Recent Advancements in Emerging Technologies for Healthcare Management Systems: A Survey
Abstract
:1. Introduction
- A unique taxonomy that highlights the application of wearable sensors, IoT, AI and Blockchain, in HMS is presented. This taxonomy showcases the strategic steps of the Sensor-IoT-AI-Blockchain-based healthcare system.
- A broad assessment of the deployment of wearable sensors, IoT frameworks, diverse AI techniques and the application of Blockchain technology in the HMS is presented.
- Open research issues that affect the application of these emerging technologies (Sensor-IoT-AI-Blockchain) in HMS are identified.
2. Related Works
2.1. Related Studies on the Application of Sensors, IoT, AI, and Blockchain Technologies in HMS
2.2. Comparison of Existing Literature with This Study and Motivation
3. Taxonomy
4. Methodology
4.1. Inclusion and Exclusion Criteria
4.1.1. Selection of Keywords
4.1.2. Inclusion
4.1.3. Exclusion
4.2. Quality Assessment and Data Extraction
5. Sensors
- Movement and Trajectories: Wearable sensors such as accelerometers and gyroscopes can be used to assess balance and fall risk, as well as monitor the effect of medical therapies. Motion sensors are used to evaluate prosthetic limb replacements. They are also used in stroke therapy to monitor the progress of certain physical activities.
- Physiological: With the aid of an applicable sensor, vital health signs related to the physiology of a patient such as HR and BP can be monitored [39].
5.1. Wearable Sensors
Literature on Wearable Sensors in Healthcare
5.2. Ambient Sensors
Literature on Ambient Sensors in Healthcare
5.3. Commonly Deployed Sensors in Healthcare
5.3.1. Blood Pressure (BP) Sensor
5.3.2. Body Temperature (BT) Sensor
5.3.3. Electrocardiography (ECG) Sensor
5.3.4. Electroencephalogram (EEG) Sensor
5.3.5. Pulse Oximeter
5.3.6. Heart Rate (HR) Monitor
5.3.7. Motion and Activity Sensor
5.4. Challenges and Open Issues of Sensors in Healthcare
5.4.1. Data Collection
5.4.2. Data Transmission
5.4.3. Security and Privacy
5.4.4. User Acceptance
5.4.5. Scalability and Interoperability
5.4.6. Resource Constraints
6. IoT Framework
6.1. IoT Layers
6.2. Actuators
6.3. Development Boards
6.4. IoT in Healthcare
6.5. Challenges and Open Issues of IoT in Healthcare
6.5.1. Data Management
6.5.2. Scalability
6.5.3. Security and Privacy
6.5.4. Interoperability
6.5.5. Mobility
7. Artificial Intelligence
7.1. Machine Learning (ML)
7.1.1. Supervised Machine Learning
7.1.2. Unsupervised Machine Learning
7.1.3. Semi-Supervised Machine Learning
7.2. Application of Sensors and IoT with Machine Learning in HMS
7.2.1. Application of Sensors and IoT with Supervised ML in HMS
7.2.2. Application of Sensors and IoT with Unsupervised ML in HMS
7.2.3. Application of Sensors and IoT with Semi-Supervised ML in HMS
7.3. Big Data Analytics (BDA)
7.3.1. Data Mining in Healthcare
7.3.2. Information Retrieval in Healthcare
7.3.3. Application of BDA in HMS
Data-Driven and Evidence-Based Healthcare System
Healthcare Patient and Unstructured Data Profiling
Efficient Healthcare Policy
Genomic Analytics
Enhanced Remote and Evidential Healthcare Delivery
Social Media of Healthcare
7.4. Challenges and Open Issues of AI in HMS
7.4.1. Size, Quality and Temporality of Data
7.4.2. Field Complexity
7.4.3. Ethics and Policy Issues
7.4.4. Safety and Privacy Issues
7.4.5. Causality Problem
8. Blockchain
8.1. Need for Blockchain in Healthcare
8.2. Application of Blockchain in Healthcare
8.3. Use-Cases of Blockchain in HMS
8.3.1. A seamless HMS
8.3.2. Electronic Health Record (EHR)
- When patients desire other healthcare practitioners to contact them or seek medical treatments on their behalf.
- When clinical trial administrators want to authenticate the vast medical data of their participants.
- When pharmaceutical corporations want to assure that pharmaceuticals distributed on worldwide marketplaces are genuine.
8.3.3. Healthcare Payments
8.3.4. Pharmaceutical Supply Chains
8.4. Challenges and Open Issues of Blockchain in Healthcare
8.4.1. Cost of Acceptance and Adoption
8.4.2. Limited Blockchain Experts
8.4.3. Regulations, Policies and Government
9. Open Research Problems on Emerging Technologies in Healthcare Delivery
9.1. Data Acquisition
9.2. Handling Data Streams
9.3. Security
- Confidentiality: Encryption is the proper technology for ensuring data confidentiality, which necessitates the distribution of a shared key over a WSN communication channel [34].
- Integrity: An attacker should not be able to modify the health-related data contained inside a device. To ensure the accuracy and consistency of the information, the required precautions must be taken.
- Availability: A patient’s health data should be available immediately when requested by an authorized party. Patients’ data is sensitive, and it should be always accessible and available from the network.
9.4. Privacy and Ethics
9.5. Explainable AI
9.6. Underdeveloped Countries
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, J.; Ma, Q.; Chan, A.H.; Man, S. Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. Appl. Ergon. 2019, 75, 162–169. [Google Scholar] [CrossRef]
- Mohammadzadeh, N.; Gholamzadeh, M.; Saeedi, S.; Rezayi, S. The application of wearable smart sensors for monitoring the vital signs of patients in epidemics: A systematic literature review. J. Ambient Intell. Humaniz. Comput. 2020, 1–15. [Google Scholar] [CrossRef]
- Gries, A.; Seekamp, A.; Wrede, C.; Dodt, C. Zusatz-Weiterbildung Klinische Akut-und Notfallmedizin in Deutschland. Der Anaesthesist 2018, 67, 895–900. [Google Scholar] [CrossRef]
- Da Costa, C.A.; Pasluosta, C.F.; Eskofier, B.; Da Silva, D.B.; da Rosa Righi, R. Internet of Health Things: Toward intelligent vital signs monitoring in hospital wards. Artif. Intell. Med. 2018, 89, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Xu, P.; Jin, H.; Ma, J.; Qin, L. Vital sign measurement in telemedicine rehabilitation based on intelligent wearable medical devices. Ieee Access 2019, 7, 54819–54823. [Google Scholar] [CrossRef]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable sensors for remote health monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; McCullough, J.S.; Town, R.J. The impact of health information technology on hospital productivity. RAND J. Econ. 2013, 44, 545–568. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, Y.K.; Federico, F. The impact of health information technology on patient safety. Saudi Med. J. 2017, 38, 1173. [Google Scholar] [CrossRef]
- Jamal, A.; McKenzie, K.; Clark, M. The impact of health information technology on the quality of medical and health care: A systematic review. Health Inf. Manag. J. 2009, 38, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Sittig, D.F.; Singh, H. Defining health information technology–related errors: New developments since to err is human. Arch. Intern. Med. 2011, 171, 1281–1284. [Google Scholar] [CrossRef]
- Garcia, M.B.; Pilueta, N.U.; Jardiniano, M.F. VITAL APP: Development and User Acceptability of an IoT-Based Patient Monitoring Device for Synchronous Measurements of Vital Signs. In Proceedings of the 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, 29 November–1 December 2019; pp. 1–6. [Google Scholar]
- Garcia, M.B. A speech therapy game application for aphasia patient neurorehabilitation—A pilot study of an mHealth app. Int. J. Simul. Syst. Sci. Technol. 2019, 20, 1–8. [Google Scholar] [CrossRef]
- Mosa, A.S.M.; Yoo, I.; Sheets, L. A systematic review of healthcare applications for smartphones. BMC Med. Inform. Decis. Mak. 2012, 12, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, K.; Park, R.C. Chatbot-based heathcare service with a knowledge base for cloud computing. Cluster Computing 2019, 22, 1925–1937. [Google Scholar] [CrossRef]
- Islam, M.S.; Hasan, M.M.; Wang, X.; Germack, H.D. A systematic review on healthcare analytics: Application and theoretical perspective of data mining. Healthcare 2018, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Aceto, G.; Persico, V.; Pescapé, A. Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0. J. Ind. Inf. Integr. 2020, 18, 100129. [Google Scholar] [CrossRef]
- Jones, N. Computer science: The learning machines. Nat. News 2014, 505, 146. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Da Xu, L.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Ayodele, T.O. Machine learning overview. New Adv. Mach. Learn. 2010, 2, 9–18. [Google Scholar]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electronic Markets 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Sworna, N.S.; Islam, A.M.; Shatabda, S.; Islam, S. Towards development of IoT-ML driven healthcare systems: A survey. J. Netw. Comput. Appl. 2021, 196, 103244. [Google Scholar] [CrossRef]
- Meier, C.A.; Fitzgerald, M.C.; Smith, J.M. eHealth: Extending, enhancing, and evolving health care. Annu. Rev. Biomed. Eng. 2013, 15, 359–382. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Miron-Shatz, T.; Schumacher, N.; Krocza, J.; Diamantidis, C.; Albrecht, U.-V. mHealth 2.0: Experiences, possibilities, and perspectives. JMIR Mhealth Uhealth 2014, 2, e3328. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.A.d.; Yamin, A.C.; Geyer, C.F.R. Toward a general software infrastructure for ubiquitous computing. IEEE Pervasive Comput. Mob. Ubiquitous Systems. Los Alamitos 2008, 7, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Jung, E.-Y.; Kim, J.-H.; Chung, K.-Y.; Park, D.K. Home health gateway based healthcare services through U-health platform. Wirel. Pers. Commun. 2013, 73, 207–218. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Alrashdi, I.; Alqazzaz, A. New Opportunities, Challenges, and Applications of Edge-AI for Connected Healthcare in Internet of Medical Things for Smart Cities. J. Healthc. Eng. 2022, 2022, 2950699. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, H.; Jiang, R.; Guo, X.; Cheng, J.; Chen, Y. A Review of IoT-enabled Mobile Healthcare: Technologies, Challenges, and Future Trends. IEEE Internet Things J. 2022, 9, 9478–9502. [Google Scholar] [CrossRef]
- Karatas, M.; Eriskin, L.; Deveci, M.; Pamucar, D.; Garg, H. Big Data for Healthcare Industry 4.0: Applications, challenges and future perspectives. Expert Syst. Appl. 2022, 200, 116912. [Google Scholar] [CrossRef]
- Alshamrani, M. IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey. J. King Saud Univ. -Comput. Inf. Sci. 2022, 34, 4687–4701. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Dua, A.; Gupta, S. Role of emerging technologies in future IoT-driven Healthcare 4.0 technologies: A survey, current challenges and future directions. J. Ambient Intell. Humaniz. Comput. 2021, 1–47. [Google Scholar] [CrossRef]
- Li, W.; Chai, Y.; Khan, F.; Jan, S.R.U.; Verma, S.; Menon, V.G.; Li, X. A comprehensive survey on machine learning-based big data analytics for IoT-enabled smart healthcare system. Mob. Netw. Appl. 2021, 26, 234–252. [Google Scholar] [CrossRef]
- Tunc, M.A.; Gures, E.; Shayea, I. A Survey on IoT Smart Healthcare: Emerging Technologies, Applications, Challenges, and Future Trends. arXiv 2021, arXiv:2109.02042. [Google Scholar]
- Nahavandi, D.; Alizadehsani, R.; Khosravi, A.; Acharya, U.R. Application of artificial intelligence in wearable devices: Opportunities and challenges. Comput. Methods Programs Biomed. 2022, 213, 106541. [Google Scholar] [CrossRef]
- Qadri, Y.A.; Nauman, A.; Zikria, Y.B.; Vasilakos, A.V.; Kim, S.W. The future of healthcare internet of things: A survey of emerging technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121–1167. [Google Scholar] [CrossRef]
- Al-Dhief, F.T.; Latiff, N.M.a.A.; Malik, N.N.N.A.; Salim, N.S.; Baki, M.M.; Albadr, M.A.A.; Mohammed, M.A. A survey of voice pathology surveillance systems based on internet of things and machine learning algorithms. IEEE Access 2020, 8, 64514–64533. [Google Scholar] [CrossRef]
- Qayyum, A.; Qadir, J.; Bilal, M.; Al-Fuqaha, A. Secure and robust machine learning for healthcare: A survey. IEEE Rev. Biomed. Eng. 2020, 14, 156–180. [Google Scholar] [CrossRef]
- Karthick, G.; Pankajavalli, P. A review on human healthcare internet of things: A technical perspective. SN Comput. Sci. 2020, 1, 198. [Google Scholar] [CrossRef]
- Santos, M.A.; Munoz, R.; Olivares, R.; Rebouças Filho, P.P.; Del Ser, J.; de Albuquerque, V.H.C. Online heart monitoring systems on the internet of health things environments: A survey, a reference model and an outlook. Inf. Fusion 2020, 53, 222–239. [Google Scholar] [CrossRef]
- Amin, S.U.; Hossain, M.S. Edge intelligence and Internet of Things in healthcare: A survey. IEEE Access 2020, 9, 45–59. [Google Scholar] [CrossRef]
- Alshehri, F.; Muhammad, G. A comprehensive survey of the Internet of Things (IoT) and AI-based smart healthcare. IEEE Access 2020, 9, 3660–3678. [Google Scholar] [CrossRef]
- Dhanvijay, M.M.; Patil, S.C. Internet of Things: A survey of enabling technologies in healthcare and its applications. Comput. Netw. 2019, 153, 113–131. [Google Scholar] [CrossRef]
- Habibzadeh, H.; Dinesh, K.; Shishvan, O.R.; Boggio-Dandry, A.; Sharma, G.; Soyata, T. A survey of healthcare Internet of Things (HIoT): A clinical perspective. IEEE Internet Things J. 2019, 7, 53–71. [Google Scholar] [CrossRef]
- Mutlag, A.A.; Abd Ghani, M.K.; Arunkumar, N.a.; Mohammed, M.A.; Mohd, O. Enabling technologies for fog computing in healthcare IoT systems. Future Gener. Comput. Syst. 2019, 90, 62–78. [Google Scholar] [CrossRef]
- Ray, P.P.; Dash, D.; De, D. Edge computing for Internet of Things: A survey, e-healthcare case study and future direction. J. Netw. Comput. Appl. 2019, 140, 1–22. [Google Scholar] [CrossRef]
- Dang, L.M.; Piran, M.; Han, D.; Min, K.; Moon, H. A survey on internet of things and cloud computing for healthcare. Electronics 2019, 8, 768. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Yang, S.; Chen, F.; Ming, Z.; Lu, N.; Qin, J. A survey on application of machine learning for Internet of Things. Int. J. Mach. Learn. Cybern. 2018, 9, 1399–1417. [Google Scholar] [CrossRef]
- Alam, M.M.; Malik, H.; Khan, M.I.; Pardy, T.; Kuusik, A.; Le Moullec, Y. A survey on the roles of communication technologies in IoT-based personalized healthcare applications. IEEE Access 2018, 6, 36611–36631. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, A. Diabetes detection and prediction using machine learning/IoT: A survey. In Proceedings of the International Conference on Advanced Informatics for Computing Research, Shimla, India, 14–15 July 2018; pp. 471–479. [Google Scholar]
- Babu, G.C.; Shantharajah, S. Survey on data analytics techniques in healthcare using IOT platform. Int. J. Reason.-Based Intell. Syst. 2018, 10, 183–196. [Google Scholar] [CrossRef]
- Sughasiny, M.; Rajeshwari, J. Application of machine learning techniques, big data analytics in health care sector—A literature survey. In Proceedings of the 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), Palladam, India, 30–31 August 2018; pp. 741–749. [Google Scholar]
- Farahani, B.; Firouzi, F.; Chang, V.; Badaroglu, M.; Constant, N.; Mankodiya, K. Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Future Gener. Comput. Syst. 2018, 78, 659–676. [Google Scholar] [CrossRef] [Green Version]
- Darwish, A.; Hassanien, A.E.; Elhoseny, M.; Sangaiah, A.K.; Muhammad, K. The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: Opportunities, challenges, and open problems. J. Ambient Intell. Humaniz. Comput. 2019, 10, 4151–4166. [Google Scholar] [CrossRef]
- Sethi, P.; Sarangi, S.R. Internet of things: Architectures, protocols, and applications. J. Electr. Comput. Eng. 2017, 2017, 9324035. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Yang, P.; Min, G.; Amft, O.; Dong, F.; Xu, L. Advanced internet of things for personalised healthcare systems: A survey. Pervasive Mob. Comput. 2017, 41, 132–149. [Google Scholar] [CrossRef]
- Tokognon, C.A.; Gao, B.; Tian, G.Y.; Yan, Y. Structural health monitoring framework based on Internet of Things: A survey. IEEE Internet Things J. 2017, 4, 619–635. [Google Scholar] [CrossRef]
- Yuehong, Y.; Zeng, Y.; Chen, X.; Fan, Y. The internet of things in healthcare: An overview. J. Ind. Inf. Integr. 2016, 1, 3–13. [Google Scholar]
- Capraro, G.T. Artificial Intelligence (AI), Big Data, and Healthcare. In Proceedings of the International Conference on Artificial Intelligence (ICAI), Athens, Greece, 25–26 March 2016; p. 425. [Google Scholar]
- Azzawi, M.A.; Hassan, R.; Bakar, K.A.A. A review on Internet of Things (IoT) in healthcare. Int. J. Appl. Eng. Res. 2016, 11, 10216–10221. [Google Scholar]
- Sakr, S.; Elgammal, A. Towards a comprehensive data analytics framework for smart healthcare services. Big Data Res. 2016, 4, 44–58. [Google Scholar] [CrossRef]
- Hossain, M.S.; Muhammad, G. Cloud-assisted industrial internet of things (iiot)–enabled framework for health monitoring. Comput. Netw. 2016, 101, 192–202. [Google Scholar] [CrossRef]
- Romero, L.E.; Chatterjee, P.; Armentano, R.L. An IoT approach for integration of computational intelligence and wearable sensors for Parkinson’s disease diagnosis and monitoring. Health Technol. 2016, 6, 167–172. [Google Scholar] [CrossRef]
- Mathew, P.S.; Pillai, A.S. Big data challenges and solutions in healthcare: A survey. In Innovations in Bio-Inspired Computing and Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 543–553. [Google Scholar]
- Yeole, A.S.; Kalbande, D.R. Use of Internet of Things (IoT) in healthcare: A survey. In Proceedings of the ACM Symposium on Women in Research, Indore, India, 21–22 March 2016; pp. 71–76. [Google Scholar]
- Dimitrievski, A.; Zdravevski, E.; Lameski, P.; Trajkovik, V. A survey of Ambient Assisted Living systems: Challenges and opportunities. In Proceedings of the 2016 IEEE 12th international conference on intelligent computer communication and processing (ICCP), Cluj-Napoca, Romania, 8–10 October 2016; pp. 49–53. [Google Scholar]
- Islam, S.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.-S. The internet of things for health care: A comprehensive survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Li, R.; Lu, B.; McDonald-Maier, K.D. Cognitive assisted living ambient system: A survey. Digit. Commun. Netw. 2015, 1, 229–252. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.-J.; Li, J.; Mulder, J.; Wang, Y.; Chen, S.; Wu, H.; Wang, Q.; Pan, H. Emerging information technologies for enhanced healthcare. Comput. Ind. 2015, 69, 3–11. [Google Scholar] [CrossRef]
- Wahaishi, A.; Samani, A.; Ghenniwa, H. Smarthealth and internet of things. In Proceedings of the International Conference on Smart Homes and Health Telematics, Geneva, Switzerland, 10–12 June 2015; pp. 373–378. [Google Scholar]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- Kamruzzaman, M.; Yan, B.; Sarker, M.N.I.; Alruwaili, O.; Wu, M.; Alrashdi, I. Blockchain and Fog Computing in IoT-Driven Healthcare Services for Smart Cities. J. Healthc. Eng. 2022, 2022, 9957888. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Yang, P.; Waraich, A.; Deng, Z.; Zhao, Y.; Yang, Y. Examining sensor-based physical activity recognition and monitoring for healthcare using Internet of Things: A systematic review. J. Biomed. Inform. 2018, 87, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Maurya, M.R.; Riyaz, N.U.; Reddy, M.; Yalcin, H.C.; Ouakad, H.M.; Bahadur, I.; Al-Maadeed, S.; Sadasivuni, K.K. A review of smart sensors coupled with Internet of Things and Artificial Intelligence approach for heart failure monitoring. Med. Biol. Eng. Comput. 2021, 59, 2185–2203. [Google Scholar] [CrossRef] [PubMed]
- Mamdiwar, S.D.; Shakruwala, Z.; Chadha, U.; Srinivasan, K.; Chang, C.-Y. Recent Advances on IoT-Assisted Wearable Sensor Systems for Healthcare Monitoring. Biosensors 2021, 11, 372. [Google Scholar] [CrossRef] [PubMed]
- Meraj, M.; Alvi, S.A.M.; Quasim, M.T.; Haidar, S.W. A Critical Review of Detection and Prediction of Infectious Disease using IOT Sensors. In Proceedings of the 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 4–6 August 2021; pp. 679–684. [Google Scholar]
- Khundaqji, H.; Hing, W.; Furness, J.; Climstein, M. Smart shirts for monitoring physiological parameters: Scoping review. JMIR Mhealth Uhealth 2020, 8, e18092. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhou, Q.; Lei, L.; Zheng, K.; Xiang, W. An IoT-cloud based wearable ECG monitoring system for smart healthcare. J. Med. Syst. 2016, 40, 286. [Google Scholar] [CrossRef]
- Azimi, I.; Pahikkala, T.; Rahmani, A.M.; Niela-Vilén, H.; Axelin, A.; Liljeberg, P. Missing data resilient decision-making for healthcare IoT through personalization: A case study on maternal health. Future Gener. Comput. Syst. 2019, 96, 297–308. [Google Scholar] [CrossRef]
- Bhatia, M.; Sood, S.K. A comprehensive health assessment framework to facilitate IoT-assisted smart workouts: A predictive healthcare perspective. Comput. Ind. 2017, 92, 50–66. [Google Scholar] [CrossRef]
- Wu, T.; Wu, F.; Redoute, J.-M.; Yuce, M.R. An autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access 2017, 5, 11413–11422. [Google Scholar] [CrossRef]
- Wu, T.; Redouté, J.-M.; Yuce, M.R. A wireless implantable sensor design with subcutaneous energy harvesting for long-term IoT healthcare applications. IEEE Access 2018, 6, 35801–35808. [Google Scholar] [CrossRef]
- Wu, T.; Wu, F.; Qiu, C.; Redouté, J.-M.; Yuce, M.R. A rigid-flex wearable health monitoring sensor patch for IoT-connected healthcare applications. IEEE Internet Things J. 2020, 7, 6932–6945. [Google Scholar] [CrossRef]
- Niitsu, K.; Kobayashi, A.; Nishio, Y.; Hayashi, K.; Ikeda, K.; Ando, T.; Ogawa, Y.; Kai, H.; Nishizawa, M.; Nakazato, K. A self-powered supply-sensing biosensor platform using bio fuel cell and low-voltage, low-cost CMOS supply-controlled ring oscillator with inductive-coupling transmitter for healthcare IoT. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 2784–2796. [Google Scholar] [CrossRef]
- Tekeste, T.; Saleh, H.; Mohammad, B.; Ismail, M. Ultra-low power QRS detection and ECG compression architecture for IoT healthcare devices. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 66, 669–679. [Google Scholar] [CrossRef]
- Hallfors, N.G.; Alhawari, M.; Abi Jaoude, M.; Kifle, Y.; Saleh, H.; Liao, K.; Ismail, M.; Isakovic, A.F. Graphene oxide: Nylon ECG sensors for wearable IoT healthcare—Nanomaterial and SoC interface. Analog Integr. Circuits Signal Process. 2018, 96, 253–260. [Google Scholar] [CrossRef]
- Ray, P.P.; Dash, D.; De, D. Analysis and monitoring of IoT-assisted human physiological galvanic skin responsefactor for smart e-healthcare. Sens. Rev. 2019, 39, 525–541. [Google Scholar] [CrossRef]
- Esmaeili, S.; Tabbakh, S.R.K.; Shakeri, H. A priority-aware lightweight secure sensing model for body area networks with clinical healthcare applications in Internet of Things. Pervasive Mob. Comput. 2020, 69, 101265. [Google Scholar] [CrossRef]
- Muthu, B.; Sivaparthipan, C.; Manogaran, G.; Sundarasekar, R.; Kadry, S.; Shanthini, A.; Dasel, A. IOT based wearable sensor for diseases prediction and symptom analysis in healthcare sector. Peer Peer Netw. Appl. 2020, 13, 2123–2134. [Google Scholar] [CrossRef]
- Huifeng, W.; Kadry, S.N.; Raj, E.D. Continuous health monitoring of sportsperson using IoT devices based wearable technology. Comput. Commun. 2020, 160, 588–595. [Google Scholar] [CrossRef]
- Sood, S.K.; Mahajan, I. IoT-fog-based healthcare framework to identify and control hypertension attack. IEEE Internet Things J. 2018, 6, 1920–1927. [Google Scholar] [CrossRef]
- Vilela, P.H.; Rodrigues, J.J.; Solic, P.; Saleem, K.; Furtado, V. Performance evaluation of a Fog-assisted IoT solution for e-Health applications. Future Gener. Comput. Syst. 2019, 97, 379–386. [Google Scholar] [CrossRef]
- Ray, P.P.; Thapa, N.; Dash, D.; De, D. Novel implementation of IoT based non-invasive sensor system for real-time monitoring of intravenous fluid level for assistive e-healthcare. Circuit World 2019, 45, 109–123. [Google Scholar] [CrossRef]
- Elsts, A.; Fafoutis, X.; Woznowski, P.; Tonkin, E.; Oikonomou, G.; Piechocki, R.; Craddock, I. Enabling healthcare in smart homes: The SPHERE IoT network infrastructure. IEEE Commun. Mag. 2018, 56, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Ma, M.; Liu, A. Dynamic power management and adaptive packet size selection for IoT in e-Healthcare. Comput. Electr. Eng. 2018, 65, 357–375. [Google Scholar] [CrossRef]
- Beevers, G.; Lip, G.Y.; O’Brien, E. The pathophysiology of hypertension. Bmj 2001, 322, 912–916. [Google Scholar] [CrossRef]
- Mukkamala, R.; Hahn, J.-O. Toward ubiquitous blood pressure monitoring via pulse transit time: Predictions on maximum calibration period and acceptable error limits. IEEE Trans. Biomed. Eng. 2017, 65, 1410–1420. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Dong, T. A review of wearable technologies for elderly care that can accurately track indoor position, recognize physical activities and monitor vital signs in real time. Sensors 2017, 17, 341. [Google Scholar] [CrossRef] [Green Version]
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef]
- Masihi, S.; Panahi, M.; Maddipatla, D.; Hanson, A.J.; Fenech, S.; Bonek, L.; Sapoznik, N.; Fleming, P.D.; Bazuin, B.J.; Atashbar, M.Z. Development of a flexible wireless ECG monitoring device with dry fabric electrodes for wearable applications. IEEE Sens. J. 2021, 22, 11223–11232. [Google Scholar] [CrossRef]
- Jahmunah, V.; Ng, E.; San, T.R.; Acharya, U.R. Automated detection of coronary artery disease, myocardial infarction and congestive heart failure using GaborCNN model with ECG signals. Comput. Biol. Med. 2021, 134, 104457. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2014, 15, 1321–1330. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, G.; Zheng, X.; Li, H.; Zhang, S.; Yu, Y.; Liang, R. Application of transfer learning in EEG decoding based on brain-computer interfaces: A review. Sensors 2020, 20, 6321. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Fang, C.; Li, L.; Song, Y. Impact of sport training on adaptations in neural functioning and behavioral performance: A scoping review with meta-analysis on EEG research. J. Exerc. Sci. Fit. 2022, 20, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Luks, A.M.; Swenson, E.R. Pulse oximetry for monitoring patients with COVID-19 at home. Potential pitfalls and practical guidance. Ann. Am. Thorac. Soc. 2020, 17, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
- Kateu, F.; Jakllari, G.; Chaput, E. SmartPhOx: Smartphone-Based Pulse Oximetry Using a Meta-Region Of Interest. In Proceedings of the 2022 IEEE International Conference on Pervasive Computing and Communications (PerCom), Pisa, Italy, 21–25 March 2022; pp. 130–140. [Google Scholar]
- Porter, P.; Muirhead, F.; Brisbane, J.; Schneider, B.; Choveaux, J.; Bear, N.; Carson, J.; Jones, K.; Silva, D.; Neppe, C. Accuracy, clinical utility, and usability of a wireless self-guided fetal heart rate monitor. Obstet. Gynecol. 2021, 137, 673. [Google Scholar] [CrossRef]
- Saha, A.; Saha, S.; Mandal, P.; Bawaly, P.; Roy, M. Microcontroller-Based Heart Rate Monitor. In Computational Advancement in Communication, Circuits and Systems; Springer: Berlin/Heidelberg, Germany, 2022; pp. 271–280. [Google Scholar]
- Liu, H.; Hartmann, Y.; Schultz, T. Motion Units: Generalized sequence modeling of human activities for sensor-based activity recognition. In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; pp. 1506–1510. [Google Scholar]
- Blasch, E.; Pham, T.; Chong, C.-Y.; Koch, W.; Leung, H.; Braines, D.; Abdelzaher, T. Machine learning/artificial intelligence for sensor data fusion–opportunities and challenges. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 80–93. [Google Scholar] [CrossRef]
- Doddabasappla, K.; Vyas, R. Statistical and machine learning-based recognition of coughing events using triaxial accelerometer sensor data from multiple wearable points. IEEE Sens. Lett. 2021, 5, 1–4. [Google Scholar] [CrossRef]
- William, P.; Badholia, A.; Verma, V.; Sharma, A.; Verma, A. Analysis of Data Aggregation and Clustering Protocol in Wireless Sensor Networks Using Machine Learning. In Evolutionary Computing and Mobile Sustainable Networks; Springer: Berlin/Heidelberg, Germany; Bangalore, India, 2022; pp. 925–939. [Google Scholar]
- Wan, J.; Al-awlaqi, M.A.A.H.; Li, M.; O’Grady, M.; Gu, X.; Wang, J.; Cao, N. Wearable IoT enabled real-time health monitoring system. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 298. [Google Scholar] [CrossRef] [Green Version]
- Tabassum, S.; Zaman, M.I.U.; Ullah, M.S.; Rahaman, A.; Nahar, S.; Islam, A.M. The cardiac disease predictor: IoT and ML driven healthcare system. In Proceedings of the 2019 4th International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh, 20–21 December 2019; pp. 1–6. [Google Scholar]
- Magaña-Espinoza, P.; Aquino-Santos, R.; Cárdenas-Benítez, N.; Aguilar-Velasco, J.; Buenrostro-Segura, C.; Edwards-Block, A.; Medina-Cass, A. WiSPH: A wireless sensor network-based home care monitoring system. Sensors 2014, 14, 7096–7119. [Google Scholar] [CrossRef] [Green Version]
- Pham, M.; Mengistu, Y.; Do, H.; Sheng, W. Delivering home healthcare through a cloud-based smart home environment (CoSHE). Future Gener. Comput. Syst. 2018, 81, 129–140. [Google Scholar] [CrossRef]
- Tyagi, S.; Agarwal, A.; Maheshwari, P. A conceptual framework for IoT-based healthcare system using cloud computing. In Proceedings of the 2016 6th International Conference-Cloud System and Big Data Engineering (Confluence), Noida, India, 14–15 January 2016; pp. 503–507. [Google Scholar]
- Abdulameer, T.H.; Ibrahim, A.A.; Mohammed, A.H. Design of health care monitoring system based on internet of thing (IOT). In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 22–24 October 2020; pp. 1–6. [Google Scholar]
- Adewole, K.S.; Akintola, A.G.; Jimoh, R.G.; Mabayoje, M.A.; Jimoh, M.K.; Usman-Hamza, F.E.; Balogun, A.O.; Sangaiah, A.K.; Ameen, A.O. Cloud-based IoMT framework for cardiovascular disease prediction and diagnosis in personalized E-health care. In Intelligent IoT Systems in Personalized Health Care; Elsevier: Amsterdam, The Netherlands, 2021; pp. 105–145. [Google Scholar]
- Blake, M.B. An internet of things for healthcare. IEEE Internet Comput. 2015, 19, 4–6. [Google Scholar] [CrossRef]
- Li, Q.; Campan, A.; Ren, A.; Eid, W.E. Automating and improving cardiovascular disease prediction using Machine learning and EMR data features from a regional healthcare system. Int. J. Med. Inform. 2022, 163, 104786. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Basri, S.; Imam, A.A.; Khowaja, S.A.; Capretz, L.F.; Balogun, A.O. Data Harmonization for Heterogeneous Datasets: A Systematic Literature Review. Appl. Sci. 2021, 11, 8275. [Google Scholar] [CrossRef]
- Kong, H.-J. Managing unstructured big data in healthcare system. Healthc. Inform. Res. 2019, 25, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Verma, K.K.; Singh, B.M.; Dixit, A. A review of supervised and unsupervised machine learning techniques for suspicious behavior recognition in intelligent surveillance system. Int. J. Inf. Technol. 2019, 14, 397–410. [Google Scholar] [CrossRef]
- Hiran, K.K.; Jain, R.K.; Lakhwani, K.; Doshi, R. Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition); BPB Publications: Noida, India, 2021. [Google Scholar]
- Balogun, A.O.; Basri, S.; Capretz, L.F.; Mahamad, S.; Imam, A.A.; Almomani, M.A.; Adeyemo, V.E.; Alazzawi, A.K.; Bajeh, A.O.; Kumar, G. Software Defect Prediction Using Wrapper Feature Selection Based on Dynamic Re-Ranking Strategy. Symmetry 2021, 13, 2166. [Google Scholar] [CrossRef]
- Balogun, A.O.; Basri, S.; Mahamad, S.; Capretz, L.F.; Imam, A.A.; Almomani, M.A.; Adeyemo, V.E.; Kumar, G. A novel rank aggregation-based hybrid multifilter wrapper feature selection method in software defect prediction. Comput. Intell. Neurosci. 2021, 2021, 5069016. [Google Scholar] [CrossRef]
- Alsariera, Y.A.; Balogun, A.O.; Adeyemo, V.E.; Tarawneh, O.H.; Mojeed, H.A. Intelligent tree-based ensemble approaches for phishing website detection. J. Eng. Sci. Technol. 2022, 17, 563–582. [Google Scholar]
- Kaplan, A.; Cao, H.; FitzGerald, J.M.; Iannotti, N.; Yang, E.; Kocks, J.W.; Kostikas, K.; Price, D.; Reddel, H.K.; Tsiligianni, I. Artificial intelligence/machine learning in respiratory medicine and potential role in asthma and COPD diagnosis. J. Allergy Clin. Immunol. Pract. 2021, 9, 2255–2261. [Google Scholar] [CrossRef]
- Petersilge, C.A.; McDonald, J.; Bishop, M.; Yudkovitch, L.; Treuting, C.; Towbin, A.J. Visible Light Imaging: Clinical Aspects with an Emphasis on Medical Photography—A HIMSS-SIIM Enterprise Imaging Community Whitepaper. J. Digit. Imaging 2022, 35, 385–395. [Google Scholar] [CrossRef]
- Oladepo, A.G.; Bajeh, A.O.; Balogun, A.O.; Mojeed, H.A.; Salman, A.A.; Bako, A.I. Heterogeneous Ensemble with Combined Dimensionality Reduction for Social Spam Detection. Int. J. Interact. Mob. Technol. 2021, 15, 84–103. [Google Scholar] [CrossRef]
- Usman-Hamza, F.; Atte, A.; Balogun, A.; Mojeed, H.; Bajeh, A.; Adeyemo, V. Impact of feature selection on classification via clustering techniques in software defect prediction. J. Comput. Sci. Its Appl. 2019, 26. [Google Scholar]
- Apostol, I.; Preda, M.; Nila, C.; Bica, I. IoT botnet anomaly detection using unsupervised deep learning. Electronics 2021, 10, 1876. [Google Scholar] [CrossRef]
- Balogun, A.; Oladele, R.; Mojeed, H.; Amin-Balogun, B.; Adeyemo, V.E.; Aro, T.O. Performance analysis of selected clustering techniques for software defects prediction. Afr. J. Comput. ICT 2019, 12, 30–42. [Google Scholar]
- Sahoo, S.; Das, M.; Mishra, S.; Suman, S. A hybrid DTNB model for heart disorders prediction. In Advances in Electronics, Communication and Computing; Springer: Berlin/Heidelberg, Germany; Bhubaneswar, India, 2021; pp. 155–163. [Google Scholar]
- Alamsyah, A.; Fadila, T. Increased accuracy of prediction hepatitis disease using the application of principal component analysis on a support vector machine. In Proceedings of the Journal of Physics: Conference Series, Manado, Indonesia, 15 October 2020; p. 012016. [Google Scholar]
- Muneer, A.; Taib, S.M.; Fati, S.M.; Balogun, A.O.; Aziz, I.A. A Hybrid deep learning-based unsupervised anomaly detection in high dimensional data. Comput. Mater. Contin. 2022, 70, 6073–6088. [Google Scholar]
- Fagherazzi, G.; Zhang, L.; Aguayo, G.; Pastore, J.; Goetzinger, C.; Fischer, A.; Malisoux, L.; Samouda, H.; Bohn, T.; Ruiz-Castell, M. Towards precision cardiometabolic prevention: Results from a machine learning, semi-supervised clustering approach in the nationwide population-based ORISCAV-LUX 2 study. Sci. Rep. 2021, 11, 16056. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, Z.; Zhang, X.; Chen, X.; Zhuang, F.; Xiong, H.; Cheng, X. FedHAR: Semi-Supervised Online Learning for Personalized Federated Human Activity Recognition. IEEE Trans. Mob. Comput. 2021. [Google Scholar] [CrossRef]
- Peng, J.; Wang, P.; Desrosiers, C.; Pedersoli, M. Self-paced contrastive learning for semi-supervised medical image segmentation with meta-labels. Adv. Neural Inf. Process. Syst. 2021, 34, 16686–16699. [Google Scholar]
- Luo, X.; Chen, J.; Song, T.; Wang, G. Semi-supervised medical image segmentation through dual-task consistency. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Conference, 2–9 February 2021; pp. 8801–8809. [Google Scholar]
- Saadatnejad, S.; Oveisi, M.; Hashemi, M. LSTM-based ECG classification for continuous monitoring on personal wearable devices. IEEE J. Biomed. Health Inform. 2019, 24, 515–523. [Google Scholar] [CrossRef]
- Amirshahi, A.; Hashemi, M. ECG classification algorithm based on STDP and R-STDP neural networks for real-time monitoring on ultra low-power personal wearable devices. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1483–1493. [Google Scholar] [CrossRef] [Green Version]
- Barbruni, G.L.; Ros, P.M.; Demarchi, D.; Carrara, S.; Ghezzi, D. Miniaturised wireless power transfer systems for neurostimulation: A review. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 1160–1178. [Google Scholar] [CrossRef]
- Hssayeni, M.D.; Jimenez-Shahed, J.; Burack, M.A.; Ghoraani, B. Wearable sensors for estimation of parkinsonian tremor severity during free body movements. Sensors 2019, 19, 4215. [Google Scholar] [CrossRef] [Green Version]
- Ahlrichs, C.; Samà, A.; Lawo, M.; Cabestany, J.; Rodríguez-Martín, D.; Pérez-López, C.; Sweeney, D.; Quinlan, L.R.; Laighin, G.Ò.; Counihan, T. Detecting freezing of gait with a tri-axial accelerometer in Parkinson’s disease patients. Med. Biol. Eng. Comput. 2016, 54, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Varatharajan, R.; Manogaran, G.; Priyan, M.K.; Sundarasekar, R. Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Clust. Comput. 2018, 21, 681–690. [Google Scholar] [CrossRef]
- Das, A.; Pradhapan, P.; Groenendaal, W.; Adiraju, P.; Rajan, R.T.; Catthoor, F.; Schaafsma, S.; Krichmar, J.L.; Dutt, N.; Van Hoof, C. Unsupervised heart-rate estimation in wearables with liquid states and a probabilistic readout. Neural Netw. 2018, 99, 134–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, A.; Siewiorek, D.P.; Smailagic, A.; Farringdon, J. Unsupervised, Dynamic Identification of Physiological and Activity Context in Wearable Computing. In Proceedings of the ISWC, White Plains, NY, USA, 21–23 October 2003; p. 88. [Google Scholar]
- Janarthanan, R.; Doss, S.; Baskar, S. Optimized unsupervised deep learning assisted reconstructed coder in the on-nodule wearable sensor for human activity recognition. Measurement 2020, 164, 108050. [Google Scholar] [CrossRef]
- Ballinger, B.; Hsieh, J.; Singh, A.; Sohoni, N.; Wang, J.; Tison, G.H.; Marcus, G.M.; Sanchez, J.M.; Maguire, C.; Olgin, J.E. DeepHeart: Semi-supervised sequence learning for cardiovascular risk prediction. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 2079–2086. [Google Scholar]
- Stikic, M.; Larlus, D.; Schiele, B. Multi-graph based semi-supervised learning for activity recognition. In Proceedings of the 2009 International Symposium on Wearable Computers, Linz, Austria, 4–7 September 2009; pp. 85–92. [Google Scholar]
- Stikic, M.; Van Laerhoven, K.; Schiele, B. Exploring semi-supervised and active learning for activity recognition. In Proceedings of the 2008 12th IEEE International Symposium on Wearable Computers, Pittsburgh, PA, USA, 28 September–1 October 2008; pp. 81–88. [Google Scholar]
- Ma, Y.; Ghasemzadeh, H. LabelForest: Non-parametric semi-supervised learning for activity recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 4520–4527. [Google Scholar]
- Wiechert, G.; Triff, M.; Liu, Z.; Yin, Z.; Zhao, S.; Zhong, Z.; Lingras, P. Evolutionary semi-supervised rough categorization of brain signals from a wearable headband. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 3131–3138. [Google Scholar]
- Mao, R.; Xu, H.; Wu, W.; Li, J.; Li, Y.; Lu, M. Overcoming the challenge of variety: Big data abstraction, the next evolution of data management for AAL communication systems. IEEE Commun. Mag. 2015, 53, 42–47. [Google Scholar] [CrossRef]
- Jothi, N.; Husain, W. Data mining in healthcare—A review. Procedia Comput. Sci. 2015, 72, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Chmielewska, M.; Stokwiszewski, J.; Markowska, J.; Hermanowski, T. Evaluating Organizational Performance of Public Hospitals using the McKinsey 7-S Framework. BMC Health Serv. Res. 2022, 22, 7. [Google Scholar] [CrossRef]
- Patel, S.A.; Sharma, H.; Mohan, S.; Weber, M.B.; Jindal, D.; Jarhyan, P.; Gupta, P.; Sharma, R.; Ali, M.; Ali, M.K. The Integrated Tracking, Referral, and Electronic Decision Support, and Care Coordination (I-TREC) program: Scalable strategies for the management of hypertension and diabetes within the government healthcare system of India. BMC Health Serv. Res. 2020, 20, 1022. [Google Scholar] [CrossRef]
- Nair, L.R.; Subramaniam, K.; Prasannavenkatesan, G. A review on multiple approaches to medical image retrieval system. Intell. Comput. Eng. 2020, 1125, 501–509. [Google Scholar]
- Torjmen-Khemakhem, M.; Gasmi, K. Document/query expansion based on selecting significant concepts for context based retrieval of medical images. J. Biomed. Inform. 2019, 95, 103210. [Google Scholar] [CrossRef]
- Wang, Y.; Afzal, N.; Fu, S.; Wang, L.; Shen, F.; Rastegar-Mojarad, M.; Liu, H. MedSTS: A resource for clinical semantic textual similarity. Lang. Resour. Eval. 2020, 54, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, T.; Pakhomov, S.V.; Patwardhan, S.; Chute, C.G. Measures of semantic similarity and relatedness in the biomedical domain. J. Biomed. Inform. 2007, 40, 288–299. [Google Scholar] [CrossRef] [Green Version]
- Kayyali, B.; Knott, D.; Van Kuiken, S. The big-data revolution in US health care: Accelerating value and innovation. Mc Kinsey Co. 2013, 2, 1–13. [Google Scholar]
- Nuti, S.V.; Wayda, B.; Ranasinghe, I.; Wang, S.; Dreyer, R.P.; Chen, S.I.; Murugiah, K. The use of google trends in health care research: A systematic review. PLoS ONE 2014, 9, e109583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.Y.; Ge, D.; He, M.M. Big data analytics for genomic medicine. Int. J. Mol. Sci. 2017, 18, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Bareinboim, E. Fairness in decision-making—The causal explanation formula. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar] [CrossRef]
- Faes, L.; Wagner, S.K.; Fu, D.J.; Liu, X.; Korot, E.; Ledsam, J.R.; Back, T.; Chopra, R.; Pontikos, N.; Kern, C. Automated deep learning design for medical image classification by health-care professionals with no coding experience: A feasibility study. Lancet Digit. Health 2019, 1, e232–e242. [Google Scholar] [CrossRef] [Green Version]
- Al-Rubaie, M.; Chang, J.M. Privacy-preserving machine learning: Threats and solutions. IEEE Secur. Priv. 2019, 17, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Ghassemi, M.; Naumann, T.; Schulam, P.; Beam, A.L.; Chen, I.Y.; Ranganath, R. A review of challenges and opportunities in machine learning for health. AMIA Summits Transl. Sci. Proc. 2020, 2020, 191. [Google Scholar] [PubMed]
- Begoli, E.; Bhattacharya, T.; Kusnezov, D. The need for uncertainty quantification in machine-assisted medical decision making. Nat. Mach. Intell. 2019, 1, 20–23. [Google Scholar] [CrossRef]
- Khademi, A.; Lee, S.; Foley, D.; Honavar, V. Fairness in algorithmic decision making: An excursion through the lens of causality. In Proceedings of the The World Wide Web Conference, Seoul, Korea, 7–11 April 2014; pp. 2907–2914. [Google Scholar]
- Kilbertus, N.; Rojas Carulla, M.; Parascandolo, G.; Hardt, M.; Janzing, D.; Schölkopf, B. Avoiding discrimination through causal reasoning. Adv. Neural Inf. Process. Syst. 2017, 30, 656–666. [Google Scholar]
- Ahmad, R.W.; Salah, K.; Jayaraman, R.; Yaqoob, I.; Ellahham, S.; Omar, M. The role of blockchain technology in telehealth and telemedicine. Int. J. Med. Inform. 2021, 148, 104399. [Google Scholar] [CrossRef]
- De Aguiar, E.J.; Faiçal, B.S.; Krishnamachari, B.; Ueyama, J. A survey of blockchain-based strategies for healthcare. ACM Comput. Surv. (CSUR) 2020, 53, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Al-Ashmori, A.; Basri, S.B.; Dominic, P.; Capretz, L.F.; Muneer, A.; Balogun, A.O.; Gilal, A.R.; Ali, R.F. Classifications of Sustainable Factors in Blockchain Adoption: A Literature Review and Bibliometric Analysis. Sustainability 2022, 14, 5176. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Blockchain technology applications in healthcare: An overview. Int. J. Intell. Netw. 2021, 2, 130–139. [Google Scholar] [CrossRef]
- McGhin, T.; Choo, K.-K.R.; Liu, C.Z.; He, D. Blockchain in healthcare applications: Research challenges and opportunities. J. Netw. Comput. Appl. 2019, 135, 62–75. [Google Scholar] [CrossRef]
- Varshney, A.; Garg, N.; Nagla, K.; Nair, T.; Jaiswal, S.; Yadav, S.; Aswal, D. Challenges in sensors technology for industry 4.0 for futuristic metrological applications. MAPAN 2021, 36, 215–226. [Google Scholar] [CrossRef]
- Farouk, A.; Alahmadi, A.; Ghose, S.; Mashatan, A. Blockchain platform for industrial healthcare: Vision and future opportunities. Comput. Commun. 2020, 154, 223–235. [Google Scholar] [CrossRef]
- Mamun, Q. Blockchain technology in the future of healthcare. Smart Health 2022, 23, 100223. [Google Scholar] [CrossRef]
- Fu, J.; Wang, N.; Cai, Y. Privacy-preserving in healthcare blockchain systems based on lightweight message sharing. Sensors 2020, 20, 1898. [Google Scholar] [CrossRef]
- Satamraju, K.P. Proof of concept of scalable integration of internet of things and blockchain in healthcare. Sensors 2020, 20, 1389. [Google Scholar] [CrossRef] [Green Version]
- Ejaz, M.; Kumar, T.; Kovacevic, I.; Ylianttila, M.; Harjula, E. Health-blockedge: Blockchain-edge framework for reliable low-latency digital healthcare applications. Sensors 2021, 21, 2502. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kumar, N.; Alhussein, M.; Muhammad, G. Blockchain-based UAV path planning for healthcare 4.0: Current challenges and the way ahead. IEEE Netw. 2021, 35, 20–29. [Google Scholar] [CrossRef]
- Reddy, B.; Aithal, P. Blockchain as a disruptive technology in healthcare and financial services-A review based analysis on current implementations. Intl Journal of Appl. Eng. and Mgmt Letters 2020, 4, 142–155. [Google Scholar]
- Tanwar, S.; Parekh, K.; Evans, R. Blockchain-based electronic healthcare record system for healthcare 4.0 applications. J. Inf. Secur. Appl. 2020, 50, 102407. [Google Scholar] [CrossRef]
- Agbo, C.C.; Mahmoud, Q.H.; Eklund, J.M. Blockchain technology in healthcare: A systematic review. Healthcare 2019, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Hathaliya, J.; Sharma, P.; Tanwar, S.; Gupta, R. Blockchain-based remote patient monitoring in healthcare 4.0. In Proceedings of the 2019 IEEE 9th international conference on advanced computing (IACC), Tiruchirappalli, India, 13–14 December 2019; pp. 87–91. [Google Scholar]
- Jiang, S.; Cao, J.; Wu, H.; Yang, Y.; Ma, M.; He, J. Blochie: A blockchain-based platform for healthcare information exchange. In Proceedings of the 2018 ieee international conference on smart computing (smartcomp), Taormina, Italy, 18–20 June 2018; pp. 49–56. [Google Scholar]
- Wang, S.; Wang, J.; Wang, X.; Qiu, T.; Yuan, Y.; Ouyang, L.; Guo, Y.; Wang, F.-Y. Blockchain-powered parallel healthcare systems based on the ACP approach. IEEE Trans. Comput. Soc. Syst. 2018, 5, 942–950. [Google Scholar] [CrossRef]
- Ashima, R.; Haleem, A.; Bahl, S.; Javaid, M.; Mahla, S.K.; Singh, S. Automation and manufacturing of smart materials in Additive Manufacturing technologies using Internet of Things towards the adoption of Industry 4.0. Mater. Today Proc. 2021, 45, 5081–5088. [Google Scholar] [CrossRef]
- Pandey, P.; Litoriya, R. Implementing healthcare services on a large scale: Challenges and remedies based on blockchain technology. Health Policy Technol. 2020, 9, 69–78. [Google Scholar] [CrossRef]
- Saha, A.; Amin, R.; Kunal, S.; Vollala, S.; Dwivedi, S.K. Review on “Blockchain technology based medical healthcare system with privacy issues”. Secur. Priv. 2019, 2, e83. [Google Scholar] [CrossRef]
- Ray, P.P.; Dash, D.; Salah, K.; Kumar, N. Blockchain for IoT-based healthcare: Background, consensus, platforms, and use cases. IEEE Syst. J. 2020, 15, 85–94. [Google Scholar] [CrossRef]
- Soltanisehat, L.; Alizadeh, R.; Hao, H.; Choo, K.-K.R. Technical, temporal, and spatial research challenges and opportunities in blockchain-based healthcare: A systematic literature review. IEEE Trans. Eng. Manag. 2020. [Google Scholar]
- Munoz, D.-J.; Constantinescu, D.-A.; Asenjo, R.; Fuentes, L. Clinicappchain: A low-cost blockchain hyperledger solution for healthcare. In Proceedings of the International Congress on Blockchain and Applications, L’Aquila, Italy, 17–19 June 2019; pp. 36–44. [Google Scholar]
- Saranya, R.; Murugan, A. A systematic review of enabling blockchain in healthcare system: Analysis, current status, challenges and future direction. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Subramanian, G.; Thampy, A.S.; Ugwuoke, N.V.; Ramnani, B. Crypto pharmacy–digital medicine: A mobile application integrated with hybrid blockchain to tackle the issues in pharma supply chain. IEEE Open J. Comput. Soc. 2021, 2, 26–37. [Google Scholar] [CrossRef]
- Nakamoto, S.; Bitcoin, A. A peer-to-peer electronic cash system. Bitcoin-URL 2008, 4, 2. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 15 June 2022).
- Griggs, K.N.; Ossipova, O.; Kohlios, C.P.; Baccarini, A.N.; Howson, E.A.; Hayajneh, T. Healthcare blockchain system using smart contracts for secure automated remote patient monitoring. J. Med. Syst. 2018, 42, 130. [Google Scholar] [CrossRef]
- Falwadiya, H.; Dhingra, S. Blockchain technology adoption in government organizations: A systematic literature review. J. Glob. Oper. Strateg. Sourc. 2022, 15, 473–501. [Google Scholar] [CrossRef]
- Mrozek, D.; Koczur, A.; Małysiak-Mrozek, B. Fall detection in older adults with mobile IoT devices and machine learning in the cloud and on the edge. Inf. Sci. 2020, 537, 132–147. [Google Scholar] [CrossRef]
- Syed, L.; Jabeen, S.; Manimala, S.; Alsaeedi, A. Smart healthcare framework for ambient assisted living using IoMT and big data analytics techniques. Future Gener. Comput. Syst. 2019, 101, 136–151. [Google Scholar] [CrossRef]
- Vitabile, S.; Marks, M.; Stojanovic, D.; Pllana, S.; Molina, J.M.; Krzyszton, M.; Sikora, A.; Jarynowski, A.; Hosseinpour, F.; Jakobik, A. Medical data processing and analysis for remote health and activities monitoring. In High-Performance Modelling and Simulation for Big Data Applications; Springer: Cham, Germany, 2019; pp. 186–220. [Google Scholar]
- Selvaraj, P.; Doraikannan, S. Privacy and security issues on wireless body area and IoT for remote healthcare monitoring. Intell. Pervasive Comput. Syst. Smarter Healthc. 2019, 227–253. [Google Scholar] [CrossRef]
- Kaur, J.; Verma, R.; Alharbe, N.R.; Agrawal, A.; Khan, R.A. Importance of fog computing in healthcare 4.0. In Fog Computing for Healthcare 4.0 Environments; Springer: Berlin/Heidelberg, Germany, 2021; pp. 79–101. [Google Scholar]
- Satpathy, S.; Mohan, P.; Das, S.; Debbarma, S. A new healthcare diagnosis system using an IoT-based fuzzy classifier with FPGA. J. Supercomput. 2020, 76, 5849–5861. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Malathi, D.; Subramaniyaswamy, V.; Saravanan, P.; Logesh, R. Fog computing-based intelligent healthcare system for the detection and prevention of mosquito-borne diseases. Comput. Hum. Behav. 2019, 100, 275–285. [Google Scholar] [CrossRef]
- Yang, Y.; Nan, F.; Yang, P.; Meng, Q.; Xie, Y.; Zhang, D.; Muhammad, K. GAN-based semi-supervised learning approach for clinical decision support in health-IoT platform. IEEE Access 2019, 7, 8048–8057. [Google Scholar] [CrossRef]
- Singh, P.; Kaur, R. An integrated fog and Artificial Intelligence smart health framework to predict and prevent COVID-19. Glob. Transit. 2020, 2, 283–292. [Google Scholar] [CrossRef]
Year | Reference | Taxonomy | Sensors | IoT | Artificial Intelligence | Blockchain | Covered Year |
---|---|---|---|---|---|---|---|
2015 | Islam, Kwak, Kabir, Hossain and Kwak [65] | No | No | Yes | No | No | Not stated |
2015 | Li, Lu and McDonald-Maier [66] | No | Yes | No | No | No | Not stated |
2015 | Yang, Li, Mulder, Wang, Chen, Wu, Wang and Pan [67] | No | Yes | No | No | No | Not stated |
2015 | Wahaishi, Samani and Ghenniwa [68] | No | No | Yes | No | No | Not stated |
2016 | Yeole and Kalbande [63] | No | No | Yes | No | No | Not stated |
2016 | Yuehong, Zeng, Chen and Fan [56] | No | No | Yes | No | No | Not stated |
2016 | Capraro [57] | No | No | Yes | Yes | No | Not stated |
2016 | Azzawi, Hassan and Bakar [58] | No | No | Yes | Yes | No | Not stated |
2016 | Sakr and Elgammal [59] | No | No | No | Yes | No | Not stated |
2016 | Romero, Chatterjee and Armentano [61] | No | Yes | Yes | Yes | No | Not stated |
2016 | Mathew and Pillai [62] | No | No | No | Yes | No | Not stated |
2016 | Dimitrievski, Zdravevski, Lameski and Trajkovik [64] | No | No | Yes | No | No | Not stated |
2016 | Hossain and Muhammad [60] | No | No | Yes | No | No | Not stated |
2017 | Sethi and Sarangi [53] | Yes | No | Yes | No | No | Not Stated |
2017 | Qi, Yang, Min, Amft, Dong and Xu [54] | No | Yes | Yes | Yes | No | Not Stated |
2017 | Farahani, Firouzi, Chang, Badaroglu, Constant and Mankodiya [51] | No | No | Yes | No | No | Not Stated |
2017 | Darwish, Hassanien, Elhoseny, Sangaiah and Muhammad [52] | No | No | Yes | No | No | Not Stated |
2017 | Tokognon, Gao, Tian and Yan [55] | No | No | Yes | No | No | Not Stated |
2018 | Cui, Yang, Chen, Ming, Lu and Qin [46] | No | No | Yes | Yes | No | Not Stated |
2018 | Alam, Malik, Khan, Pardy, Kuusik and Le Moullec [47] | No | No | Yes | No | No | Not Stated |
2018 | Sharma and Singh [48] | No | No | Yes | Yes | No | Not Stated |
2018 | Babu and Shantharajah [49] | No | No | Yes | Yes | No | Not Stated |
2018 | Sughasiny and Rajeshwari [50] | No | No | No | Yes | No | Not Stated |
2019 | Mutlag, Abd Ghani, Arunkumar, Mohammed and Mohd [43] | Yes | No | Yes | No | No | 2007–2017 |
2019 | Habibzadeh, Dinesh, Shishvan, Boggio-Dandry, Sharma and Soyata [42] | No | Yes | Yes | No | No | Not Stated |
2019 | Dang, Piran, Han, Min and Moon [45] | No | No | Yes | No | No | 2015–2019 |
2019 | Dhanvijay and Patil [41] | No | No | Yes | No | No | Not Stated |
2019 | Ray, Dash and De [44] | Yes | No | Yes | No | No | Not Stated |
2020 | Santos, Munoz, Olivares, Rebouças Filho, Del Ser and de Albuquerque [38] | No | No | Yes | Yes | No | 2015–2028 |
2020 | Amin and Hossain [39] | Yes | No | Yes | Yes | Yes | Not Stated |
2020 | Alshehri and Muhammad [40] | Yes | No | Yes | Yes | No | 2014–2020 |
2020 | Qadri, Nauman, Zikria, Vasilakos and Kim [34] | No | No | Yes | Yes | Yes | Not Stated |
2020 | Karthick and Pankajavalli [37] | Yes | Yes | Yes | No | No | Not Stated |
2020 | Al-Dhief, Latiff, Malik, Salim, Baki, Albadr and Mohammed [35] | No | No | Yes | Yes | No | Not Stated |
2020 | Qayyum, Qadir, Bilal and Al-Fuqaha [36] | No | No | No | Yes | No | Not Stated |
2021 | Krishnamoorthy, Dua and Gupta [30] | Yes | No | Yes | No | No | Not Stated |
2021 | Li, Chai, Khan, Jan, Verma, Menon and Li [31] | Yes | No | Yes | Yes | No | 2016–2020 |
2021 | Sworna, Islam, Shatabda and Islam [21] | Yes | Yes | Yes | Yes | No | Not Stated |
2021 | Tunc, Gures and Shayea [32] | No | No | Yes | Yes | Yes | Not Stated |
2021 | Nahavandi, Alizadehsani, Khosravi and Acharya [33] | No | Yes | No | Yes | No | Not Stated |
2022 | Kamruzzaman, Alrashdi and Alqazzaz [26] | No | No | Yes | Yes | No | 2016–2021 |
2022 | Yang, Wang, Jiang, Guo, Cheng and Chen [27] | No | No | Yes | No | No | Not Stated |
2022 | Karatas, Eriskin, Deveci, Pamucar and Garg [28] | No | No | No | Yes | No | Not Stated |
2022 | Alshamrani [29] | No | No | Yes | Yes | No | Not Stated |
2022 | This study | Yes | Yes | Yes | Yes | Yes | 2015–2022 |
Type of Sensor | Subcategories | Examples |
---|---|---|
Wearable sensors | Inertial sensors | Accelerometer |
Gyroscopes | ||
Pressure sensors | ||
Magnetic field sensors | ||
Location sensors | Global Positioning System (GPS) | |
Blood pressure cuff | ||
Electrocardiogram (ECG) | ||
Physiological sensors | Spirometer | |
Esophagogastroduodenoscopy (EDG) | ||
Galvanic Skin Response (GSR) | ||
Image sensors | SenseCam |
Type of Sensor | Subcategories | Examples |
---|---|---|
Ambient sensors | Environmental sensors | Thermometer |
Hygrometer | ||
Binary sensors | Window contact | |
Door contact | ||
Light switch | ||
Remote control switch | ||
Location sensors | Infra-red | |
Physiological sensors | Zigbee | |
Active Radio Frequency Identification (RFID) | ||
Tags | RFID tags | |
Near Field Communication (NFC) tags |
Development Boards | Random Access Memory (RAM) | Operating System | Micro Controller | Processor Speed |
---|---|---|---|---|
Arduino | 2 KB | Windows, macOS and Linux | At-Mega328p MC | 16 MHz |
Beagle Bone | 512 MB | Linux and Debian | ARM Cortex A8 32bits | 1 GHz |
Raspberry Pi | 1 GB | Linux, Debian, Android, Windows, etc. | Raspberry Pi Pico RP 2040 | 1.2 GHz |
Intel Edison | 4 GB | Windows, macOS and Linux | Intel Quark | 500 MHz |
Banana Pi | 1 GB | OpenWRT and Android, Lubuntu, Ubuntu, Debian, and Raspbian | ARM Cortex A55 CPU | 1.8 GHz |
Jetson Nano | 4 GB | Linux4Tegra | Quad-core ARM Cortex-A57 MPCore processor | 1.43 GHz |
S/No. | Blockchain Applications | Summary | References |
---|---|---|---|
1. | Patient’s data storage | The patient’s biodata and medical history are recorded in EHR format by the healthcare provider which can be stored on blockchain-enable platforms. In this case, healthcare providers can traverse the stored data and check for validity seamlessly by regularly matching health records stored on the Blockchain system. Besides, Blockchain provides cryptographic methods, which can be useful in the safeguarding of data and data sharing. | [174,183,184] |
2. | Data Validation | Deployment of blockchain can adequately validate data at any point. All transactions are algorithmically validated and linked together in a Blockchain system. | [185,186,187] |
3. | Smooth and transparent data manipulation | Blockchain can provide a smooth data exchange among health providers that could enhance diagnostic procedures and precision. Blockchain allows multiple HMS to stay in contact and exchange data on a shared distributed ledger for improved security and accountability. | [188,189,190] |
4. | Overhead cost and time reduction | Blockchain systems can easily address the interoperability issue, of missing data in healthcare systems. Health providers will have overview access to patients’ records without the need for third-party applications. This invariably minimizes the cost and time of data transformation. | [191,192,193] |
5. | Patient Monitoring | Blockchain may be used with IoT technology to increase the adaptability and integrity of the supply chain, making healthcare logistics increasingly accessible for effective healthcare management. | [194,195,196] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junaid, S.B.; Imam, A.A.; Balogun, A.O.; De Silva, L.C.; Surakat, Y.A.; Kumar, G.; Abdulkarim, M.; Shuaibu, A.N.; Garba, A.; Sahalu, Y.; et al. Recent Advancements in Emerging Technologies for Healthcare Management Systems: A Survey. Healthcare 2022, 10, 1940. https://doi.org/10.3390/healthcare10101940
Junaid SB, Imam AA, Balogun AO, De Silva LC, Surakat YA, Kumar G, Abdulkarim M, Shuaibu AN, Garba A, Sahalu Y, et al. Recent Advancements in Emerging Technologies for Healthcare Management Systems: A Survey. Healthcare. 2022; 10(10):1940. https://doi.org/10.3390/healthcare10101940
Chicago/Turabian StyleJunaid, Sahalu Balarabe, Abdullahi Abubakar Imam, Abdullateef Oluwagbemiga Balogun, Liyanage Chandratilak De Silva, Yusuf Alhaji Surakat, Ganesh Kumar, Muhammad Abdulkarim, Aliyu Nuhu Shuaibu, Aliyu Garba, Yusra Sahalu, and et al. 2022. "Recent Advancements in Emerging Technologies for Healthcare Management Systems: A Survey" Healthcare 10, no. 10: 1940. https://doi.org/10.3390/healthcare10101940
APA StyleJunaid, S. B., Imam, A. A., Balogun, A. O., De Silva, L. C., Surakat, Y. A., Kumar, G., Abdulkarim, M., Shuaibu, A. N., Garba, A., Sahalu, Y., Mohammed, A., Mohammed, T. Y., Abdulkadir, B. A., Abba, A. A., Kakumi, N. A. I., & Mahamad, S. (2022). Recent Advancements in Emerging Technologies for Healthcare Management Systems: A Survey. Healthcare, 10(10), 1940. https://doi.org/10.3390/healthcare10101940