A Liouville’s Formula for Systems with Reflection
Abstract
:1. Preliminaries
2. Liouville’s Formula
3. Cases
4. Application: Square Roots of the Harmonic Oscillator
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabada, A.; Infante, G.; Tojo, F.A.F. Nontrivial solutions of Hammerstein integral equations with reflections. Bound. Value Probl. 2013, 2013, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Gupta, C.P. Existence and uniqueness theorems for boundary value problems involving reflection of the argument. Nonlinear Anal. 1987, 11, 1075–1083. [Google Scholar] [CrossRef]
- O’Regan, D. Existence results for differential equations with reflection of the argument. J. Aust. Math. Soc. 1994, 57, 237–260. [Google Scholar] [CrossRef] [Green Version]
- Aftabizadeh, A.R.; Huang, Y.K.; Wiener, J. Bounded solutions for differential equations with reflection of the argument. J. Math. Anal. Appl. 1988, 135, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Cabada, A.; Fernández Tojo, F.A. Periodic solutions for some phi-Laplacian and reflection equations. Bound. Value Probl. 2016, 56, 2016. [Google Scholar] [CrossRef] [Green Version]
- Sadybekov, M.; Sarsenbi, A. Criterion for the basis property of the eigenfunction system of a multiple differentiation operator with an involution. Differ. Equ. 2012, 48, 1112–1118. [Google Scholar] [CrossRef]
- Kopzhassarova, A.; Sarsenbi, A. Basis properties of eigenfunctions of second-order differential operators with involution. Abstr. Appl. Anal. 2012, 2012, 576843. [Google Scholar] [CrossRef]
- Cabada, A.; Tojo, F.A.F. Existence results for a linear equation with reflection, non-constant coefficient and periodic boundary conditions. J. Math. Anal. Appl. 2014, 412, 529–546. [Google Scholar] [CrossRef]
- Cabada, A.; Tojo, F.A.F. Solutions and Green’s function of the first order linear equation with reflection and initial conditions. Bound. Value Probl. 2014, 2014, 99. [Google Scholar] [CrossRef] [Green Version]
- Cabada, A.; Tojo, F.A.F. Comparison results for first order linear operators with reflection and periodic boundary value conditions. Nonlinear Anal. 2013, 78, 32–46. [Google Scholar] [CrossRef] [Green Version]
- Cabada, A.; Tojo, F.A.F. Solutions of the first order linear equation with reflection and general linear conditions. Glob. J. Math. Sci. 2013, 2, 1–8. [Google Scholar]
- Cabada, A.; Tojo, F.A.F. Green’s functions for reducible functional differential equations. Bull. Malays. Math. Sci. Soc. 2017, 40, 1071–1092. [Google Scholar] [CrossRef] [Green Version]
- Cabada, A.; Tojo, F.A.F. On linear differential equations and systems with reflection. Appl. Math. Comput. 2017, 305, 84–102. [Google Scholar] [CrossRef] [Green Version]
- Codesido, S.; Tojo, F.A.F. Differential systems with reflection and matrix invariants. Math. Methods Appl. Sci. 2018, 41, 7399–7406. [Google Scholar] [CrossRef]
- Tojo, F.A.F. Green’s functions of recurrence relations with reflection. J. Math. Anal. Appl. 2019, 477, 1463–1485. [Google Scholar] [CrossRef] [Green Version]
- Tojo, F.A.F.; Torres, P.J. Green’s Functions of Partial Differential Equations with Involutions. J. Appl. Anal. Comput. 2017, 7, 1127–1138. [Google Scholar]
- Ren, W. Synchronization of coupled harmonic oscillators with local interaction. Automatica 2008, 44, 3195–3200. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The quantum theory of the electron. Proc. R. Soc. Lond. A 1928, 117, 610–624. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Codesido, S.; F. Tojo, F.A. A Liouville’s Formula for Systems with Reflection. Mathematics 2021, 9, 866. https://doi.org/10.3390/math9080866
Codesido S, F. Tojo FA. A Liouville’s Formula for Systems with Reflection. Mathematics. 2021; 9(8):866. https://doi.org/10.3390/math9080866
Chicago/Turabian StyleCodesido, Santiago, and F. Adrián F. Tojo. 2021. "A Liouville’s Formula for Systems with Reflection" Mathematics 9, no. 8: 866. https://doi.org/10.3390/math9080866
APA StyleCodesido, S., & F. Tojo, F. A. (2021). A Liouville’s Formula for Systems with Reflection. Mathematics, 9(8), 866. https://doi.org/10.3390/math9080866