Hierarchical Fractional Advection-Dispersion Equation (FADE) to Quantify Anomalous Transport in River Corridor over a Broad Spectrum of Scales: Theory and Applications
Abstract
:1. Introduction
2. Hierarchical Method Using Multi-Level Fractional-Derivative Models
2.1. Multi-Scale Modeling, Anomalous Transport, and Classical Models
2.2. Development of FADEs for Multi-Scaling Transport in the River Corridor
2.2.1. Geomorphologic Unit Scale: Fixed-Index FADE for Stable Anomalous Dynamics
2.2.2. Reach Scale: Variable-Index FADE for Evolution of Anomalous Transport in a Non-Stationary System
2.2.3. Watershed Scale: Distributed-Order FADE for Combing Anomalous Transport in Sub-Basins
3. Applications
3.1. Application 1: Bedload Transport along Riverbed
3.2. Application 2: Heavy Metal Moving in a Stream Varying from Geomorphologic Unit Scale to Watershed Scale
4. Discussion
4.1. FADE Applicability in Capturing Anoamlous Scaling in Rivers
4.2. Fractional Index within a Single Scale: When Will it Reach Stable?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puckett, M.H.; Zhang, Y.; Lu, B.Q.; Lu, Y.H.; Sun, H.G.; Zheng, C.M.; Wei, W. Application of fractional differential equation to interpret dynamics of dissolved heavy metal uptake in streams at a wide range of scale. Eur. Phys. J. Plus 2019, 134, 377. [Google Scholar] [CrossRef]
- Boano, F.; Harvey, J.W.; Marion, A.; Packman, A.I.; Revelli, R.; Ridolfi, L.; Wörman, A. Hyporheic flow and transport processes: Mechanisms. models, and biogeochemical implications. Rev. Geophys. 2014, 52, 603–679. [Google Scholar] [CrossRef]
- Winter, T.C. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 1999, 7, 28–45. [Google Scholar] [CrossRef]
- Fleckenstein, J.H.; Krause, S.; Hannah, D.M.; Boano, F. Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics. Adv. Water Resour. 2010, 33, 1291–1295. [Google Scholar] [CrossRef]
- Brunner, P.; Therrien, R.; Renard, P.; Simmons, C.T.; Franssen, H.J.H. Advances in understanding river-groundwater interactions. Rev. Geophys. 2017, 55. [Google Scholar] [CrossRef]
- Cirpka, O.A.; Valocchi, A.J. Debates-Stochastic subsurface hydrology from theory to practice: Does stochastic subsurface hydrology help solving practical problems of contaminant hydrogeology? Water Resour. Res. 2016, 52, 9218–9227. [Google Scholar] [CrossRef]
- Fiori, A.; Cvetkovic, V.; Dagan, G.; Attinger, S.; Bellin, A.; Dietrich, P. Debates-Stochastic subsurface hydrology from theory to practice: The relevance of stochastic subsurface hydrology to practical problems of contaminant transport and remediation. What is characterization and stochastic theory good for? Water Resour. Res. 2016, 52, 9228–9234. [Google Scholar] [CrossRef] [Green Version]
- Fogg, G.E.; Zhang, Y. Debates—Stochastic subsurface hydrology from theory to practice: A geologic perspective. Water Resour. Res. 2016, 52, 9235–9245. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, V.X.; Fernandez, G.D. Debates –Stochastic subsurface hydrology from theory to practice: Why stochastic modeling has not yet permeated into practitioners? Water Resour. Res. 2016, 52, 9246–9258. [Google Scholar] [CrossRef] [Green Version]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Zhang, Y.; Meerschaert, M.M.; Baeumer, B.; LaBolle, E.M. Modeling mixed retention and early arrivals in multidimensional heterogeneous media using an explicit Lagrangian scheme. Water Resour. Res. 2015, 51, 6311–6337. [Google Scholar] [CrossRef] [Green Version]
- Baeumer, B.; Kovács, M.; Meerschaert, M.M.; Sankaranarayanan, H. Boundary conditions for fractional diffusion. J. Comput. Appl. Math. 2018, 336, 408–424. [Google Scholar] [CrossRef] [Green Version]
- Baeumer, B.; Kovács, M.; Sankaranarayanan, H. Fractional partial differential equations with boundary conditions. J. Differ. Equ. 2018, 264, 1377–1410. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, H.G.; Zheng, C.M. Lagrangian solver for vector fractional diffusion in bounded anisotropic aquifers: Development and application. Fract. Calc. Appl. Anal. 2019, 22, 1607–1640. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, D.B.; Yin, M.S.; Sun, H.G.; Wei, W.; Li, S.Y.; Zheng, C.M. Nonlocal transport models for capturing solute transport in one-dimensional sand columns: Model review, applicability, limitations and improvement. Hydrol. Process. 2020, 34, 5104–5122. [Google Scholar] [CrossRef]
- Zhang, Y.; Benson, D.A.; Reeves, D.M. Time and space nonlocalities underlying fractional derivative models: Distinction and literature review of applications. Adv. Water Resour. 2009, 32, 561–581. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, H.G.; Stowell, H.H.; Zayernouri, M.; Hansen, S.E. A review of applications of fractional calculus in Earth system dynamics. Chaos Soliton. Fract. 2017, 102, 29–46. [Google Scholar] [CrossRef]
- Benson, D.A. The Fractional Advection-Dispersion Equation: Development and Application. Ph.D. Thesis, University of Nevada, Reno, NV, USA, 1998. [Google Scholar]
- Horstemeyer, M.F. Multiscale Modeling: A Review. In Practical Aspects of Computational Chemistry; Leszczynski, J., Shukla, M., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 87–135. [Google Scholar]
- Andersson, M.; Yuan, J.; Sundén, B. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Appl. Energ. 2010, 87, 1461–1476. [Google Scholar] [CrossRef] [Green Version]
- Frayret, C.; Villesuzanne, A.; Pouchard, M.; Matar, S. Density functional theory calculations on microscopic aspects of oxygen diffusion in ceria-based materials. Int. J. Quantum Chem. 2005, 101, 826–839. [Google Scholar] [CrossRef]
- Asproulis, N.; Kalweit, M.; Drikakis, D. Hybrid molecular-continuum methods for micro- and nanoscale liquid flows. In 2nd Micro and Nano Flows Conference; West: London, UK, 2009. [Google Scholar]
- Karttunen, M. Multiscale modelling: Powerful tool or too many promises? In Proceedings of the 2017 SIAM Conference on Computational Science and Engineering, Atlanta, Georgia, 27 February–3 March 2017. [Google Scholar]
- Meerschaert, M.M.; Scheffler, H.P. Limit Theorems for Sums of Independent Random Vectors; John Wiley: New York, NY, USA, 2001. [Google Scholar]
- Visscher, L.; Bolhuis, P.; Bickelhaupt, F.M. Multiscale modelling. Phys. Chem. Chem. Phys. 2011, 13, 10399–10400. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Wood, E.F. Multiscale modeling of spatially variable water and energy balance processes. Water Resour. Res. 1994, 30, 3061–3078. [Google Scholar] [CrossRef] [Green Version]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Raymond, P.A.; Saiers, J.E.; Sobczak, W.V. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: Pulse-shunt concept. Ecology 2016, 97, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.H.; Brooks, N.H. Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resour. Res. 1997, 33, 123–136. [Google Scholar] [CrossRef]
- Elliott, A.H.; Brooks, N.H. Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments. Water Resour. Res. 1997, 33, 137–151. [Google Scholar] [CrossRef]
- Bencala, K.E.; Walters, R. Simulation of solute transport in a mountain pool-and-riffle stream with a kinetic mass transfer model for sorption. Water Resour. Res. 1983, 19, 718–724. [Google Scholar] [CrossRef]
- Bencala, K.E.; Gooseff, M.N.; Kimball, B.A. Rethinking hyporheic flow and transient storage to advance understanding of streamcatchment connections. Water Resour. Res. 2011, 47, WH00H03. [Google Scholar] [CrossRef]
- Runkel, R.L.; Chapra, S.C. An efficient numerical solution of the transient storage equations for solute transport in small streams. Water Resour. Res. 1993, 29, 211–215. [Google Scholar] [CrossRef]
- Runkel, R.L. One-Dimensional Transport with Equilibrium Chemistry (OTEQ)—A Reactive Transport Model for Streams and Rivers. In Techniques and Methods Book 6, Chap. B6; United States Geological Survey: Reston, Virginia, 2010. [Google Scholar]
- Allison, J.D.; Brown, D.S.; Novo-Gradac, K.J. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 User’s Manual; United States Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 1991.
- Runkel, R.L.; Kimball, B.A.; McKnight, D.M.; Bencala, K.E. Reactive solute transport in streams: A surface complexation approach for trace metal sorption. Water Resour. Res. 1999, 35, 3829–3840. [Google Scholar] [CrossRef]
- Webster, J.R.; Patten, B.C. Effects of watershed perturbation on stream potassium and calcium dynamics. Ecol. Monogr. 1979, 49, 51–72. [Google Scholar] [CrossRef] [Green Version]
- Harms, T.K.; Cook, C.L.; Wlostowski, A.N.; Gooseff, M.N.; Godsey, S.E. Spiraling down hillslopes: Nutrient uptake from water tracks in a warming arctic. Ecosystems 2019, 22, 1546–1560. [Google Scholar] [CrossRef]
- Cardenas, M.B. Surface water-groundwater interface geomorphology leads to scaling of residence times. Geophys. Res. Lett. 2008, 35, L08402. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Zhang, Y.; Baeumer, B. Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef]
- Cvetkovic, V. The tempered one-sided stable density: A universal model for hydrological transport? Environ. Res. Lett. 2011, 6, 034008. [Google Scholar] [CrossRef]
- Berkowitz, B.; Cortis, A.; Dentz, M.; Scher, H. Modeling non-Fickian transport on geological formations as a continuous time random walk. Rev. Geophys. 2006, 44, RG2003. [Google Scholar] [CrossRef] [Green Version]
- Baeumer, B.; Haase, M.; Kovacs, M. Unbounded functional calculus for bounded group with applications. J. Evol. Equ. 2009, 9, 171–195. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.G.; Chang, A.L.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Yin, M.S.; Zhang, Y.; Ma, R.; Tick, G.; Bianchi, M.; Zheng, C.M.; Wei, W.; Wei, S.; Liu, X.T. Super-diffusion affected by hydrofacies mean length and source geometry in alluvial settings. J. Hydrol. 2020, 582, 124515. [Google Scholar] [CrossRef]
- Martin, R.L.; Jerolmack, D.J.; Schumer, R. The physical basis for anomalous diffusion in bed load transport. J. Geophys. Res. 2012, 117, F01018. [Google Scholar] [CrossRef] [Green Version]
- Sayre, W.; Hubbell, D. Transport and Dispersion of Labeled Bed Material; United States Geological Survey Professional Paper 1965; US Government Printing Office: Washington, DC, USA, 1965; Volume 433-C, 48p.
- Fuller, C.C.; Harvey, J.W. Reactive update of trace metals in the hyporheic zone of a mining-contaminated stream, Pinal Creek, Arizona. Environ. Sci. Technol. 2000, 34, 1150–1155. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, Y.; Green, C.T.; Fogg, G.E. Time-fractional flow equations (t-FFEs) to upscale transient groundwater flow characterized by temporally non-Darcian flow due to medium heterogeneity. 2021. in review. [Google Scholar]
Properties | Geomorphologic Unit Scale | Reach Scale | Watershed Scale |
---|---|---|---|
Hydrologic/biogeochemical factors on pollutant dynamics | Geomorphology; Turbulence; Local-scale mass exchange between channel and riverbed due to hydrologic & biogeochemical uptake | Variation in hydrologic dynamics & system properties; Broad biogeochemical functions | Climate change (including extreme rainfall events); Sub-watershed properties; Long-term land use/land cover change |
Anomalous transport properties | Super-diffusion due to hydro-function (turbulence); Sub-diffusion due to physical/biogeochemical functions | Non-stationary evolution of residence times and/or super-diffusion; Heavy-tailed residence times and strong uptake/retention | Mixing of anomalous diffusion from sub-basins; Long-term competition between fast jumps (due to flooding) and retention |
Standard models for pollutant transport at each scale | Physically based models, such as the Advective Pumping Model (APM) | Phenomenological models: Advection-dispersion equation; Time nonlocal or spatiotemporally nonlocal models | River continuum model (i.e., for DOM) [27]; Integrate reach-scale model; Fractal topography model; Pulse-Shunt model [28] |
Standard models’ limitation in modeling pollutant dynamics | They cannot well capture local-scale super-diffusion due to turbulence | They cannot capture non-stationary, scale dependent anomalous dispersion at the scale of 101~103 m | They cannot capture mixed non-stationary anomalous transport in complex river networks |
Travel Distance (m) | V (m/d) | D (m2/d) | γ [–] | RMSE |
0.02 | 1.035 | 0.005 | 0.83 | 0.0212 |
0.04 | 1.035 | 0.005 | 0.83 | 0.0234 |
0.08 | 1.035 | 0.005 | 0.83 | 0.0215 |
0.10 | 1.035 | 0.005 | 0.83 | 0.0243 |
0.40 | 1.035 | 0.050 | 0.84 | 0.0251 |
0.80 | 1.035 | 0.120 | 0.84 | 0.0231 |
1.00 | 1.035 | 0.120 | 0.84 | 0.0221 |
4.00 | 1.035 | 0.250 | 0.91 | 0.0243 |
8.00 | 1.035 | 0.250 | 0.93 | 0.0254 |
10.00 | 1.035 | 0.250 | 0.93 | 0.0206 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhou, D.; Wei, W.; Frame, J.M.; Sun, H.; Sun, A.Y.; Chen, X. Hierarchical Fractional Advection-Dispersion Equation (FADE) to Quantify Anomalous Transport in River Corridor over a Broad Spectrum of Scales: Theory and Applications. Mathematics 2021, 9, 790. https://doi.org/10.3390/math9070790
Zhang Y, Zhou D, Wei W, Frame JM, Sun H, Sun AY, Chen X. Hierarchical Fractional Advection-Dispersion Equation (FADE) to Quantify Anomalous Transport in River Corridor over a Broad Spectrum of Scales: Theory and Applications. Mathematics. 2021; 9(7):790. https://doi.org/10.3390/math9070790
Chicago/Turabian StyleZhang, Yong, Dongbao Zhou, Wei Wei, Jonathan M. Frame, Hongguang Sun, Alexander Y. Sun, and Xingyuan Chen. 2021. "Hierarchical Fractional Advection-Dispersion Equation (FADE) to Quantify Anomalous Transport in River Corridor over a Broad Spectrum of Scales: Theory and Applications" Mathematics 9, no. 7: 790. https://doi.org/10.3390/math9070790
APA StyleZhang, Y., Zhou, D., Wei, W., Frame, J. M., Sun, H., Sun, A. Y., & Chen, X. (2021). Hierarchical Fractional Advection-Dispersion Equation (FADE) to Quantify Anomalous Transport in River Corridor over a Broad Spectrum of Scales: Theory and Applications. Mathematics, 9(7), 790. https://doi.org/10.3390/math9070790