Patient-Specific 3D-Print Extracranial Vascular Simulators and Infrared Imaging Platform for Diagnostic Cerebral Angiography Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vascular Simulators
2.2. Infrared Imaging Platform
2.3. The Two Training Courses in the Past Four Years
- Basic introduction of this training program was given to all participants, including (1) the three VSs with different aortic arch types; (2) the manipulation techniques of 4 French (Fr) JB1, JB2, and SIM2 catheters; and (3) the two videos of JB2 catheter manipulation in one type I aortic arch simulator (Supplementary Video S1) and SIM2 catheter manipulation coupled with a long 6 Fr curved angiosheath to overcome the tortuosity of the abdominal aorta in one type III aortic arch (Supplementary Video S2).
- After the basic introduction, all participants were separately invited to experience and practice the catheter manipulation with different aortic arch simulators under fluoroscopy (first course) or the infrared system (second course). One 5 Fr sheath had been already introduced into the right common femoral artery of each simulator. With a Siemens Artis zee biplane angiography system (Siemens, Munich, Germany), low-dose radiation fluoroscopy settings were applied for the training program with a reduced frame rate (5 fps) and a lower x-ray dose per frame (29–32 nGy/frame). Each resident was asked to complete the navigation of one 4F r JB1 catheter to right the CCA/left CCA on a type I aortic arch simulator and advancement of one 4 Fr SIM2 catheter to the right CCA/left CCA on a bovine arch simulator step by step.
- For the type III aortic arch simulator with tortuous abdominal aorta, each trainee was asked to experience the difficulty of the JB2 catheter navigation to right the CCA and SIM 2 catheter reconstitution in the aortic arch of this specific simulator. Then, a 60 cm 6 Fr curved angiosheath was introduced to the thoracoabdominal aorta junction to overcome the redundant movement of the SIM catheter during reconstitution. All trainees were allowed to complete a practice navigation of the right CCA and left CCA with a SIM 2 catheter at this point. Finally, the time duration of the navigation of the right CCA and left CCA with the SIM 2 catheter was defined as the total manipulation time (TMT) and recorded for all trainees. In the first training course, all four third-year residents were allowed to have only one trial, and the other second-year and first-year residents were allowed to have two trials. In the second course, all residents were allowed to have two trials.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AM | angiography machine |
CAS | carotid artery stenting |
CCA | common carotid artery |
CMOS | complementary metal-oxide semiconductor |
CT | computed tomography |
DICOM | digital imaging and communication in medicine |
EVT | endovascular thrombectomy |
IRIP | infrared imaging platform |
PACS | picture archiving and communication system |
R1 | first-year residents |
R2 | second-year residents |
R3 | third-year residents |
SCA | subclavian artery |
SLA | stereolithography |
SIM2 | Simmon 2 |
STL | stereolithography |
TAVI | transcatheter aortic valve implantation |
TMT | total manipulation time |
VS | vascular simulator |
References
- Pierot, L.; Wakhloo, A.K. Endovascular treatment of intracranial aneurysms: Current status. Stroke 2013, 44, 2046–2054. [Google Scholar] [CrossRef]
- Sardar, P.; Chatterjee, S.; Aronow, H.D.; Kundu, A.; Ramchand, P.; Mukherjee, D.; Nairooz, R.; Gray, W.A.; White, C.J.; Jaff, M.R.; et al. Carotid artery stenting versus endarterectomy for stroke prevention: A meta-analysis of clinical trials. J. Am. Coll. Cardiol. 2017, 69, 2266–2275. [Google Scholar] [CrossRef]
- Padalia, A.; Sambursky, J.A.; Skinner, C.; Moureiden, M. Percutaneous transluminal angioplasty with stent placement versus best medical therapy alone in symptomatic intracranial arterial stenosis: A best evidence review. Cureus 2018, 10, e2988. [Google Scholar] [CrossRef] [Green Version]
- Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.; Mitchell, P.J.; Demchuk, A.M.; Davalos, A.; Majoie, C.B.; van der Lugt, A.; de Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef]
- Connors, J.J., 3rd; Sacks, D.; Furlan, A.J.; Selman, W.R.; Russell, E.J.; Stieg, P.E.; Hadley, M.N. Training, competency, and credentialing standards for diagnostic cervicocerebral angiography, carotid stenting, and cerebrovascular intervention. AJNR Am. J. Neuroradiol. 2004, 25, 1732–1741. [Google Scholar] [CrossRef] [Green Version]
- Bendszus, M.; Koltzenburg, M.; Burger, R.; Warmuth-Metz, M.; Hofmann, E.; Solymosi, L. Silent embolism in diagnostic cerebral angiography and neurointerventional procedures: A prospective study. Lancet 1999, 354, 1594–1597. [Google Scholar] [CrossRef]
- Lam, R.C.; Lin, S.C.; DeRubertis, B.; Hynecek, R.; Kent, K.C.; Faries, P.L. The impact of increasing age on anatomic factors affecting carotid angioplasty and stenting. J. Vasc. Surg. 2007, 45, 875–880. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.S.; Choi, C.H.; Han, I.H.; Lee, J.H.; Choi, H.J.; Lee, J.I. Obtaining informed consent using patient specific 3d printing cerebral aneurysm model. J. Korean Neurosurg. Soc. 2019, 62, 398–404. [Google Scholar] [CrossRef]
- Bartellas, M.P. Three-dimensional printing and medical education: A narrative review of the literature. Univ. Ott. J. Med. 2016, 6, 38–43. [Google Scholar] [CrossRef]
- Kimura, T.; Morita, A.; Nishimura, K.; Aiyama, H.; Itoh, H.; Fukaya, S.; Sora, S.; Ochiai, C. Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery 2009, 65, 719–725, discussion 725–716. [Google Scholar] [CrossRef]
- Mashiko, T.; Kaneko, N.; Konno, T.; Otani, K.; Nagayama, R.; Watanabe, E. Training in cerebral aneurysm clipping using self-made 3-dimensional models. J. Surg. Educ. 2017, 74, 681–689. [Google Scholar] [CrossRef]
- Mashiko, T.; Otani, K.; Kawano, R.; Konno, T.; Kaneko, N.; Ito, Y.; Watanabe, E. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg. 2015, 83, 351–361. [Google Scholar] [CrossRef]
- Wang, L.; Ye, X.; Hao, Q.; Ma, L.; Chen, X.; Wang, H.; Zhao, Y. Three-dimensional intracranial middle cerebral artery aneurysm models for aneurysm surgery and training. J. Clin. Neurosci. 2018, 50, 77–82. [Google Scholar] [CrossRef]
- Nagassa, R.G.; McMenamin, P.G.; Adams, J.W.; Quayle, M.R.; Rosenfeld, J.V. Advanced 3D printed model of middle cerebral artery aneurysms for neurosurgery simulation. 3D Print. Med. 2019, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Miranpuri, A.S.; Nickele, C.M.; Akture, E.; Royalty, K.; Niemann, D.B. Neuroangiography simulation using a silicone model in the angiography suite improves trainee skills. J. Neurointerv. Surg. 2014, 6, 561–564. [Google Scholar] [CrossRef]
- Itagaki, M.W. Using 3D printed models for planning and guidance during endovascular intervention: A technical advance. Diagn. Interv. Radiol. 2015, 21, 338–341. [Google Scholar] [CrossRef] [Green Version]
- Namba, K.; Higaki, A.; Kaneko, N.; Mashiko, T.; Nemoto, S.; Watanabe, E. Microcatheter shaping for intracranial aneurysm coiling using the 3-dimensional printing rapid prototyping technology: Preliminary result in the first 10 consecutive cases. World Neurosurg. 2015, 84, 178–186. [Google Scholar] [CrossRef]
- Russ, M.; O’Hara, R.; Setlur Nagesh, S.V.; Mokin, M.; Jimenez, C.; Siddiqui, A.; Bednarek, D.; Rudin, S.; Ionita, C. Treatment planning for image-guided neuro-vascular interventions using patient-specific 3d printed phantoms. In Proceedings of the Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging, Orlando, FL, USA, 21–26 February 2015; Volume 9417. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, T.; Takao, H.; Suzuki, T.; Yuki, I.; Kaku, S.; Kan, I.; Nishimura, K.; Suzuki, T.; Watanabe, M.; Karagiozov, K.; et al. Tailor-made shaping of microcatheters using three-dimensional printed vessel models for endovascular coil embolization. Comput. Biol. Med. 2016, 77, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, S.; Aguilar-Salinas, P.; Santos, R.; Beier, A.D.; Hanel, R.A. Three-dimensional printing and neuroendovascular simulation for the treatment of a pediatric intracranial aneurysm: Case report. J. Neurosurg. Pediatr. 2018, 22, 672–677. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.R.; Diaz, O.; Klucznik, R.; Zhang, Y.J.; Britz, G.W.; Grossman, R.G.; Lv, N.; Huang, Q.; Karmonik, C. Validation of computational fluid dynamics methods with anatomically exact, 3D printed MRI phantoms and 4D pcMRI. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 6 November 2014; pp. 6699–6701. [Google Scholar] [CrossRef]
- Anderson, J.R.; Klucznik, R.; Diaz, O.; Zhang, Y.J.; Britz, G.W.; Grossman, R.G.; Karmonik, C. Quantification of velocity reduction after flow diverter placement in intracranial aneurysm: An ex vivo study with 3D printed replicas. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015; pp. 7300–7303. [Google Scholar] [CrossRef]
- Anderson, J.R.; Thompson, W.L.; Alkattan, A.K.; Diaz, O.; Klucznik, R.; Zhang, Y.J.; Britz, G.W.; Grossman, R.G.; Karmonik, C. Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models. J. Neurointerv. Surg. 2016, 8, 517–520. [Google Scholar] [CrossRef] [Green Version]
- Dion, J.E.; Gates, P.C.; Fox, A.J.; Barnett, H.J.; Blom, R.J. Clinical events following neuroangiography: A prospective study. Stroke 1987, 18, 997–1004. [Google Scholar] [CrossRef] [Green Version]
- Werner, M.; Bausback, Y.; Bräunlich, S.; Ulrich, M.; Piorkowski, M.; Friedenberger, J.; Schuster, J.; Botsios, S.; Scheinert, D.; Schmidt, A. Anatomic variables contributing to a higher periprocedural incidence of stroke and TIA in carotid artery stenting. Catheter. Cardiovasc. Interv. 2012, 80, 321–328. [Google Scholar] [CrossRef]
- Macdonald, S.; Lee, R.; Williams, R.; Stansby, G. Towards safer carotid artery stenting. Stroke 2009, 40, 1698–1703. [Google Scholar] [CrossRef]
- Shen, S.; Jiang, X.; Dong, H.; Peng, M.; Wang, Z.; Che, W.; Zou, Y.; Yang, Y. Effect of aortic arch type on technical indicators in patients undergoing carotid artery stenting. J. Int. Med. Res. 2019, 47, 682–688. [Google Scholar] [CrossRef] [Green Version]
- Burzotta, F.; Nerla, R.; Pirozzolo, G.; Aurigemma, C.; Niccoli, G.; Leone, A.M.; Saffioti, S.; Crea, F.; Trani, C. Clinical and procedural impact of aortic arch anatomic variants in carotid stenting procedures. Catheter. Cardiovasc. Interv. 2015, 86, 480–489. [Google Scholar] [CrossRef]
- McIvor, J.; Steiner, T.J.; Perkin, G.D.; Greenhalgh, R.M.; Rose, F.C. Neurological morbidity of arch and carotid arteriography in cerebrovascular disease. The influence of contrast medium and radiologist. Br. J. Radiol. 1987, 60, 117–122. [Google Scholar] [CrossRef]
- Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.C.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 2015, 372, 2285–2295. [Google Scholar] [CrossRef]
- Berkhemer, O.A.; Fransen, P.S.; Beumer, D.; van den Berg, L.A.; Lingsma, H.F.; Yoo, A.J.; Schonewille, W.J.; Vos, J.A.; Nederkoorn, P.J.; Wermer, M.J.; et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 2015, 372, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.C.; Mitchell, P.J.; Kleinig, T.J.; Dewey, H.M.; Churilov, L.; Yassi, N.; Yan, B.; Dowling, R.J.; Parsons, M.W.; Oxley, T.J.; et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 2015, 372, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef] [Green Version]
- Jovin, T.G.; Chamorro, A.; Cobo, E.; de Miquel, M.A.; Molina, C.A.; Rovira, A.; San Roman, L.; Serena, J.; Abilleira, S.; Ribo, M.; et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef] [Green Version]
- Powers, W.J.; Derdeyn, C.P.; Biller, J.; Coffey, C.S.; Hoh, B.L.; Jauch, E.C.; Johnston, K.C.; Johnston, S.C.; Khalessi, A.A.; Kidwell, C.S.; et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment. Stroke 2015, 46, 3020–3035. [Google Scholar] [CrossRef] [Green Version]
- McMeekin, P.; White, P.; James, M.A.; Price, C.I.; Flynn, D.; Ford, G.A. Estimating the number of UK stroke patients eligible for endovascular thrombectomy. Eur. Stroke J. 2017, 2, 319–326. [Google Scholar] [CrossRef]
- Saber, H.; Navi, B.B.; Grotta, J.C.; Kamel, H.; Bambhroliya, A.; Vahidy, F.S.; Chen, P.R.; Blackburn, S.; Savitz, S.I.; McCullough, L.; et al. Real-world treatment trends in endovascular stroke therapy. Stroke 2019, 50, 683–689. [Google Scholar] [CrossRef]
- Smith, E.E.; Saver, J.L.; Cox, M.; Liang, L.; Matsouaka, R.; Xian, Y.; Bhatt, D.L.; Fonarow, G.C.; Schwamm, L.H. Increase in endovascular therapy in get with the guidelines-stroke after the publication of pivotal trials. Circulation 2017, 136, 2303–2310. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 2017, 378, 11–21. [Google Scholar] [CrossRef]
- Albers, G.W.; Marks, M.P.; Kemp, S.; Christensen, S.; Tsai, J.P.; Ortega-Gutierrez, S.; McTaggart, R.A.; Torbey, M.T.; Kim-Tenser, M.; Leslie-Mazwi, T.; et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N. Engl. J. Med. 2018, 378, 708–718. [Google Scholar] [CrossRef]
- Sacks, D.; van Overhagen, H.; van Zwam, W.H.; Radvany, M.G.; Marx, M.V.; Morgan, R.A.; Vrazas, J.I.; Goh, G.S. The role of interventional radiologists in acute ischemic stroke interventions: A joint position statement from the Society of Interventional Radiology, the Cardiovascular and Interventional Radiology Society of Europe, and the Interventional Radiology Society of Australasia. J. Vasc. Interv. Radiol. 2019, 30, 131–133. [Google Scholar] [CrossRef] [Green Version]
- Sacks, D.; AbuAwad, M.K.; Ahn, S.H.; Baerlocher, M.O.; Brady, P.S.; Cole, J.W.; Dhand, S.; Fox, B.D.; Gemmete, J.J.; Kee-Sampson, J.W.; et al. Society of Interventional Radiology training guidelines for endovascular stroke treatment. J. Vasc. Interv. Radiol. 2019, 30, 1523–1531. [Google Scholar] [CrossRef] [Green Version]
- Narra, P.; Kuban, J.; Grandpre, L.E.; Singh, J.; Barrero, J.; Norbash, A. Videoscopic phantom-based angiographic simulation: Effect of brief angiographic simulator practice on vessel cannulation times. J. Vasc. Interv. Radiol. 2009, 20, 1215–1223. [Google Scholar] [CrossRef]
First Trial (min) | Second Trial (min) | Improvement (min) | Ratio | |
---|---|---|---|---|
Fluoro R1-A | 18.0 | 13.7 | 4.3 | 23.9% |
Fluoro R1-B | 18.0 | 13.2 | 4.8 | 26.7% |
Fluoro R1-C | 18.0 | 14.4 | 3.6 | 20.0% |
Fluoro R2-A | 12.7 | 10.2 | 2.5 | 19.7% |
Fluoro R2-B | 14.1 | 11.5 | 2.6 | 18.4% |
Fluoro R2-C | 13.2 | 10.7 | 2.5 | 18.9% |
Fluoro R3-A | 8.5 | |||
Fluoro R3-B | 8.6 | |||
Fluoro R3-C | 10.5 | |||
Fluoro R3-D | 9.2 | |||
IR R1-A | 5.2 | 5.9 | −0.7 | −13.5% |
IR R1-B | 14.0 | 7.5 | 6.5 | 46.4% |
IR R1-C | 8.7 | 4.9 | 3.8 | 43.7% |
IR R2-A | 4.9 | 3.5 | 1.4 | 28.6% |
IR R2-B | 8.2 | 5.9 | 2.3 | 28.0% |
IR R2-C | 5.7 | 4.3 | 1.4 | 24.6% |
IR R3-A | 6.2 | 5.8 | 0.4 | 6.5% |
IR R3-B | 3.6 | 2.2 | 1.4 | 38.9% |
IR R3-C | 4.2 | 3.5 | 0.7 | 16.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.-C.; Weng, J.-Y.; Lin, C.-J.; Tsui, Y.-K.; Kuo, J.-R.; Chen, P.-J.; Wang, J.-J. Patient-Specific 3D-Print Extracranial Vascular Simulators and Infrared Imaging Platform for Diagnostic Cerebral Angiography Training. Healthcare 2022, 10, 2277. https://doi.org/10.3390/healthcare10112277
Wu T-C, Weng J-Y, Lin C-J, Tsui Y-K, Kuo J-R, Chen P-J, Wang J-J. Patient-Specific 3D-Print Extracranial Vascular Simulators and Infrared Imaging Platform for Diagnostic Cerebral Angiography Training. Healthcare. 2022; 10(11):2277. https://doi.org/10.3390/healthcare10112277
Chicago/Turabian StyleWu, Te-Chang, Jui-Yu Weng, Chien-Jen Lin, Yu-Kun Tsui, Jinn-Rung Kuo, Pei-Jarn Chen, and Jhi-Joung Wang. 2022. "Patient-Specific 3D-Print Extracranial Vascular Simulators and Infrared Imaging Platform for Diagnostic Cerebral Angiography Training" Healthcare 10, no. 11: 2277. https://doi.org/10.3390/healthcare10112277
APA StyleWu, T. -C., Weng, J. -Y., Lin, C. -J., Tsui, Y. -K., Kuo, J. -R., Chen, P. -J., & Wang, J. -J. (2022). Patient-Specific 3D-Print Extracranial Vascular Simulators and Infrared Imaging Platform for Diagnostic Cerebral Angiography Training. Healthcare, 10(11), 2277. https://doi.org/10.3390/healthcare10112277