Targeting Cerebellum with Non-Invasive Transcranial Magnetic or Current Stimulation after Cerebral Hemispheric Stroke—Insights for Corticocerebellar Network Reorganization: A Comprehensive Review
Abstract
:1. Introduction
1.1. Transcranial Magnetic Stimulation (TMS)
1.2. Transcranial Direct Current Stimulation (tDCS)
1.3. NIBS in Stroke Rehabilitation
1.4. Limitations of NIBS—New Perspectives
2. Materials and Methods
3. Results
3.1. Study Selection
3.2. Cerebellar TMS in Stroke Rehabilitation
3.3. Cerebellar tDCS in Stroke Rehabilitation
4. Discussion
5. Limitations and Future Studies
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; Caplan, L.R.; Connors, J.J.; Culebras, A. An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American heart association/American stroke association. Stroke 2013, 44, 2064–2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, M.P.; Norrving, B.; Sacco, R.L.; Brainin, M.; Hacke, W.; Martins, S. World Stroke Organization (WSO): Global Stroke Fact Sheet 2019. Int. J. Stroke 2019, 14, 806–817. [Google Scholar] [CrossRef] [PubMed]
- Solanki, D.; Rezaee, Z.; Dutta, A.; Lahiri, U. Investigating the feasibility of cerebellar transcranial direct current stimulation to facilitate post-stroke overground gait performance in chronic stroke: A partial least-squares regression approach. J. Neuroeng. Rehabilitation 2021, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Stinear, C.M.; Lang, C.E.; Zeiler, S.; Byblow, W.D. Advances and challenges in stroke rehabilitation. Lancet Neurol. 2020, 19, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Tanino, G.; Miyasaka, H. Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation. Med. Devices 2017, 10, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.H.; Kim, Y.-H. Robot-assisted therapy in stroke rehabilitation. J. Stroke 2013, 15, 174–181. [Google Scholar] [CrossRef]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. In Cochrane Database of Systematic Reviews; John Wiley and Sons Ltd.: New York, NY, USA, 2017; Volume 2017. [Google Scholar]
- van Dun, K.; Bodranghien, F.; Manto, M.; Mariën, P. Targeting the cerebellum by noninvasive neurostimulation: A review. In Cerebellum; Springer LLC: New York, NY, USA, 2017; Volume 16, pp. 659–741. [Google Scholar]
- Galea, J.M.; Jayaram, G.; Ajagbe, L.; Celnik, P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J. Neurosci. 2009, 29, 9115–9122. [Google Scholar] [CrossRef]
- Alia, C.; Spalletti, C.; Lai, S.; Panarese, A.; Lamola, G.; Bertolucci, F.; Vallone, F.; Di Garbo, A.; Chisari, C.; Micera, S.; et al. Neuroplastic changes following brain ischemia and their contribution to stroke recovery: Novel approaches in neurorehabilitation. Front. Cell Neurosci. 2017, 11, 76. [Google Scholar] [CrossRef] [Green Version]
- Di Pino, G.; Pellegrino, G.; Assenza, G.; Capone, F.; Ferreri, F.; Formica, D.; Ranieri, F.; Tombini, M.; Ziemann, U.; Rothwell, J.; et al. Modulation of brain plasticity in stroke: A novel model for neurorehabilitation. In Nature Reviews Neurology; Nature Publishing Group: Berlin, Germany, 2014; Volume 10, pp. 597–608. [Google Scholar] [CrossRef]
- Chieffo, R.; Comi, G.; Leocani, L. Noninvasive neuromodulation in poststroke gait disorders. Neurorehabilit. Neural Repair 2016, 30, 71–82. [Google Scholar] [CrossRef]
- Sandrini, M.; Cohen, L.G. Noninvasive brain stimulation in neurorehabilitation. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 116, pp. 499–524. [Google Scholar] [CrossRef] [Green Version]
- Zong, X.; Li, Y.; Liu, C.; Qi, W.; Han, D.; Tucker, L.; Dong, Y.; Hu, S.; Yan, X.; Zhang, Q. Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization. Theranostics 2020, 10, 12090–12110. [Google Scholar] [CrossRef]
- Feng, Y.-W.; Huang, Y.-Q.; Yan, Y.; Li, G.; He, X.-F.; Liang, F.-Y.; Pei, Z.; Lan, Y.; Xu, G.-Q. Phasic GABA signaling mediates the protective effects of cTBS against cerebral ischemia in mice. Neurosci. Lett. 2019, 715, 134611. [Google Scholar] [CrossRef]
- Cui, J.; Kim, C.-S.; Kim, Y.; Sohn, M.K.; Jee, S. Effects of repetitive transcranial magnetic stimulation (rTMS) combined with aerobic exercise on the recovery of motor function in ischemic stroke rat model. Brain Sci. 2020, 10, 186. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.M.; Jung, D.H.; Lee, H.J.; Pak, M.E.; Jung, Y.J.; Shin, Y.-I.; Shin, H.K.; Choi, B.T. Contralesional application of transcranial direct current stimulation on functional improvement in ischemic stroke mice. Stroke 2020, 51, 2208–2218. [Google Scholar] [CrossRef]
- Ting, W.K.-C.; Fadul, F.A.-R.; Fecteau, S.; Ethier, C. Neurostimulation for stroke rehabilitation. In Frontiers in Neuroscience; Frontiers Media: Lausanne, Switzerland, 2021; Volume 15. [Google Scholar] [CrossRef]
- Ranjan, S.; Rezaee, Z.; Dutta, A.; Lahiri, U. Feasibility of cerebellar transcranial direct current stimulation to facilitate goal-directed weight shifting in chronic post-stroke hemiplegics. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 2203–2210. [Google Scholar] [CrossRef]
- Wessel, M.J.; Hummel, F.C. Non-invasive cerebellar stimulation: A promising approach for stroke recovery? In Cerebellum; Springer LLC: New York, NY, USA, 2017; Volume 17, pp. 359–371. [Google Scholar] [CrossRef]
- Ameli, M.; Grefkes, C.; Kemper, F.; Riegg, F.P.; Rehme, A.K.; Karbe, H.; Fink, G.R.; Nowak, D.A. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann. Neurol. 2009, 66, 298–309. [Google Scholar] [CrossRef]
- Lindenberg, R.; Zhu, L.; Rüber, T.; Schlaug, G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum. Brain Mapp. 2011, 33, 1040–1051. [Google Scholar] [CrossRef]
- Thibaut, A.; Di Perri, C.; Chatelle, C.; Bruno, M.-A.; Bahri, M.A.; Wannez, S.; Piarulli, A.; Bernard, C.; Martial, C.; Heine, L.; et al. Clinical response to tDCS depends on residual brain metabolism and grey matter integrity in patients with minimally conscious state. Brain Stimul. 2015, 8, 1116–1123. [Google Scholar] [CrossRef]
- Turkeltaub, P.E.; Swears, M.K.; D’Mello, A.M.; Stoodley, C.J. Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults. Restor. Neurol. Neurosci. 2016, 34, 491–505. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, I.S.; Costa, B.T.; Ramos, C.L.; Lucena, P.; Thibaut, A.; Fregni, F. Searching for the optimal tDCS target for motor rehabilitation. J. Neuroeng. Rehabil. 2019, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, G.; Argyropoulos, G.P.; Bastian, A.; Cortes, M.; Davis, N.J.; Edwards, D.; Ferrucci, R.; Fregni, F.; Galea, J.M.; Hamada, M.; et al. Cerebellar transcranial direct current stimulation (ctDCS): A novel approach to understanding cerebellar function in health and disease. Neuroscientist 2014, 22, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Summers, R.; Chen, M.; Hatch, A.; Kimberley, T.J. Cerebellar transcranial direct current stimulation modulates corticospinal excitability during motor training. Front. Hum. Neurosci. 2018, 12, 118. [Google Scholar] [CrossRef] [PubMed]
- Oldrati, V.; Schutter, D.J.L.G. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: A meta-analysis. Cerebellum 2017, 17, 228–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, N.; Taylor, D.; Signal, N. The effect of cerebellar transcranial direct current stimulation on motor learning: A systematic review of randomized controlled trials. Front. Hum. Neurosci. 2019, 13, 328. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, T.; Tomatsu, S.; Izawa, J.; Kakei, S. The cerebro-cerebellum: Could it be loci of forward models? Neurosci. Res. 2016, 104, 72–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billeri, L.; Naro, A. A narrative review on non-invasive stimulation of the cerebellum in neurological diseases. Neurol. Sci. 2021, 42, 2191–2209. [Google Scholar] [CrossRef]
- Tremblay, S.; Austin, D.; Hannah, R.; Rothwell, J.C. Non-invasive brain stimulation as a tool to study cerebellar-M1 interactions in humans. Cerebellum Ataxias 2016, 3, 19. [Google Scholar] [CrossRef]
- Rao, J.; Li, F.; Zhong, L.; Wang, J.; Peng, Y.; Liu, H.; Wang, P.; Xu, J. Bilateral cerebellar intermittent theta burst stimulation combined with swallowing speech therapy for dysphagia after stroke: A randomized, double-blind, sham-controlled, clinical trial. Neurorehabilit. Neural Repair 2022, 36, 437–448. [Google Scholar] [CrossRef]
- Jayasekeran, V.; Rothwell, J.; Hamdy, S. Non-invasive magnetic stimulation of the human cerebellum facilitates cortico-bulbar projections in the swallowing motor system. Neurogastroenterol. Motil. 2011, 23, 831-e341. [Google Scholar] [CrossRef]
- Sasegbon, A.; Smith, C.J.; Bath, P.; Rothwell, J.; Hamdy, S. The effects of unilateral and bilateral cerebellar rTMS on human pharyngeal motor cortical activity and swallowing behavior. Exp. Brain Res. 2020, 238, 1719–1733. [Google Scholar] [CrossRef] [Green Version]
- Sasegbon, A.; Watanabe, M.; Simons, A.; Michou, E.; Vasant, D.H.; Magara, J.; Bath, P.M.; Rothwell, J.; Inoue, M.; Hamdy, S. Cerebellar repetitive transcranial magnetic stimulation restores pharyngeal brain activity and swallowing behaviour after disruption by a cortical virtual lesion. J. Physiol. 2019, 597, 2533–2546. [Google Scholar] [CrossRef] [Green Version]
- Sasegbon, A.; Niziolek, N.; Zhang, M.; Smith, C.J.; Bath, P.M.; Rothwell, J.; Hamdy, S. The effects of midline cerebellar rTMS on human pharyngeal cortical activity in the intact swallowing motor system. Cerebellum 2020, 20, 101–115. [Google Scholar] [CrossRef]
- Zhong, L.; Rao, J.; Wang, J.; Li, F.; Peng, Y.; Liu, H.; Zhang, Y.; Wang, P. Repetitive transcranial magnetic stimulation at different sites for dysphagia after stroke: A randomized, observer-blind clinical trial. Front. Neurol. 2021, 12. [Google Scholar] [CrossRef]
- Liao, L.-Y.; Xie, Y.-J.; Chen, Y.; Gao, Q. Cerebellar theta-burst stimulation combined with physiotherapy in subacute and chronic stroke patients: A pilot randomized controlled trial. Neurorehabilit. Neural Repair 2020, 35, 23–32. [Google Scholar] [CrossRef]
- Koch, G.; Bonnì, S.; Casula, E.P.; Iosa, M.; Paolucci, S.; Pellicciari, M.C.; Cinnera, A.M.; Ponzo, V.; Maiella, M.; Picazio, S.; et al. Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke. JAMA Neurol. 2019, 76, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.-J.; Wei, Q.-C.; Chen, Y.; Liao, L.-Y.; Li, B.-J.; Tan, H.-X.; Jiang, H.-H.; Guo, Q.-F.; Gao, Q. Cerebellar theta burst stimulation on walking function in stroke patients: A randomized clinical trial. Front. Neurosci. 2021, 15. [Google Scholar] [CrossRef]
- Li, D.; Cheng, A.; Zhang, Z.; Sun, Y.; Liu, Y. Effects of low-frequency repetitive transcranial magnetic stimulation combined with cerebellar continuous theta burst stimulation on spasticity and limb dyskinesia in patients with stroke. BMC Neurol. 2021, 21. [Google Scholar] [CrossRef]
- Rosso, C.; Moulton, E.J.; Kemlin, C.; Leder, S.; Corvol, J.-C.; Mehdi, S.; Obadia, M.A.; Yger, M.; Meseguer, E.; Perlbarg, V.; et al. Cerebello-motor paired associative stimulation and motor recovery in stroke: A randomized, sham-controlled, double-blind pilot trial. Neurotherapeutics 2022, 19, 491–500. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, Q.-C.; Zhang, M.-Z.; Xie, Y.-J.; Liao, L.-Y.; Tan, H.-X.; Guo, Q.-F.; Gao, Q. Cerebellar intermittent theta-burst stimulation reduces upper limb spasticity after subacute stroke: A randomized controlled trial. Front. Neural Circuits 2021, 15. [Google Scholar] [CrossRef]
- Zandvliet, S.B.; Meskers, C.G.M.; Kwakkel, G.; van Wegen, E.E.H. Short-term effects of cerebellar tDCS on standing balance performance in patients with chronic stroke and healthy age-matched elderly. Cerebellum 2018, 17, 575–589. [Google Scholar] [CrossRef] [Green Version]
- Picelli, A.; Chemello, E.; Castellazzi, P.; Filippetti, M.; Brugnera, A.; Gandolfi, M.; Waldner, A.; Saltuari, L.; Smania, N. Combined effects of cerebellar transcranial direct current stimulation and transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic brain stroke: A pilot, single blind, randomized controlled trial. Restor. Neurol. Neurosci. 2018, 36, 161–171. [Google Scholar] [CrossRef]
- Picelli, A.; Brugnera, A.; Filippetti, M.; Mattiuz, N.; Chemello, E.; Modenese, A.; Gandolfi, M.; Waldner, A.; Saltuari, L.; Smania, N. Effects of two different protocols of cerebellar transcranial direct current stimulation combined with transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic supratentorial stroke: A single blind, randomized controlled trial. Restor. Neurol. Neurosci. 2019, 37, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.; Lacey, E.H.; Skipper-Kallal, L.M.; Jiang, X.; Harris-Love, M.; Zeng, J.; Turkeltaub, P.E. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke. Brain 2016, 139, 227–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marangolo, P.; Fiori, V.; Caltagirone, C.; Pisano, F.; Priori, A. Transcranial cerebellar direct current stimulation enhances verb generation but not verb naming in poststroke aphasia. J. Cogn. Neurosci. 2018, 30, 188–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebastian, R.; Kim, J.H.; Brenowitz, R.; Tippett, D.C.; Desmond, J.E.; Celnik, P.A.; Hillis, A.E. Cerebellar neuromodulation improves naming in post-stroke aphasia. Brain Commun. 2020, 2, fcaa179. [Google Scholar] [CrossRef]
- Schulz, R.; Frey, B.M.; Koch, P.; Zimerman, M.; Bönstrup, M.; Feldheim, J.; Timmermann, J.E.; Schön, G.; Cheng, B.; Thomalla, G.; et al. Cortico-cerebellar structural connectivity is related to residual motor output in chronic stroke. Cereb. Cortex 2017, 27, 635–645. [Google Scholar] [CrossRef] [Green Version]
- Nasios, G.; Dardiotis, E.; Messinis, L. From broca and wernicke to the neuromodulation era: Insights of brain language networks for neurorehabilitation. Behav. Neurol. 2019, 2019, 9894571. [Google Scholar] [CrossRef]
- Rezaee, Z.; Ranjan, S.; Solanki, D.; Bhattacharya, M.; Srivastava, M.V.P.; Lahiri, U.; Dutta, A. Feasibility of combining functional near-infrared spectroscopy with electroencephalography to identify chronic stroke responders to cerebellar transcranial direct current stimulation—A computational modeling and portable neuroimaging methodological study. Cerebellum 2021, 20, 853–871. [Google Scholar] [CrossRef]
Author/Year | NICS | Sample | NICS Protocol | Supplementary Technique | Functional Outcome | Main Results |
---|---|---|---|---|---|---|
Zhong et al., 2021 | Cerebellar rTMS | Subacute stroke n = 38 lesioned hemisphere intervention group n = 39 healthy hemisphere intervention group n = 35 cerebellum intervention group n = 35 control group | 20 min. 5 Hz rTMS for 2 w. (10 sessions) in the mylohyoid cortical region | Traditional dysphagia treatment (e.g., vocal cord/oropharyngeal exercises) | Dysphagia | Dysphagia improvement equal in all groups |
Rao et al., 2022 | Cerebellar iTBS | Acute/Subacute/chronic stroke n = 35 intervention group n = 35 sham control group | 3 pulses of 50 Hz/200 ms with 8 s interval-total of 600 pulses to each hemisphere (10 sessions) | Traditional dysphagia treatment (e.g., vocal cord/oropharyngeal exercises) | Dysphagia | Greater improvement of dysphagia in real iTBS group |
Koch et al., 2018 | Cerebellar iTBS | Chronic stroke n = 18 intervention group n = 18 sham control group | 2 pulses with a 5 s time interval, sum of 1200 pulses to contralesional hemisphere (15 sessions) | Physical therapy | Gait-balance | Improved gait stability, transition in independent gait in real iTBS group |
Xie et al., 2021 | Cerebellar iTBS | Chronic stroke n = 18 intervention group n = 18 sham control group | 3 pulses of 50 Hz/200 ms with 8 s interval-total of 600 pulses to contralesional hemisphere (10 sessions) | Physical therapy | Gait | Greater improvement of 10 MWT in real iTBS group |
Liao et al. 2020 | Cerebellar iTBS | Subacute/Chronic stroke n = 15 intervention group n = 15 control group | total of 600 pulses to contralesional hemisphere (10 sessions) | Physical therapy | Balance | Improved BBS score in real iTBS group |
Dawei Li et al., 2021 | Cortical rTMS+ Cerebellar cTBS | Chronic MCA stroke n= 30 unaffected M1 lf-rTMS+ right cb. cTBS intervention group n = 30 M1 lf-rTMS intervention group n = 30 right cb. cTBS intervention group | 20 min. 1 Hz rTMS in the unaffected M1 3-pulse bursts at 50 Hz right cerebellar cTBS (24 sessions) | Physical therapy/acupuncture | Muscle spasticity Limb dyskinesia | Improvement of spasticity higher in combined intervention group |
Chen et al., 2021 | Cerebellar iTBS | Subacute stroke n = 16 intervention group n = 16 sham control group | total of 600 pulses to ipsilesional hemisphere (10 sessions) | Physical therapy | Upper limb spasticity | Improvement of spasticity higher in intervention group |
Rosso et al., 2022 | Cerebello-motor PAS | Chronic stroke n = 14 intervention group n = 13 sham control group | Active stimulation: Conditioning stimulus over contralesional cerebellum Test stimulus over ipsilesional M1 Sham stimulation: Sham stimulus over cerebellum Test stimulus over M1 (5 sessions) | Physical therapy | Upper limb motor recovery | Clinical improvement in the JTT score for hand coordination and dexterity, ↑ M1 activation in the active stimulation group |
Author/Year | NICS | Sample | NICS Protocol | Supplementary Technique | Functional Outcome | Main Results |
---|---|---|---|---|---|---|
Zandvliet et al., 2018 | Cerebellar tDCS | Chronic stroke n = 15 patients intervention group n = 10 healthy control group | 20 min. 1.5 mA, anodal contralesional/ ipsilesional cerebellar stimulation/sham stimulation (3 sessions) | None | Standing balance | Improved standing balance with contralesional cerebellar tDCS in tandem position |
Picelli et al., 2018 | Cerebellar tDCS + transcutaneous spinal direct current stimulation (tsDCS) | Chronic stroke n = 10 intervention group A n = 10 intervention group B | A: cathodal contralesional cerebellar tDCS (20 min. 2 mA) Β: anodal ipsilesional cerebral tDCS (20 min. 2 mA) (10 sessions) | Robotic therapy | Gait | Difference in improvement in 6MWT performance right after intervention in group A Difference in improvement if affected limb mobility in group A |
Picelli et al., 2019 | Cerebellar tDCS+ tsDCS | Chronic stroke n = 20 intervention group A n = 20 intervention group B | A: cathodal contralesional cerebellar tDCS (20 min. 2 mA) B: cathodal ipsilesional cerebellar tDCS (20 min. 2 mA) (10 sessions) | Robotic therapy | Gait | Improvement in 6-MWT, limb motility for each group |
Solanki et al., 2021 | Cerebellar tDCS | Chronic stroke n = 10 patients Crossover study | 2 bilateral tDCS (15 min 2 mA) montages: A: dentate nuclei B: lobules VIIb-IX (2 sessions) | None | Gait | Equal improvement in gait parameters (e.g., Step length, Stance time)—correlation with lobular electric field strength |
Ranjan et al., 2021 | Cerebellar tDCS | Chronic stroke n = 12 patients crossover study | 2 bilateral tDCS (15 min 2 mA) montages: A: dentate nuclei B: lobules VII-IX (2 sessions) | None | Postural control | Positive effect of the dentate montage on postural control |
Marangolo et al., 2018 | Cerebellar tDCS | Chronic left hemisphere stroke, n = 12 patients, crossover study | 20 min. 2 mA cathodal right cerebellar tDCS/sham stimulation (20 sessions total) | Speech therapy | Language recovery | Improved mnemonic verb retrieval |
Sebastian et al., 2020 | Cerebellar tDCS | Chronic left hemisphere stroke, n = 21 patients, crossover study | Phase A: 20 min. 2 mA anodal right cerebellar tDCS/sham stimulation Phase B: 20 min. 2 mA anodal right cerebellar tDCS/sham stimulation (15 sessions/phase) | Speech therapy | Language recovery | Improved performance in untrained picture naming task |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntakou, E.A.; Nasios, G.; Nousia, A.; Siokas, V.; Messinis, L.; Dardiotis, E. Targeting Cerebellum with Non-Invasive Transcranial Magnetic or Current Stimulation after Cerebral Hemispheric Stroke—Insights for Corticocerebellar Network Reorganization: A Comprehensive Review. Healthcare 2022, 10, 2401. https://doi.org/10.3390/healthcare10122401
Ntakou EA, Nasios G, Nousia A, Siokas V, Messinis L, Dardiotis E. Targeting Cerebellum with Non-Invasive Transcranial Magnetic or Current Stimulation after Cerebral Hemispheric Stroke—Insights for Corticocerebellar Network Reorganization: A Comprehensive Review. Healthcare. 2022; 10(12):2401. https://doi.org/10.3390/healthcare10122401
Chicago/Turabian StyleNtakou, Eleni Aikaterini, Grigorios Nasios, Anastasia Nousia, Vasileios Siokas, Lambros Messinis, and Efthimios Dardiotis. 2022. "Targeting Cerebellum with Non-Invasive Transcranial Magnetic or Current Stimulation after Cerebral Hemispheric Stroke—Insights for Corticocerebellar Network Reorganization: A Comprehensive Review" Healthcare 10, no. 12: 2401. https://doi.org/10.3390/healthcare10122401
APA StyleNtakou, E. A., Nasios, G., Nousia, A., Siokas, V., Messinis, L., & Dardiotis, E. (2022). Targeting Cerebellum with Non-Invasive Transcranial Magnetic or Current Stimulation after Cerebral Hemispheric Stroke—Insights for Corticocerebellar Network Reorganization: A Comprehensive Review. Healthcare, 10(12), 2401. https://doi.org/10.3390/healthcare10122401