 | 6.4675 | 20.5706 | 99.1673 | 104.43 | 98.8697 | ||
RMSE | 0.114 | 0.141 | 0.148 | 0.433 | 0.29 | 0.102 | 0.128 | 0.107 | 0.39 | 0.114 | 0.121 | 0.105 | 0.137 | 0.104 | 0.09 | 0.107 | 0.2 | 0.116 | 0.11 | 0.121 | 0.113 | 0.113 | 0.145 | 0.119 | 0.25 | 0.549 | 0.396 | 0.377 | ||
MAE | 0.022 | 0.02 | 0.022 | 0.188 | 0.084 | 0.016 | 0.016 | 0.012 | 0.304 | 0.019 | 0.026 | 0.023 | 0.029 | 0.013 | 0.016 | 0.017 | 0.094 | 0.018 | 0.03 | 0.026 | 0.02 | 0.015 | 0.037 | 0.02 | 0.062 | 0.301 | 0.317 | 0.3 | ||
KV | 0.956 | 0.934 | 0.928 | 0.401 | 0.72 | 0.964 | 0.946 | 0.962 | 0 | 0.949 | 0.942 | 0.952 | 0.925 | 0.964 | 0.969 | 0.96 | 0.823 | 0.954 | 0.956 | 0.944 | 0.953 | 0.958 | 0.917 | 0.941 | 0.793 | 0.071 | 0.071 | 0.553 | ||
MCR | 3.3636 | 4.9887 | 5.48 | 46.939 | 21.051 | 2.7589 | 4.0816 | 2.8723 | 74.339 | 3.8549 | 4.4218 | 3.6281 | 5.7067 | 2.7211 | 2.381 | 3.0612 | 13.568 | 3.5147 | 3.3636 | 4.2328 | 3.5903 | 3.2124 | 6.3492 | 4.4974 | 15.609 | 75.246 | 75.246 | 35.11 | ||
ACC | 96.636 | 95.011 | 94.52 | 53.061 | 78.949 | 97.241 | 95.918 | 96.863 | 25.661 | 96.145 | 95.578 | 96.372 | 94.293 | 97.279 | 97.619 | 96.939 | 86.432 | 96.485 | 96.636 | 95.767 | 96.41 | 96.788 | 93.651 | 95.503 | 84.392 | 24.754 | 24.754 | 64.89 | ||
TT | 0.01 | 0.07 | 0.19 | 0.01 | 0.001 | 0.01 | 0.001 | 0.2 | 0.001 | 0.001 | 0.001 | 0.01 | 0.13 | 0.001 | 0.08 | 0.001 | 0.01 | 0.001 | 0.05 | 0.001 | 0.001 | 0.001 | 0.01 | 0.1 | 0.04 | 0.01 | 0.01 | 0.01 | ||
Name of Classifiers | JRIP | MODLEM | NNGE | OLM | ONER | PART | RIDOR | ROUGHS | ZEROR | Decision Trees | BFT | CDT | FPA | FT | J48 | J48C | J48G | LADT | LMT | NBT | REPT | RF | RT | SC | SF | Miscellaneous | CHIRP | FLR | HP | VFI |
PRC | 0.51 | 0.5 | 0.75 | 0.5 | 0.88 | 0.5 | 0.54 | 0.89 | 0.92 | 0.58 | 0.88 | 0.68 | 0.76 | 0.89 | 0.52 | 0.89 | 0.89 | 0.93 | 0.99 | 0.96 | 0.87 | 0.92 | 0.78 | 0.96 | 0.99 | 0.98 | ||||
MCC | 0.06 | 0 | −0.04 | 0 | 0.69 | 0 | 0.25 | 0.71 | 0.81 | 0.18 | 0.7 | 0.31 | 0.54 | 0.71 | 0.08 | 0.85 | 0.85 | 0.85 | 0.95 | 0.94 | 0.67 | 0.89 | 0.69 | 0.9 | 0.94 | 0.96 | ||||
ROC | 0.51 | 0.5 | 0.79 | 0.5 | 0.9 | 0.5 | 0.56 | 0.9 | 0.93 | 0.54 | 0.89 | 0.69 | 0.78 | 0.9 | 0.53 | 0.92 | 0.92 | 0.94 | 0.99 | 0.97 | 0.88 | 0.94 | 0.83 | 0.97 | 0.99 | 0.98 | ||||
PRE | 99.3728674 | 99.4299533 | 99.5315303 | 99.6097789 | 99.8243482 | 99.4977819 | 99.557592 | 99.8430158 | 99.9063948 | 99.5618 | 99.8516314 | 99.7034607 | 99.791891 | 99.8748053 | 99.6205372 | 99.9129747 | 99.9138788 | 99.9147643 | 99.9718208 | 99.9699616 | 99.8254369 | 99.9532906 | 99.7776012 | 99.9358449 | 99.9651549 | 99.9754771 | ||||
FPR | 0.00627133 | 0.00570047 | 0.0046847 | 0.00390221 | 0.00175652 | 0.00502218 | 0.00442408 | 0.00156984 | 0.00093605 | 0.004382 | 0.00148369 | 0.00296539 | 0.00208109 | 0.00125195 | 0.00379463 | 0.00087025 | 0.00086121 | 0.00085236 | 0.00028179 | 0.00030038 | 0.00174563 | 0.00046709 | 0.00222399 | 0.00064155 | 0.00034845 | 0.00024523 | ||||
RRSE | 99.9692 | 99.9786 | 140.281 | 101.097 | 71.0846 | 140.098 | 131.834 | 69.0002 | 60.3961 | 96.3492 | 82.1845 | 97.0951 | 80.9554 | 68.5047 | 137.865 | 55.3244 | 55.3091 | 55.3226 | 30.5601 | 34.6212 | 73.2824 | 47.6323 | 72.0015 | 41.3656 | 31.888 | 27.8625 | ||||
RAE | 99.971 | 99.983 | 98.603 | 99.675 | 50.171 | 98.163 | 86.923 | 51.026 | 34.658 | 92.162 | 33.986 | 95.649 | 64.472 | 53.276 | 95.059 | 15.308 | 15.355 | 15.313 | 6.3002 | 5.9947 | 54.614 | 11.347 | 52.167 | 18.041 | 11.966 | 4.6704 | ||||
RMSE | 0.5 | 0.5 | 0.702 | 0.506 | 0.356 | 0.701 | 0.659 | 0.345 | 0.302 | 0.482 | 0.411 | 0.486 | 0.405 | 0.343 | 0.69 | 0.277 | 0.277 | 0.277 | 0.153 | 0.173 | 0.367 | 0.238 | 0.36 | 0.207 | 0.16 | 0.139 | ||||
MAE | 0.5 | 0.5 | 0.493 | 0.499 | 0.251 | 0.491 | 0.435 | 0.255 | 0.173 | 0.461 | 0.17 | 0.478 | 0.322 | 0.266 | 0.475 | 0.077 | 0.077 | 0.077 | 0.032 | 0.03 | 0.273 | 0.057 | 0.261 | 0.09 | 0.06 | 0.023 | ||||
KV | 0.021 | 0 | −0.005 | 0 | 0.658 | 0 | 0.116 | 0.68 | 0.807 | 0.066 | 0.659 | 0.306 | 0.506 | 0.687 | 0.06 | 0.847 | 0.847 | 0.847 | 0.946 | 0.94 | 0.641 | 0.887 | 0.656 | 0.899 | 0.944 | 0.958 | ||||
MCR | 49.786 | 49.09 | 49.358 | 49.09 | 17.024 | 49.09 | 43.469 | 15.899 | 9.636 | 45.932 | 16.97 | 34.743 | 24.518 | 15.578 | 47.538 | 7.6552 | 7.6552 | 7.6552 | 2.6767 | 2.9979 | 17.827 | 5.6745 | 17.077 | 5.0321 | 2.7837 | 2.0878 | ||||
ACC | 50.214 | 50.91 | 50.642 | 50.91 | 82.976 | 50.91 | 56.531 | 84.101 | 90.364 | 54.069 | 83.03 | 65.257 | 75.482 | 84.422 | 52.463 | 92.345 | 92.345 | 92.345 | 97.323 | 97.002 | 82.173 | 94.326 | 82.923 | 94.968 | 97.216 | 97.912 | ||||
TT | 0.001 | 0.001 | 0.02 | 0.01 | 0.01 | 0.001 | 1.86 | 0.001 | 0.01 | 0.001 | 0.001 | 0.01 | 0.01 | 0.001 | 0.001 | 0.43 | 0.42 | 0.43 | 25.96 | 29.72 | 7.6 | 0.01 | 0.001 | 0.001 | 0.01 | 0.001 | ||||
Name of Classifiers | Bayes Group | DMNB | HMM | NB | SGM | Function-based | LDA | LLNR | LSVM | LR | MLP | MLP | QDA | RBF | RBFN | SLR | SMO | Lazy Groups | IB1 | IBK | IBKLG | KSTAR | LKNN | LWL | RLKNN | Rule-based | CR | DTBL | DTNB | FURIA |
PRC | 0.98 | 0.96 | 0.95 | 0.67 | 0.88 | 0.98 | 0.96 | 0.96 | 0.5 | 0.97 | 0.98 | 1 | 0.97 | 0.97 | 1 | 0.99 | 0.97 | 0.99 | 0.98 | 0.98 | 0.99 | 0.95 | 0.98 | 0.97 | 0.72 | 0.5 | 0.51 | 0.56 | ||
MCC | 0.95 | 0.94 | 0.94 | 0.5 | 0.84 | 0.96 | 0.95 | 0.94 | 0 | 0.95 | 0.94 | 0.96 | 0.96 | 0.96 | 0.97 | 0.96 | 0.91 | 0.95 | 0.9 | 0.95 | 0.96 | 0.94 | 0.95 | 0.95 | 0.57 | 0 | 0 | 0.13 | ||
ROC | 0.99 | 0.97 | 0.97 | 0.72 | 0.92 | 0.99 | 0.97 | 0.97 | 0.5 | 0.98 | 0.99 | 1 | 0.98 | 0.98 | 1 | 0.99 | 0.98 | 0.99 | 0.98 | 0.99 | 0.99 | 0.97 | 0.99 | 0.98 | 0.77 | 0.5 | 0.52 | 0.57 | ||
PRE | 99.971268 | 99.9731938 | 99.9712323 | 99.7488586 | 99.9263852 | 99.9815088 | 99.9767136 | 99.976457 | 99.6049811 | 99.9664172 | 99.9625352 | 99.9742563 | 99.9751918 | 99.9741804 | 99.987454 | 99.9799563 | 99.9542549 | 99.974761 | 99.9513088 | 99.9778768 | 99.9756092 | 99.9728172 | 99.980487 | 99.9818513 | 99.6991743 | 99.4061919 | 99.438694 | 99.6167652 | ||
FPR | 0.00028732 | 0.00026806 | 0.00028768 | 0.00251141 | 0.00073615 | 0.00018491 | 0.00023286 | 0.00023543 | 0.00395019 | 0.00033583 | 0.00037465 | 0.00025744 | 0.00024808 | 0.0002582 | 0.00012546 | 0.00020044 | 0.00045745 | 0.00025239 | 0.00048691 | 0.00022123 | 0.00024391 | 0.00027183 | 0.00019513 | 0.00018149 | 0.00300826 | 0.00593808 | 0.00561306 | 0.00383235 | ||
RRSE | 30.8651 | 33.3618 | 35.5365 | 105.702 | 57.4128 | 28.2636 | 33.3618 | 33.7169 | 100 | 28.84 | 32.3926 | 24.852 | 28.2722 | 28.8922 | 21.3836 | 26.2021 | 37.8522 | 29.0201 | 42.6491 | 31.1256 | 28.6718 | 35.5365 | 30.0486 | 29.3342 | 95.1522 | 140.098 | 99.8206 | 99.2345 | ||
RAE | 7.8292 | 5.5665 | 6.3158 | 55.879 | 16.485 | 5.6777 | 5.5665 | 5.6857 | 100 | 6.0636 | 8.7887 | 7.1535 | 4.9106 | 4.1749 | 5.6436 | 5.213 | 16.135 | 6.501 | 10.926 | 7.8099 | 6.3565 | 6.3158 | 7.0733 | 4.8823 | 45.281 | 98.163 | 99.813 | 98.97 | ||
RMSE | 0.154 | 0.167 | 0.178 | 0.529 | 0.287 | 0.141 | 0.167 | 0.169 | 0.5 | 0.144 | 0.162 | 0.124 | 0.141 | 0.145 | 0.107 | 0.131 | 0.189 | 0.145 | 0.213 | 0.156 | 0.143 | 0.178 | 0.15 | 0.147 | 0.476 | 0.701 | 0.499 | 0.496 | ||
MAE | 0.039 | 0.028 | 0.032 | 0.279 | 0.082 | 0.028 | 0.028 | 0.028 | 0.5 | 0.03 | 0.044 | 0.036 | 0.025 | 0.021 | 0.028 | 0.026 | 0.081 | 0.033 | 0.055 | 0.039 | 0.032 | 0.032 | 0.035 | 0.024 | 0.226 | 0.491 | 0.499 | 0.495 | ||
KV | 0.946 | 0.944 | 0.937 | 0.436 | 0.835 | 0.958 | 0.944 | 0.943 | 0 | 0.951 | 0.944 | 0.957 | 0.958 | 0.958 | 0.971 | 0.96 | 0.912 | 0.954 | 0.894 | 0.948 | 0.955 | 0.937 | 0.952 | 0.954 | 0.545 | 0 | 0 | 0.037 | ||
MCR | 2.6767 | 2.7837 | 3.1585 | 27.944 | 8.2441 | 2.0878 | 2.7837 | 2.8373 | 50.91 | 2.4625 | 2.7837 | 2.1413 | 2.0878 | 2.0878 | 1.4454 | 1.9807 | 4.3897 | 2.3019 | 5.2998 | 2.6231 | 2.2484 | 3.1585 | 2.409 | 2.3019 | 22.645 | 49.09 | 49.09 | 48.983 | ||
ACC | 97.323 | 97.216 | 96.842 | 72.056 | 91.756 | 97.912 | 97.216 | 97.056 | 49.09 | 97.538 | 97.216 | 97.859 | 97.912 | 97.912 | 98.555 | 98.019 | 95.61 | 97.698 | 94.7 | 97.377 | 97.752 | 96.842 | 97.591 | 97.698 | 77.356 | 50.91 | 50.91 | 51.017 | ||
TT | 0.001 | 0.01 | 0.04 | 0.001 | 0.001 | 0.001 | 0.001 | 0.16 | 0.01 | 0.001 | 0.001 | 0.001 | 0.02 | 0.001 | 0.04 | 0.001 | 0.001 | 0.001 | 0.01 | 0.001 | 0.001 | 0.001 | 0.001 | 0.01 | 0.03 | 0.001 | 0.001 | 0.001 | ||
Name of Classifiers | JRIP | MODLEM | NNGE | OLM | ONER | PART | RIDOR | ROUGHS | ZEROR | Decision Trees | BFT | CDT | FPA | FT | J48 | J48C | J48G | LADT | LMT | NBT | REPT | RF | RT | SC | SF | Miscellaneous | CHIRP | FLR | HP | VFI |
PRC | 0.55 | 0.17 | 1 | 0.17 | 0.99 | 0.79 | 0.24 | 1 | 0.7 | 1 | 1 | 0.91 | 0.98 | 1 | 0.98 | 1 | 1 | 1 | 0.99 | 1 | 0.98 | 1 | 0.35 | 1 | 1 | 1 | ||||
MCC | 0.4 | 0 | 0.98 | 0 | 0.93 | 0.84 | 0.23 | 0.99 | 0.62 | 0.99 | 0.99 | 0.75 | 0.96 | 0.99 | 0.98 | 1 | 1 | 1 | 0.97 | 1 | 0.61 | 1 | 0.19 | 1 | 1 | 1 | ||||
ROC | 0.84 | 0.5 | 1 | 0.5 | 1 | 0.91 | 0.55 | 1 | 0.85 | 1 | 1 | 0.97 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.99 | 1 | 0.78 | 1 | 1 | 1 | ||||
PRE | 99.4351798 | 99.0242634 | 99.98482 | 99.314295 | 99.9420017 | 99.8627102 | 99.2948247 | 99.9934914 | 99.7522321 | 99.9912904 | 99.9946994 | 99.8489866 | 99.9743239 | 99.9945883 | 99.9882371 | 99.9975286 | 99.9975547 | 99.9975803 | 99.9777682 | 99.9978099 | 99.7033716 | 99.9984293 | 99.2580448 | 99.9960665 | 99.9984546 | 99.9967141 | ||||
FPR | 0.0056482 | 0.00975737 | 0.0001518 | 0.00685705 | 0.00057998 | 0.0013729 | 0.00705175 | 0.0000651 | 0.00247768 | 0.0000871 | 0.000053 | 0.00151013 | 0.00025676 | 0.0000541 | 0.00011763 | 0.0000247 | 0.0000245 | 0.0000242 | 0.00022232 | 0.0000219 | 0.00296628 | 0.0000157 | 0.00741955 | 0.0000393 | 0.0000155 | 0.0000329 | ||||
RRSE | 85.7682 | 101.801 | 18.2509 | 102.627 | 34.5891 | 58.5609 | 133.27 | 12.0178 | 74.8515 | 13.9419 | 12.3098 | 65.869 | 24.7756 | 12.2351 | 87.5349 | 7.4718 | 7.4683 | 7.4708 | 19.2768 | 7.4718 | 73.7487 | 6.9175 | 89.0538 | 10.2775 | 5.8612 | 7.8759 | ||||
RAE | 81.4361 | 103.694 | 2.0038 | 104.155 | 9.4823 | 17.157 | 88.8573 | 1.593 | 46.5799 | 1.9336 | 0.7581 | 43.2699 | 6.4697 | 1.8685 | 86.5127 | 0.2793 | 0.4021 | 0.2968 | 2.5804 | 0.2793 | 62.5164 | 0.2394 | 79.2697 | 4.2854 | 0.3721 | 0.3516 | ||||
RMSE | 0.295 | 0.35 | 0.063 | 0.353 | 0.119 | 0.201 | 0.458 | 0.041 | 0.257 | 0.048 | 0.042 | 0.226 | 0.085 | 0.042 | 0.301 | 0.026 | 0.026 | 0.026 | 0.066 | 0.026 | 0.254 | 0.024 | 0.306 | 0.035 | 0.02 | 0.027 | ||||
MAE | 0.192 | 0.245 | 0.005 | 0.246 | 0.022 | 0.041 | 0.21 | 0.004 | 0.11 | 0.005 | 0.002 | 0.102 | 0.015 | 0.004 | 0.204 | 7E-04 | 9E-04 | 7E-04 | 0.006 | 7E-04 | 0.148 | 6E-04 | 0.187 | 0.01 | 9E-04 | 8E-04 | ||||
KV | 0.409 | 0 | 0.98 | 0 | 0.928 | 0.828 | 0.097 | 0.992 | 0.669 | 0.988 | 0.992 | 0.777 | 0.962 | 0.992 | 0.982 | 0.997 | 0.997 | 0.997 | 0.973 | 0.997 | 0.609 | 0.998 | 0.236 | 0.996 | 0.998 | 0.996 | ||||
MCR | 47.922 | 89.116 | 1.6821 | 89.116 | 5.9367 | 14.182 | 73.45 | 0.6926 | 26.781 | 0.9565 | 0.6266 | 18.305 | 3.1332 | 0.6926 | 1.5172 | 0.2309 | 0.2309 | 0.2309 | 2.2098 | 0.2309 | 31.86 | 0.1979 | 61.643 | 0.3298 | 0.1319 | 0.2968 | ||||
ACC | 52.078 | 10.884 | 98.318 | 10.884 | 94.063 | 85.818 | 26.55 | 99.307 | 73.219 | 99.044 | 99.373 | 81.695 | 96.867 | 99.307 | 98.483 | 99.769 | 99.769 | 99.769 | 97.79 | 99.769 | 68.14 | 99.802 | 38.358 | 99.67 | 99.868 | 99.703 | ||||
TT | 0.001 | 0.001 | 0.07 | 0.01 | 0.03 | 0.01 | 4.47 | 0.03 | 0.01 | 0.01 | 0.02 | 0.01 | 0.07 | 0.01 | 0.02 | 1.53 | 0.75 | 0.63 | 74.39 | 50.56 | 28.76 | 0.03 | 0.001 | 0.01 | 0.03 | 0.01 | ||||
Name of Classifiers | Bayes Group | DMNB | HMM | NB | SGM | Function-based | LDA | LLNR | LSVM | LR | MLP | MLP | QDA | RBF | RBFN | SLR | SMO | Lazy Groups | IB1 | IBK | IBKLG | KSTAR | LKNN | LWL | RLKNN | Rule-based | CR | DTBL | DTNB | FURIA |
PRC | 1 | 0.99 | 1 | 0.69 | 0.97 | 1 | 0.99 | 1 | 0.17 | 0.99 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.99 | 1 | 1 | 1 | 1 | 1 | 1 | 0.97 | 0.98 | 1 | ||
MCC | 1 | 1 | 1 | 0.73 | 0.98 | 1 | 1 | 1 | 0 | 0.99 | 1 | 1 | 1 | 1 | 1 | 1 | 0.99 | 0.99 | 0.99 | 1 | 1 | 1 | 1 | 0.99 | 1 | 0.98 | 0.98 | 1 | ||
ROC | 1 | 1 | 1 | 0.84 | 0.99 | 1 | 1 | 1 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.99 | 1 | 1 | ||
PRE | 99.996313 | 99.996363 | 99.9985577 | 99.7583622 | 99.9840857 | 99.9980274 | 99.9973401 | 99.9981529 | 99.3843856 | 99.9928895 | 99.9959325 | 99.9966399 | 99.9966774 | 99.9982895 | 99.9989026 | 99.998545 | 99.9954447 | 99.9933673 | 99.9938898 | 99.9973185 | 99.9977868 | 99.9967055 | 99.9979222 | 99.9954358 | 99.997991 | 99.9792353 | 99.9800186 | 99.9974836 | ||
FPR | 0.0000369 | 0.0000364 | 0.0000144 | 0.00241638 | 0.00015914 | 0.0000197 | 0.0000266 | 0.0000185 | 0.00615614 | 0.0000711 | 0.0000407 | 0.0000336 | 0.0000332 | 0.0000171 | 0.000011 | 0.0000145 | 0.0000456 | 0.0000663 | 0.0000611 | 0.0000268 | 0.0000221 | 0.0000329 | 0.0000208 | 0.0000456 | 0.0000201 | 0.00020765 | 0.00019981 | 0.0000252 | ||
RRSE | 9.3308 | 9.7828 | 6.3148 | 82.0922 | 21.1333 | 7.4737 | 8.9305 | 7.4718 | 100 | 12.8889 | 8.8872 | 7.055 | 9.075 | 6.3063 | 5.6481 | 7.4142 | 9.4212 | 12.2351 | 11.2962 | 8.8872 | 6.0871 | 7.9743 | 7.9743 | 11.5493 | 6.3148 | 20.9438 | 93.9574 | 43.2378 | ||
RAE | 0.538 | 0.4788 | 0.1995 | 33.7155 | 2.2344 | 0.2964 | 0.399 | 0.2793 | 100 | 1.4792 | 0.5601 | 0.8876 | 0.5957 | 0.2992 | 0.1596 | 1.888 | 1.5977 | 1.8685 | 0.6384 | 0.5601 | 0.5199 | 0.4642 | 0.4642 | 0.8583 | 0.1995 | 2.1945 | 95.1079 | 36.5055 | ||
RMSE | 0.032 | 0.034 | 0.022 | 0.282 | 0.073 | 0.026 | 0.031 | 0.026 | 0.344 | 0.044 | 0.031 | 0.024 | 0.031 | 0.022 | 0.019 | 0.026 | 0.032 | 0.042 | 0.039 | 0.031 | 0.021 | 0.027 | 0.027 | 0.04 | 0.022 | 0.072 | 0.323 | 0.149 | ||
MAE | 0.001 | 0.001 | 5E-04 | 0.08 | 0.005 | 7E-04 | 9E-04 | 7E-04 | 0.236 | 0.004 | 0.001 | 0.002 | 0.001 | 7E-04 | 4E-04 | 0.005 | 0.004 | 0.004 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 5E-04 | 0.005 | 0.225 | 0.086 | ||
KV | 0.996 | 0.995 | 0.998 | 0.671 | 0.978 | 0.997 | 0.996 | 0.997 | 0 | 0.992 | 0.996 | 0.996 | 0.996 | 0.998 | 0.998 | 0.998 | 0.994 | 0.992 | 0.994 | 0.996 | 0.997 | 0.997 | 0.997 | 0.993 | 0.998 | 0.978 | 0.978 | 0.996 | ||
MCR | 0.3628 | 0.3958 | 0.1649 | 27.869 | 1.847 | 0.2309 | 0.3298 | 0.2309 | 81.3 | 0.6926 | 0.3298 | 0.2968 | 0.2968 | 0.1649 | 0.1319 | 0.1649 | 0.4617 | 0.6926 | 0.5277 | 0.3298 | 0.2639 | 0.2639 | 0.2639 | 0.5937 | 0.1649 | 1.814 | 1.847 | 0.3298 | ||
ACC | 99.637 | 99.604 | 99.835 | 72.131 | 98.153 | 99.769 | 99.67 | 99.769 | 18.701 | 99.307 | 99.67 | 99.703 | 99.703 | 99.835 | 99.868 | 99.835 | 99.538 | 99.307 | 99.472 | 99.67 | 99.736 | 99.736 | 99.736 | 99.406 | 99.835 | 98.186 | 98.153 | 99.67 | ||
TT | 0.001 | 0.02 | 0.05 | 0.04 | 0.001 | 0.01 | 0.001 | 0.02 | 0.001 | 0.01 | 0.001 | 0.01 | 0.18 | 0.01 | 0.001 | 0.12 | 0.01 | 0.01 | 0.001 | 0.001 | 0.09 | 0.001 | 0.001 | 0.1 | 0.02 | 0.01 | 0.01 | 0.03 | ||
Name of Classifiers | JRIP | MODLEM | NNGE | OLM | ONER | PART | RIDOR | ROUGHS | ZEROR | Decision Trees | BFT | CDT | FPA | FT | J48 | J48C | J48G | LADT | LMT | NBT | REPT | RF | RT | SC | SF | Miscellaneous | CHIRP | FLR | HP | VFI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panigrahi, R.; Borah, S.; Bhoi, A.K.; Ijaz, M.F.; Pramanik, M.; Jhaveri, R.H.; Chowdhary, C.L. Performance Assessment of Supervised Classifiers for Designing Intrusion Detection Systems: A Comprehensive Review and Recommendations for Future Research. Mathematics 2021, 9, 690. https://doi.org/10.3390/math9060690
Panigrahi R, Borah S, Bhoi AK, Ijaz MF, Pramanik M, Jhaveri RH, Chowdhary CL. Performance Assessment of Supervised Classifiers for Designing Intrusion Detection Systems: A Comprehensive Review and Recommendations for Future Research. Mathematics. 2021; 9(6):690. https://doi.org/10.3390/math9060690
Chicago/Turabian StylePanigrahi, Ranjit, Samarjeet Borah, Akash Kumar Bhoi, Muhammad Fazal Ijaz, Moumita Pramanik, Rutvij H. Jhaveri, and Chiranji Lal Chowdhary. 2021. "Performance Assessment of Supervised Classifiers for Designing Intrusion Detection Systems: A Comprehensive Review and Recommendations for Future Research" Mathematics 9, no. 6: 690. https://doi.org/10.3390/math9060690
APA StylePanigrahi, R., Borah, S., Bhoi, A. K., Ijaz, M. F., Pramanik, M., Jhaveri, R. H., & Chowdhary, C. L. (2021). Performance Assessment of Supervised Classifiers for Designing Intrusion Detection Systems: A Comprehensive Review and Recommendations for Future Research. Mathematics, 9(6), 690. https://doi.org/10.3390/math9060690