Stochastic Process-Based Inversion of Electromagnetic Data for Hydrocarbon Resistivity Estimation in Seabed Logging
Abstract
:1. Introduction
2. Available Methods Used in Processing CSEM Data
3. Background of the Proposed Methodology
3.1. Stochastic Process–Gaussian Process
3.2. Gradient Descent
4. Methodology
4.1. Developing Synthetic Seabed Logging Model
4.2. Preprocessing Computer Simulation Outputs
4.3. Developing Two-Dimensional Gaussian Process Models
4.4. Electrical Resistivity Estimation
4.5. Validation of Estimate and Gaussian Process Model
5. Algorithms of the Proposed Methodology
Algorithm 1 Forward Gaussian Process (GP) Modeling |
Input: Training input: Source-receiver separation distances (i.e., offsets) and hydrocarbon resistivities Training output: Magnitude of electric field (E-field) |
Steps: |
1. Optimize the hyperparameters 2. Define the testing inputs (i.e., unobserved hydrocarbon resistivities) 3. Compute the covariance matrices 4. Evaluate the GP predictive distribution (i.e., predictive mean and variance) |
Output: Two-dimensional (2-D) GP model which consists of various electromagnetic (EM) profiles (i.e., magnitude of electric field) at the unobserved hydrocarbon resistivities |
Algorithm 2 Stochastic process-based Inversion |
Input: Two-dimensional (2-D) GP models at various hydrocarbon resistivities (observed and unobserved) Observational dataset with “unknown’ resistivity of isotropic hydrocarbon |
Steps: |
|
Output: The optimal electrical resistivity of hydrocarbon of the observational dataset |
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellingsrud, S.; Eidesmo, T.; Sinha, M.C.; MacGregor, L.M.; Constable, S.C. Remote sensing of hydrocarbon layers by sea bed logging (SBL): Results from a cruise offshore Angola. Lead. Edge 2002, 20, 972–982. [Google Scholar] [CrossRef]
- Eidesmo, T.; Ellingsrud, S.; MacGregor, L.M.; Constable, S.; Sinha, M.C.; Johansen, S.; Kong, F.N.; Westerdahl, H. Sea bed logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deep water areas. First Break 2002, 20, 144–152. [Google Scholar]
- Edwards, N. Marine controlled-source electromagnetics: Principles, methodologies, future commercial applications. Surv. Geophys. 2005, 26, 675–700. [Google Scholar] [CrossRef]
- Hesthammer, J.; Boulaenko, M. The offshore EM challenges. First Break 2005, 23, 59–66. [Google Scholar] [CrossRef]
- Carazzone, J.J.; Burtz, O.M.; Green, K.E.; Pavlov, D.A.; Xia, C. Three dimensional imaging of marine controlled source EM data. SEG Tech. Program Expand. Abstr. 2005, 24, 575. [Google Scholar]
- Srnka, L.J.; Carazzone, J.J.; Ephron, M.S.; Eriksen, E.A. Remote reservoir resistivity mapping. Lead. Edge 2006, 25, 972–975. [Google Scholar] [CrossRef]
- Constable, S.; Srnka, L.J. An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics 2007, 72, WA3–WA12. [Google Scholar] [CrossRef]
- Um, E.S.; Alumbaugh, D.L. On the physics of the marine controlled-source electromagnetic method. Geophysics 2007, 72, WA13–WA26. [Google Scholar] [CrossRef]
- Andréis, D.; MacGregor, L.M. Controlled-source electromagnetic sounding in shallow water: Principles and applications. Geophysics 2008, 73, F21–F32. [Google Scholar] [CrossRef]
- Zhdanov, M.S. Electromagnetic geophysics: Notes from the past and the road ahead. Geophysics 2010, 75, A49–A66. [Google Scholar] [CrossRef]
- Key, K. 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers. Geophysics 2009, 74, F9–F20. [Google Scholar] [CrossRef]
- Mittet, R.; Schaug-Pettersen, T. Shaping optimal transmitter waveforms for marine CSEM surveys. Geophysics 2008, 73, F97–F104. [Google Scholar] [CrossRef]
- Cai, H.; Xiong, B.; Han, M.; Zhdanov, M. 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based-finite element method. Comput. Geosci. 2014, 73, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Bakr, S.A.; Pardo, D.; Mannseth, T. Domain decomposition Fourier finite element method for the simulation of 3D marine CSEM measurements. J. Comput. Phys. 2013, 255, 456–470. [Google Scholar] [CrossRef]
- Chan, L.L.T.; Liu, Y.; Chen, J. Nonlinear system identification with selective recursive Gaussian process models. Ind. Eng. Chem. Res. 2013, 52, 18276–18286. [Google Scholar] [CrossRef]
- Li, Y.; Key, K. 2D marine controlled-source electromagnetic modeling: Part 1—An adaptive finite-element algorithm. Geophysics 2007, 72, WA51–WA62. [Google Scholar] [CrossRef] [Green Version]
- Persova, M.G.; Soloveichik, Y.G.; Domnikov, P.A.; Vagin, D.V.; Koshkina, Y.I. Electromagnetic field analysis in the marine CSEM detection of homogeneous and inhomogeneous hydrocarbon 3D reservoirs. J. Appl. Geophys. 2015, 119, 147–155. [Google Scholar] [CrossRef]
- Zhdanov, M.; Cai, H. Redatuming controlled-source electromagnetic data using Stratton-Chu type integral transformation. J. Appl. Geophys. 2016, 126, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Folorunso, A.F.; Li, Y. Seafloor bathymetry in deep and shallow water marine CSEM responses of Nigerian Niger Delta oil field: Effects and corrections. J. Appl. Geophys. 2015, 123, 194–210. [Google Scholar] [CrossRef]
- Castillo-Reyes, O.; Puente, J.; Modesto, D.; Puzyrev, V.; Cela, J.M. A parallel tool for numerical approximation of 3D electromagnetic surveys in geophysics. Comput. Sist. 2016, 20, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Reyes, O.; Puente, J.; Cela, J.M. PETGEM: A parallel code for 3D CSEM forward modeling using edge finite elements. Comput. Geosci. 2018, 119, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Yoon, D.; Zhdanov, M.S.; Cai, H.; Gribenko, A. A hybrid finite difference and integral equation method for modeling and inversion of marine CSEM data. SEG Tech. Program Expand. Abstr. 2015, 823–827. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.; Zhang, X.; Yu, Q.; Jin, T.C.; Tian, L. A novel method for carbon dioxide emission forecasting based on improved Gaussian processes regression. J. Clean. Prod. 2018, 173, 143–150. [Google Scholar] [CrossRef]
- Kong, D.; Chen, Y.; Li, N. Gaussian process regression for tool wear prediction. Mech. Syst. Signal Process. 2018, 104, 556–574. [Google Scholar] [CrossRef]
- Mohd Aris, M.N.; Daud, H.; Dass, S.C.; Mohd Noh, K.A. Gaussian process methodology for multi-frequency marine controlled-source electromagnetic profile estimation in isotropic medium. Processes 2019, 7, 661. [Google Scholar] [CrossRef] [Green Version]
- Harari, O.; Steinberg, D.M. Optimal designs for Gaussian process models via spectral decomposition. J. Stat. Plan. Inference 2014, 154, 87–101. [Google Scholar] [CrossRef]
- Wang, H.; Gao, X.; Zhang, K.; Li, J. Fast single image super-resolution using sparse Gaussian process regression. Signal Process. 2017, 134, 52–62. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, X.; Zhou, J.; Huang, R.; Gou, Y. Advanced prediction of roadway broken rock zone based on a novel hybrid soft computing model using Gaussian process and particle swarm optimization. Appl. Sci. 2020, 10, 6031. [Google Scholar] [CrossRef]
- Asante-Okyere, S.; Shen, C.; Ziggah, Y.Y.; Rulegeya, M.M.; Zhu, X. Investigating the predictive performance of Gaussian process regression in evaluating reservoir porosity and permeability. Energies 2018, 11, 3261. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; He, M.; Cui, G.; Wang, X.; Wang, W.; Wang, J.A. A novel method of seismic signal detection using waveform features. Appl. Sci. 2020, 10, 2919. [Google Scholar] [CrossRef] [Green Version]
- Meka, R.; Alaeddin, A.; Oyama, S.; Langer, K. An active learning methodology for efficient estimation of expensive noisy black-box functions using Gaussian process regression. IEEE Access 2020, 8, 111460–111474. [Google Scholar] [CrossRef]
- Xiang, M.; He, Y.; Zhang, H.; Zhang, C.; Wang, L.; Wang, C.; Sui, C. State-of health prognostic for lithium-ion batteries considering the limitations in measurements via maximal information entropy and collective sparse variational Gaussian process. IEEE Access 2020, 8, 188199–188217. [Google Scholar] [CrossRef]
- Vlasenko, A.; Vlasenko, N.; Vynokurova, O.; Bodyanskiy, Y.; Peleshko, D. A novel ensemble neuro-fuzzy model for financial time series forecasting. Data 2019, 4, 126. [Google Scholar] [CrossRef] [Green Version]
- Yoo, H.; Han, S.; Chung, K. A frequency pattern mining model based on deep neural network for real-time classification of heart conditions. Healthcare 2020, 8, 234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, P.; Yang, J.; Li, J.; Gui, Z. Aperture shape generation based on gradient descent with momentum. IEEE Access 2019, 7, 157623–157632. [Google Scholar] [CrossRef]
- Gomez-Pulido, J.A.; Duran-Dominguez, A.; Pajuelo-Holguera, F. Optimizing latent factors and collaborative filtering for students’ performance prediction. Appl. Sci. 2020, 10, 5601. [Google Scholar] [CrossRef]
- Ba-Phuc, H.; Cheng-Wei, W.; Yong-Lin, K. Force/position hybrid control for a hexa robot using gradient descent iterative learning control algorithm. IEEE Access 2019, 7, 72329–72342. [Google Scholar]
- Liu, S.; Takaki, Y. Optimization of phase-only computer-generated holograms based on the gradient descent method. Appl. Sci. 2020, 10, 4283. [Google Scholar] [CrossRef]
- Electromagnetic Simulation Solvers (CST Studio Suite). Available online: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/solvers/ (accessed on 2 November 2020).
- Mohd Aris, M.N.; Daud, H.; Mohd Noh, K.A.; Dass, S.C. Model calibration of stochastic process and computer experiment for MVO analysis of multi-low-frequency electromagnetic data. Processes 2020, 8, 605. [Google Scholar] [CrossRef]
- Documentation for GPML Matlab Code Version 4.2. Available online: http://www.gaussianprocess.org/gpml/code/matlab/doc/ (accessed on 9 September 2020).
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; Available online: http://196.189.45.87/bitstream/123456789/51320/1/17.pdf (accessed on 3 July 2020).
Input Parameters | Numerical Values in Unit |
---|---|
Conductivity (Air) | 1.00 × 10−11 Sm−1 |
Conductivity (Seawater) | 1.63 S m−1 |
Conductivity (Sediment) | 1.00 S m−1 |
Resistivity (Hydrocarbon) | 90 Ωm 180 Ωm 270 Ωm 360 Ωm 450 Ωm |
Frequency | 0.0625 Hz 0.1250 Hz 0.2500 Hz 0.3750 Hz 0.5000 Hz |
Hydrocarbon thickness | 200 m |
Current strength | 1250 A |
Length of source | 270 m |
Source depth (from seawater surface) | 970 m |
Target Resistivity | 0.0625 Hz | 0.1250 Hz | 0.2500 Hz | 0.3750 Hz | 0.5000 Hz |
---|---|---|---|---|---|
120 Ωm | 3.78 × 10−6 | 8.45 × 10−6 | 1.94 × 10−5 | 3.00 × 10−5 | 3.92 × 10−5 |
150 Ωm | 1.12 × 10−6 | 2.45 × 10−6 | 5.69 × 10−6 | 8.61 × 10−6 | 1.14 × 10−5 |
210 Ωm | 2.55 × 10−7 | 5.48 × 10−7 | 1.32 × 10−6 | 1.96 × 10−6 | 2.69 × 10−6 |
240 Ωm | 2.05 × 10−7 | 4.28 × 10−7 | 1.03 × 10−6 | 1.43 × 10−6 | 2.02 × 10−6 |
300 Ωm | 1.47 × 10−7 | 3.06 × 10−7 | 7.42 × 10−7 | 1.05 × 10−6 | 1.48 × 10−6 |
330 Ωm | 1.64 × 10−7 | 3.40 × 10−7 | 8.17 × 10−7 | 1.12 × 10−6 | 1.59 × 10−6 |
390 Ωm | 2.32 × 10−7 | 4.87 × 10−7 | 1.13 × 10−6 | 1.70 × 10−6 | 2.31 × 10−6 |
420 Ωm | 3.80 × 10−7 | 8.34 × 10−7 | 1.94 × 10−6 | 3.06 × 10−6 | 4.11 × 10−6 |
Target Resistivity | 0.0625 Hz | 0.1250 Hz | 0.2500 Hz | 0.3750 Hz | 0.5000 Hz |
---|---|---|---|---|---|
120 Ωm | 1.94 × 10−3 | 2.91 × 10−3 | 4.41 × 10−3 | 5.48 × 10−3 | 6.26 × 10−3 |
150 Ωm | 1.06 × 10−3 | 1.57 × 10−3 | 2.38 × 10−3 | 2.93 × 10−3 | 3.38 × 10−3 |
210 Ωm | 5.05 × 10−4 | 7.40 × 10−4 | 1.15 × 10−3 | 1.40 × 10−3 | 1.64 × 10−3 |
240 Ωm | 4.53 × 10−4 | 6.54 × 10−4 | 1.02 × 10−3 | 1.20 × 10−3 | 1.42 × 10−3 |
300 Ωm | 3.84 × 10−4 | 5.53 × 10−4 | 8.62 × 10−4 | 1.02 × 10−3 | 1.22 × 10−3 |
330 Ωm | 4.05 × 10−4 | 5.83 × 10−4 | 9.04 × 10−4 | 1.06 × 10−3 | 1.26 × 10−3 |
390 Ωm | 4.82 × 10−4 | 6.98 × 10−4 | 1.06 × 10−3 | 1.30 × 10−3 | 1.52 × 10−3 |
420 Ωm | 6.17 × 10−4 | 9.13 × 10−4 | 1.39 × 10−3 | 1.75 × 10−3 | 2.03 × 10−3 |
Dataset | Iterations Number | True Resistivity (Ωm) | Estimate (Ωm) | MSE | Absolute Error |
---|---|---|---|---|---|
Frequency: 0.0625 Hz; Learning rate: 1.50 | |||||
1 | 83 | 100 | 104.03 | 6.10 × 10−7 | 4.03 |
2 | 38 | 200 | 201.45 | 1.30 × 10−7 | 1.45 |
3 | 35 | 400 | 402.22 | 1.70 × 10−7 | 2.22 |
Frequency: 0.1250 Hz; Learning rate: 1.00 | |||||
1 | 58 | 100 | 102.72 | 2.70 × 10−7 | 2.72 |
2 | 49 | 200 | 198.08 | 3.80 × 10−7 | 1.92 |
3 | 54 | 400 | 404.34 | 3.50 × 10−7 | 4.34 |
Frequency: 0.2500 Hz; Learning rate: 0.50 | |||||
1 | 76 | 100 | 102.17 | 4.00 × 10−7 | 2.17 |
2 | 63 | 200 | 197.51 | 4.50 × 10−7 | 2.49 |
3 | 60 | 400 | 410.64 | 1.22 × 10−6 | 10.64 |
Frequency: 0.3750 Hz; Learning rate: 0.50 | |||||
1 | 67 | 100 | 102.01 | 5.30 × 10−7 | 2.01 |
2 | 48 | 200 | 197.93 | 5.50 × 10−7 | 2.07 |
3 | 55 | 400 | 383.43 | 1.45 × 10−6 | 16.57 |
Frequency: 0.5000 Hz; Learning rate: 0.20 | |||||
1 | 83 | 100 | 101.91 | 8.10 × 10−7 | 1.91 |
2 | 54 | 200 | 198.20 | 8.30 × 10−7 | 1.80 |
3 | 76 | 400 | 386.18 | 1.17 × 10−7 | 13.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Aris, M.N.; Daud, H.; Mohd Noh, K.A.; Dass, S.C. Stochastic Process-Based Inversion of Electromagnetic Data for Hydrocarbon Resistivity Estimation in Seabed Logging. Mathematics 2021, 9, 935. https://doi.org/10.3390/math9090935
Mohd Aris MN, Daud H, Mohd Noh KA, Dass SC. Stochastic Process-Based Inversion of Electromagnetic Data for Hydrocarbon Resistivity Estimation in Seabed Logging. Mathematics. 2021; 9(9):935. https://doi.org/10.3390/math9090935
Chicago/Turabian StyleMohd Aris, Muhammad Naeim, Hanita Daud, Khairul Arifin Mohd Noh, and Sarat Chandra Dass. 2021. "Stochastic Process-Based Inversion of Electromagnetic Data for Hydrocarbon Resistivity Estimation in Seabed Logging" Mathematics 9, no. 9: 935. https://doi.org/10.3390/math9090935
APA StyleMohd Aris, M. N., Daud, H., Mohd Noh, K. A., & Dass, S. C. (2021). Stochastic Process-Based Inversion of Electromagnetic Data for Hydrocarbon Resistivity Estimation in Seabed Logging. Mathematics, 9(9), 935. https://doi.org/10.3390/math9090935