A New Computational Method for Estimating Simultaneous Equations Models Using Entropy as a Parameter Criteria
Abstract
1. Introduction
2. Definition of the Model and Methods for Estimating a SEM Problem
2.1. Definition of the Model
2.2. Methods for Estimating an SEM Problem
2.2.1. Two Stage Least Squares (2SLS)
2.2.2. Bayesian Method of Moments ()
2.2.3. Bayesian Approach in Two Stages ()
2.2.4. Markov Chain Monte Carlo (MCMC)
3. The Proposed Estimation Method: Optimized BMOM Method ()
4. Entropy as an Information Parameter Criteria
5. Experimental Design and Results
5.1. Experimental Design
5.2. Experimental Results
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gujarati, D.; Porter, D. Econometría, 5th ed.; México, D.F., Ed.; McGraw-Hill Interamericana Editores SA: Ciudad de México, México, 2004. [Google Scholar]
 - Zellner, A. The finite sample properties of simultaneous equations’ estimates and estimators Bayesian and non-Bayesian approaches. J. Econom. 1998, 83, 185–212. [Google Scholar] [CrossRef]
 - Chao, J.C.; Phillips, P.C. Jeffreys prior analysis of the Simultaneous Equations Model in the case with n+1 endogenous variables. J. Econom. 2002, 111, 251–283. [Google Scholar] [CrossRef]
 - Geweke, J. Bayesian Reduced Rank Regression in Econometrics. J. Econ. Trics 1996, 75, 121–146. [Google Scholar] [CrossRef]
 - Kleibergen, F.; Dijk, H.V. Bayesian simultaneous equation analysis using reduced rank structures. Econom. Theory 1998, 14, 701–743. [Google Scholar] [CrossRef]
 - Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; Chapman and Hall: New York, NY, USA, 2015. [Google Scholar]
 - Siburian, M.E. Fiscal decentralization and regional income inequality: Evidence from Indonesia. Appl. Econ. Lett. 2019, 1–4. [Google Scholar] [CrossRef]
 - Steele, F.; French, R.; Bartley, M. Adjusting for Selection Bias in Longitudinal Analysis Using Simultaneous Equations Modeling. The Relationship Between Employment Transitions and Mental Health. Epidemiology 2013, 24, 703–711. [Google Scholar] [CrossRef]
 - Zhao, H.; Lin, B. Impact of foreign trade on energy efficiency in China’s textile industry. J. Clean. Prod. 2019, 245, 118878. [Google Scholar] [CrossRef]
 - Adewuyi, A.O.; Awodumi, O.B. Biomass energy consumption, economic growth and carbon emi-ssions: Fresh evidence from West Africa using a simultaneous equation model. Energy 2017, 119, 453–471. [Google Scholar] [CrossRef]
 - King, T. Using simultaneous equation modelling for defining complex phenotypes. BMC Genet. 2003, 4, S10. [Google Scholar] [CrossRef] [PubMed]
 - Pitfield, D.; Caves, R.; Quddus, M. Airline strategies for aircraft size and airline frequency with changing demand and competition: A simultaneous-equations approach for traffic on the north Atlantic. J. Air Transp. Manag. 2009, 16, 151–158. [Google Scholar] [CrossRef]
 - Olmeda, N.G.; Martinez, I.B. Application of simultaneous equation models to temporary disability prescriptions in primary healthcare centres. Int. J. Comput. Math. 2014, 91, 252–260. [Google Scholar] [CrossRef]
 - Strathe, A.; Jørgensen, H.; Kebreab, E.; Danfær, A. Bayesian simultaneous equation models for the analysis of energy intake and partitioning in growing pigs. J. Agric. Sci. 2012, 150, 764–774. [Google Scholar] [CrossRef]
 - Zhou, W.; Duan, W. An empirical study of how third-party websites influence the feedback mechanism between online Word-of-Mouth and retail sales. Decis. Support Syst. 2015, 76, 14–23. [Google Scholar] [CrossRef]
 - Yang, S.; Narayan, V.; Assael, H. Estimating the Interdependence of Television Program Viewership Between Spouses: A Bayesian Simultaneous Equation Model. Mark. Sci. 2006, 25, 336–349. [Google Scholar] [CrossRef]
 - Park, H.; Manchanda, P. When Harry Bet with Sally: An Empirical Analysis of Multiple Peer Effects in Casino Gambling Behavior. Mark. Sci. 2015, 2, 179–194. [Google Scholar] [CrossRef]
 - Chen, C.; Chang, K.; Lin, L.; Lee, J. Health risk perception and betel chewing behavior. The evidence from Taiwan. Addict. Behav. 2013, 38, 2714–2717. [Google Scholar] [CrossRef]
 - Cohen, D.P.; Benadjaoud, M.A.; Lestaevel, P.; Lebsir, D.; Benderitter, M.; Souidi, M. Effects of repetitive Iodine Thyroid Blocking on the Development of the Foetal Brain and Thyroid in rats: A Systems Biology approach. bioRxiv 2019. [Google Scholar] [CrossRef]
 - Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle; Springer: New York, NY, USA, 1998. [Google Scholar]
 - Keerativibool, W. New Criteria for Selection in Simultaneous Equations Model. Thail. Stat. 2012, 10, 163–181. [Google Scholar]
 - Hurvich, C.; Tsai, C. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–397. [Google Scholar] [CrossRef]
 - Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
 - Findley, D.F. Counterexamples to parsimony and BIC. Ann. Inst. Stat. Math. 1991, 43, 505–514. [Google Scholar] [CrossRef]
 - Hannan, E.J.; Quinn, B.G. The Determination of the Order of an Autoregression. J. R. Stat. Soc. Ser. B (Methodol.) 1979, 41, 190–195. [Google Scholar] [CrossRef]
 - Keerativibool, W.; Jitthavech, J. Model Selection Criterion Based on Kullback-Leibler’s Symmetric Divergence for Simultaneous Equations Model. Chiang Mai J. Sci. 2015, 42, 761–773. [Google Scholar]
 - Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1991. [Google Scholar]
 - Zhou, R.; Cai, R.; Tong, G. Applications of Entropy in Finance: A Review. Entropy 2013, 15, 4909–4931. [Google Scholar] [CrossRef]
 - Cui, H.; Sivakumar, B.; Singh, V. Entropy Applications in Environmental and Water Engineering. Entropy 2019, 20, 598. [Google Scholar] [CrossRef] [PubMed]
 - Purvis, B.; Mao, Y.; Robinson, D. Entropy and its Application to Urban Systems. Entropy 2019, 21, 56. [Google Scholar] [CrossRef]
 - Oruç, Ö.E.; Kuruoglu, E.; Gündüz, A. Entropy Applications for Customer Satisfaction Survey in Information Theory. Front. Sci. 2011, 1, 1–4. [Google Scholar] [CrossRef]
 - Amigó, J.M.; Balogh, S.G.; Hernández, S. A Brief Review of Generalized Entropies. Entropy 2018, 20, 813. [Google Scholar] [CrossRef]
 - Qayyum, Z.; Hasan, S.S. K-Class estimators-a Review. Int. J. Math. Trends Technol. 2017, 50, 104–107. [Google Scholar] [CrossRef]
 - Theil, H. Repeated Least Squares Applied to Complete Equation Systems; Central Planning Bureau: The Hague, The Netherlands, 1953.
 - Basmann, R.L. A Generalized Classical Method of Linear Estimation of Coefficients in a Structural Equation. Econometrica 1957, 25, 77–83. [Google Scholar] [CrossRef]
 - Clausius, R. The Mechanical Theory of Heat; Macmillan: New York, NY, USA, 1879. [Google Scholar]
 - Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
 - Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
 - Lombardi, O.; Holik, F.; Vanni, L. What is Shannon information? Synthese 2016, 193, 1983–2012. [Google Scholar] [CrossRef]
 
| Loss Function | BMOM Approach | |
|---|---|---|
| Goodness of fit | , | |
| Precision of estimation | ||
| m | k | n | 2SLS | BMOM | MCMC | ||||
|---|---|---|---|---|---|---|---|---|---|
| Goodness of Fit | Precision of Estimation | ||||||||
| 10 | 20 | 100 | 27.670  | 40.914  7.538  | 40.966  7.546  | 20.647 8.826  | 33.673  12.084  | 71.410  10.491  | |
| 10 | 40 | 100 | 40.927  9.104  | 58.635  8.039  | 58.932  8.100  | 26.769 8.209  | 56.340  13.721  | 91.076  4.918  | |
| 20 | 60 | 100 | 115.852  8.537  | 141.029  6.294  | 140.906  6.250  | 94.999 12.498  | 146.640  5.904  | 163.771  6.092  | |
| 10 | 20 | 400 | 16.563  11.257  | 27.508  6.955  | 27.534  6.974  | 10.619 5.868  | 22.233  17.026  | 70.449  7.899  | |
| 10 | 40 | 400 | 15.199  4.366  | 30.538  6.467  | 30.494  6.446  | 7.923 2.576  | 26.009  22.856  | 90.357  5.568  | |
| 10 | 40 | 1000 | 7.394  2.830  | 17.218  5.450  | 17.229  5.458  | 5.130 1.944  | 9.233  7.540  | 95.210  10.424  | |
| 10 | 20 | 100 | 1361.764  781.683  | 1895.361  801.349  | 1896.600  800.971  | 1156.465 792.277  | 1993.402  831.727  | 4598.074  395.783  | |
| 10 | 40 | 100 | 1915.270  651.931  | 2345.388  636.213  | 2351.286  635.582  | 1718.000 626.334  | 2531.052  715.689  | 4547.361  286.781  | |
| 20 | 60 | 100 | 5941.844  779.559  | 6458.904  762.773  | 6456.303  763.063  | 5692.839 793.354  | 6732.681  777.638  | 10,172.018  206.247  | |
| 10 | 20 | 400 | 4438.187  3271.180  | 7319.586  3449.337  | 7323.685  3450.560  | 3409.573 3232.656  | 7517.898  5184.224  | 22875.120  1641.293  | |
| 10 | 40 | 400 | 4645.919  2358.815  | 6989.900  2744.681  | 6983.853  2744.491  | 3877.930 2299.173  | 7382.701  4943.642  | 22,057.334  917.641  | |
| 10 | 40 | 1000 | 6824.562  8001.673  | 11,738.582  8294.696  | 11,742.499  8294.949  | 5913.439 8123.421  | 9046.596  8850.159  | 63,247.410  2586.679  | |
| 10 | 20 | 100 | 2168.030  854.334  | 1784.122  808.851  | 1783.602 808.150  | 2419.415  893.327  | 2391.887  785.620  | 4413.688  421.952  | |
| 10 | 40 | 100 | 2009.636  639.153  | 1850.753  626.141  | 1850.716 626.059  | 2372.355  692.930  | 2254.874  728.737  | 4348.852  256.390  | |
| 20 | 60 | 100 | 3866.102  1051.585  | 3647.221  1056.690  | 3645.439 1056.018  | 4543.780  1054.504  | 4119.416  1128.524  | 9856.712  241.454  | |
| 10 | 20 | 400 | 15,027.648  3347.331  | 13,448.372  3161.253  | 13,446.459 3161.039  | 15,524.231  3459.419  | 15626.142  3279.198  | 22,160.759  1516.667  | |
| 10 | 40 | 400 | 12,849.587  2699.761  | 11,990.079 2509.827  | 11,991.659  2509.734  | 13,479.303  2744.344  | 13,606.665  2961.619  | 21,421.728  858.468  | |
| 10 | 40 | 1000 | 37,879.770  9621.598  | 36,438.251  9459.390  | 36,437.331 9459.167  | 38,479.010  9605.284  | 38,035.942  9483.024  | 61,720.600  2138.345  | |
| 10 | 20 | 100 | 4.074  0.013  | 4.081  0.012  | 4.081  0.012  | 4.074 0.013  | 4.084  0.018  | 4.096  0.016  | |
| 10 | 40 | 100 | 4.076  0.012  | 4.080  0.010  | 4.080  0.010  | 4.075 0.014  | 4.084  0.011  | 4.087  0.014  | |
| 20 | 60 | 100 | 4.086 0.008  | 4.087  0.009  | 4.087  0.009  | 4.086 0.009  | 4.086 0.009  | 4.088  0.009  | |
| 10 | 20 | 400 | 5.579 0.005  | 5.579 0.005  | 5.579  0.005  | 5.579 0.005  | 5.587  0.021  | 5.609  0.008  | |
| 10 | 40 | 400 | 5.590 0.005  | 5.590 0.005  | 5.590 0.005  | 5.590 0.005  | 5.593  0.014  | 5.602  0.007  | |
| 10 | 40 | 1000 | 6.530  0.003  | 6.531  0.003  | 6.531  0.003  | 6.530 0.004  | 6.532  0.013  | 6.568  0.004  | |
| Time (s) | 10 | 20 | 100 | 0.073  0.145  | 0.732  0.246  | 0.732  0.246  | 258.227  98.562  | 0.056 0.017  | 294.453  17.949  | 
| 10 | 40 | 100 | 0.143  0.047  | 1.022  0.395  | 1.022  0.395  | 274.088  345.929  | 0.140 0.050  | 499.554  68.116  | |
| 20 | 60 | 100 | 0.314 0.047  | 2.495  0.395  | 2.495  0.395  | 748.504  345.929  | 0.407  0.145  | 1435.791  0.145  | |
| 10 | 20 | 400 | 0.125  0.031  | 4.265  0.864  | 4.265  0.864  | 2586.186  1005.068  | 0.109 0.030  | 328.571  18.174  | |
| 10 | 40 | 400 | 0.235  0.037  | 4.533  0.765  | 4.533  0.765  | 2281.255  804.186  | 0.214 0.032  | 507.791  38.694  | |
| 10 | 40 | 1000 | 0.426  0.066  | 21.385  1.595  | 21.385  1.595  | 14,534.080  21,689.539  | 0.376 0.107  | 524.904  26.564  | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.  | 
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Sánchez, B.; González, M.; Perea, C.; López-Espín, J.J. A New Computational Method for Estimating Simultaneous Equations Models Using Entropy as a Parameter Criteria. Mathematics 2021, 9, 700. https://doi.org/10.3390/math9070700
Pérez-Sánchez B, González M, Perea C, López-Espín JJ. A New Computational Method for Estimating Simultaneous Equations Models Using Entropy as a Parameter Criteria. Mathematics. 2021; 9(7):700. https://doi.org/10.3390/math9070700
Chicago/Turabian StylePérez-Sánchez, Belén, Martín González, Carmen Perea, and Jose J. López-Espín. 2021. "A New Computational Method for Estimating Simultaneous Equations Models Using Entropy as a Parameter Criteria" Mathematics 9, no. 7: 700. https://doi.org/10.3390/math9070700
APA StylePérez-Sánchez, B., González, M., Perea, C., & López-Espín, J. J. (2021). A New Computational Method for Estimating Simultaneous Equations Models Using Entropy as a Parameter Criteria. Mathematics, 9(7), 700. https://doi.org/10.3390/math9070700
        
                                                
