Comparison between Olympic Weightlifting Lifts and Derivatives for External Load and Fatigue Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Exercise Selection
2.4. External Load and Fatigue Assessment
2.5. Procedures
2.5.1. Anthropometric and Body Composition Assessment
2.5.2. Test Protocol
2.6. Statistical Analysis
3. Results
3.1. Snatch Derivative Protocols
3.2. Clean and Jerk Derivative Protocols
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garhammer, J. A Review of power output studies of olympic and powerlifting: Methodology, performance prediction, and evaluation tests. J. Strength Cond. Res. 1993, 7, 76–89. [Google Scholar] [CrossRef]
- Garhammer, J.; Mclaughlin, T. Power output as a function of load variation in olympic and power lifting. J. Biomech. 1980, 13, 198. [Google Scholar] [CrossRef]
- Derwin, B.P. Sports Performance Series: The Snatch: Technical description and periodization program. Strength Cond. J. 1990, 12, 6–15. [Google Scholar] [CrossRef]
- Al-Khleifat, A.I.; Al-Kilani, M.; Kilani, H.A. Biomechanics of the clean and jerk in weightlifting national Jordanian team. In Proceedings of the Journal of Human Sport and Exercise, 2019, Summer Conferences of Sports Science, Budapest, Hungary, 11–13 September 2019. [Google Scholar] [CrossRef]
- Grabe, S.; Widule, C. Comparative biomechanics of the jerk in olympic weightlifting. Res. Q. Exerc. Sport 1988, 59, 1–8. [Google Scholar] [CrossRef]
- Králová, T.; Gasior, J.; Vanderka, M.; Cacek, J.; Vencúrik, T.; Bokůvka, D.; Hammerová, T. Correlation analysis of olympic-style weightlifting exercises and vertical jumps. Stud. Sport. 2019, 13, 26. [Google Scholar] [CrossRef]
- Ebben, W. Hamstring activation during lower body resistance training exercises. Int. J. Sport. Physiol. Perform. 2009, 4, 84–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebben, W.P.; Feldmann, C.R.; Dayne, A.; Mitsche, D.; Alexander, P.; Knetzger, K.J. Muscle activation during lower body resistance training. Int. J. Sport. Med. 2009, 30, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Simenz, C.; Dugan, C.; Ebben, W. Strength and conditioning practices of National Basketball Association strength and conditioning coaches. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2005, 19, 495–504. [Google Scholar] [CrossRef]
- Hori, N.; Newton, R.; Nosaka, K.; Stone, M. Weightlifting exercises enhance athletic performance that requires high-load speed strength. Strength Cond. J. 2005, 27, 50–55. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Sole, C.J. Power-time curve comparison between weightlifting derivatives. J. Sport. Sci. Med. 2017, 16, 407–413. [Google Scholar]
- Suchomel, T.; Comfort, P.; Lake, J. Enhancing the force–velocity profile of athletes using weightlifting derivatives. Strength Cond. J. 2017, 39, 10–20. [Google Scholar] [CrossRef]
- James, L.P.; Haff, G.G.; Kelly, V.G.; Connick, M.J.; Hoffman, B.W.; Beckman, E.M. The impact of strength level on adaptations to combined weightlifting, plyometric, and ballistic training. Scand. J. Med. Sci. Sport. 2018, 28, 1494–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garhammer, J.; Takano, B. Training for weightlifting. In Strength and Power in Sport; John Wiley & Sons, Ltd.: New York, NY, USA, 2003; pp. 502–515. [Google Scholar] [CrossRef]
- Takano, B. Weightlifting Programming: A Winning Coach’s Guide; Catalyst Athletics: Sunnyvale, CA, USA, 2012. [Google Scholar]
- Morris, S.J.; Oliver, J.L.; Pedley, J.S.; Haff, G.G.; Lloyd, R.S. Comparison of weightlifting, traditional resistance training and plyometrics on strength, power and speed: A Systematic review with meta-analysis. Sport. Med. 2022, 52, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- González-Badillo, J.; Izquierdo, M.; Gorostiaga, E. Moderate of high relative training intensity produces greater strength gains compared with low and high s in competitive weightlifters. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2006, 20, 73–81. [Google Scholar] [CrossRef]
- Badillo, J.J.G. Libros Tecnicos Deportivos: Halterofilia; Comite Olimpico Espanol: Madrid, Spain, 1991. [Google Scholar]
- Flores, F.; Redondo, J.C. Proposal for selecting weightlifting exercises on the basis of a cybernetic model. Int. J. Adv. Res. 2020, 8, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.R.; Duthie, G.M.; Thornton, H.R.; Dascombe, B.J. Training monitoring for resistance exercise: Theory and applications. Sport. Med. 2016, 46, 687–698. [Google Scholar] [CrossRef]
- De Ruiter, C.J.; Jones, D.A.; Sargeant, A.J.; De Haan, A. The measurement of force/velocity relationships of fresh and fatigued human adductor pollicis muscle. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 386–393. [Google Scholar] [CrossRef]
- Sakamoto, A.; Sinclair, P.J. Effect of movement velocity on the relationship between training load and the number of repetitions of bench press. J. Strength Cond. Res. 2006, 20, 523–527. [Google Scholar] [CrossRef]
- Hughes, L.J.; Banyard, H.G.; Dempsey, A.R.; Peiffer, J.J.; Scott, B.R. Using load-velocity relationships to quantify training-induced fatigue. J. Strength Cond. Res. 2019, 33, 762–773. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sport. Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; González-Badillo, J.J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sport. Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef]
- Eriksson Crommert, M.; Ekblom, M.M.; Thorstensson, A. Motor control of the trunk during a modified clean and jerk lift. Scand. J. Med. Sci. Sport. 2014, 24, 758–763. [Google Scholar] [CrossRef]
- Federação de Halterofilismo de Portugal. Federação de Halterofilismo de Portugal—Relatórios de Atividades e Contas. 2021. Available online: https://www.halterofilismo.net/documentos/organização-efuncionamento/relatórios-de-atividades-e-contas (accessed on 10 May 2022).
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everett, G. Olympic Weightlifting: A Complete Guide for Athletes & Coaches, 2nd ed.; Catalyst Athletics: Sunnyvale, CA, USA, 2009. [Google Scholar]
- Stone, M.; O’Bryant, H.; Hornsby, G.; Cunanan, A.; Mizuguchi, S.; Suarez, D.; Marsh, D.; Haff, G.; Ramsey, M.; Beckham, G.; et al. Using the isometric mid-thigh pull in the monitoring of weightlifters: 25+ Years of Experience. Prof. Strength Cond. 2019, 54, 19–26. [Google Scholar]
- Travis, S.K.; Goodin, J.R.; Beckham, G.K.; Bazyler, C.D. Identifying a test to monitor weightlifting performance in competitive male and female weightlifters. Sports 2018, 6, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, A.; Rice, C. Fatigue and recovery of power and isometric torque following isotonic knee extensions. J. Appl. Physiol. 2005, 99, 1446–1452. [Google Scholar] [CrossRef]
- Sandau, I.; Chaabene, H.; Granacher, U. Validity and reliability of a Snatch pull test to model the force-velocity relationship in male elite weightlifters. J. Strength Cond. Res. 2021, 36, 2808–2815. [Google Scholar] [CrossRef]
- Pérez Castilla, A.; Piepoli, A.; Delgado García, G.; Garrido, G.; García Ramos, A. Reliability and concurrent validity of seven commercially available devices for the assessment of movement velocity at different intensities during the bench press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef]
- Arazi, H.; Mirzaei, B.; Nobari, H. Anthropometric profile, body composition and somatotyping of national Iranian cross-country runners. Turk. J. Sport Exerc. 2015, 17, 35–41. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Buckinx, F.; Reginster, J.Y.; Dardenne, N.; Croisiser, J.L.; Kaux, J.F.; Beaudart, C.; Slomian, J.; Bruyère, O. Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: A cross-sectional study. BMC Musculoskelet. Disord. 2015, 16, 60. [Google Scholar] [CrossRef]
- Yang, E.M.; Park, E.; Ahn, Y.H.; Choi, H.J.; Kang, H.G.; Cheong, H.I.; Ha, I.S. Measurement of fluid status using bioimpedance methods in Korean pediatric patients on hemodialysis. J. Korean Med. Sci. 2017, 32, 1828–1834. [Google Scholar] [CrossRef] [PubMed]
- Rahmat, A.J.; Arsalan, D.; Bahman, M.; Hadi, N. Anthropometrical profile and biomotor abilities of young elite wrestlers. Phys. Educ. Stud. 2016, 20, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Marfell-Jones, M.J.; Stewart, A.D.; de Ridder, J.H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Wellington, New Zealand, 2012; Available online: https://repository.openpolytechnic.ac.nz/handle/11072/1510 (accessed on 20 April 2022).
- Parcell, A.C.; Sawyer, R.D.; Tricoli, V.A.; Chinevere, T.D. Minimum rest period for strength recovery during a common isokinetic testing protocol. Med. Sci. Sport. Exerc. 2002, 34, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar] [CrossRef]
- Ebben, W.P.; Carroll, R.M.; Simenz, C.J. Strength and conditioning practices of National Hockey League strength and conditioning coaches. J. Strength Cond. Res. 2004, 18, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Blackard, D.O. Strength and conditioning practices of National Football League strength and conditioning coaches. J. Strength Cond. Res. 2001, 15, 48–58. [Google Scholar] [PubMed]
- Gee, T.I.; Olsen, P.D.; Berger, N.J.; Golby, J.; Thompson, K.G. Strength and conditioning practices in rowing. J. Strength Cond. Res. 2011, 25, 668–682. [Google Scholar] [CrossRef] [Green Version]
- Weldon, A.; Duncan, M.; Turner, A.; Sampaio, J.; Noon, M.; Wong, D.P.; Lai, V. Contemporary practices of strength and conditioning coaches in professional soccer. Biol. Sport 2020, 38, 377–390. [Google Scholar] [CrossRef]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sport. Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- García-Ramos, A.; Haff, G.G.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Balsalobre-Fernández, C.; Jaric, S. Feasibility of the two-point method for determining the one-repetition maximum in the bench press exercise. Int. J. Sport. Physiol. Perform. 2018, 13, 474–481. [Google Scholar] [CrossRef]
- Sánchez-Moreno, M.; Rendeiro-Pinho, G.; Mil-Homens, P.V.; Pareja-Blanco, F. Monitoring training through maximal number of repetitions or velocity-based approach. Int. J. Sport. Physiol. Perform. 2021, 16, 527–534. [Google Scholar] [CrossRef]
- Hernández-Belmonte, A.; Courel-Ibánez, J.; Conesa-Ros, E.; Martínez-Cava, A.; Pallarés, J.G. Level of effort: A reliable and practical alternative to the velocity-based approach for monitoring resistance training. J Strength Cond. Res. 2021, 36, 2992–2999. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Badillo, J.J.; Yanez-Garcia, J.M.; Mora-Custodio, R.; RodriguezRosell, D. Velocity loss as a variable for monitoring resistance exercise. Int. J. Sport. Med. 2017, 38, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Beckham, G.K.; Wright, G.A. Effect of various loads on the force-time characteristics of the hang high pull. J. Strength Cond. Res. 2015, 29, 1295–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeWeese, B.H.; Hornsby, G.; Stone, M.; Stone, M.H. The training process: Planning for strength–power training in track and field. Part 2: Practical and applied aspects. J. Sport Health Sci. 2015, 4, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Suchomel, T.J.; Beckham, G.K.; Wright, G.A. The impact of load on lower body performance variables during the hang power clean. Sport. Biomech. 2014, 13, 87–95. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Comfort, P.; Stone, M.H. Weightlifting pulling derivatives: Rationale for implementation and application. Sport. Med. 2015, 45, 823–839. [Google Scholar] [CrossRef]
- Roman, R.A. The Training of the Weightlifter R. A. Roman; Sportivny Press: Moscow, Russia, 1974; Volume 1, p. 4. Available online: https://www.dynamicfitnessequipment.com/product-p/sp109.htm (accessed on 5 February 2022).
- Helland, C.; Midttun, M.; Saeland, F.; Haugvad, L.; Schäfer Olstad, D.; Solberg, P.; Paulsen, G. A strength-oriented exercise session required more recovery time than a power-oriented exercise session with equal work. PeerJ 2020, 8, e10044. [Google Scholar] [CrossRef]
- Sale, D.G. Postactivation potentiation: Role in human performance. Exerc. Sport Sci. Rev. 2002, 30, 138–143. Available online: https://journals.lww.com/acsmessr/Fulltext/2002/07000/Postactivation_Potentiation__Role_in_Human.8.aspx (accessed on 5 May 2022). [CrossRef]
- Silva, L.M.; Neiva, H.P.; Marques, M.C.; Izquierdo, M.; Marinho, D.A. Effects of warm-up, post-warm-up, and re-warm-up strategies on explosive efforts in team sports: A Systematic Review. Sport. Med. 2018, 48, 2285–2299. [Google Scholar] [CrossRef]
- Ebben, W.P. A brief review of concurrent activation potentiation: Theoretical and practical constructs. J. Strength Cond. Res. 2006, 20, 985–991. [Google Scholar] [CrossRef]
- Robbins, D.W. Postactivation potentiation and its practical applicability: A brief review. J. Strength Cond. Res. 2005, 19, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.; Sands, W.; Pierce, K.; Ramsey, M.; Haff, G. Power and power potentiation among strength-power athletes: Preliminary study. Int. J. Sport. Physiol. Perform. 2008, 3, 55–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, S.; Tarpenning, K.; Marino, F. Designing resistance training programmes to enhance muscular fitness: A review of the acute programme variables. Sport. Med. 2005, 35, 841–851. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sport. Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Hornsby, W.G.; Stone, M.H. Training for muscular strength: Methods for monitoring and adjusting training intensity. Sport. Med. 2021, 51, 2051–2066. [Google Scholar] [CrossRef]
- Hartmann, H.; Wirth, K.; Klusemann, M.; Dalic, J.; Matuschek, C.; Schmidtbleicher, D. Influence of squatting depth on jumping performance. J. Strength Cond. Res. 2012, 26, 3243–3261. [Google Scholar] [CrossRef] [Green Version]
- Wallace, B.; Janz, J. Implications of motor unit activity on ballistic movement. Int. J. Sport. Sci. Coach. 2009, 4, 285–292. [Google Scholar] [CrossRef]
- Henneman, E. Relation between size of neurons and their susceptibility to discharge. Science 1957, 126, 1345–1347. [Google Scholar] [CrossRef]
- Gillespie, C.A.; Simpson, D.R.; Edgerton, V.R. Motor unit recruitment as reflected by muscle fibre glycogen loss in a prosimian (bushbaby) after running and jumping1. J. Neurol. Neurosurg. Psychiatry 1974, 37, 817–824. [Google Scholar] [CrossRef]
- García-Ramos, A.; Torrejón, A.; Feriche, B.; Morales-Artacho, A.J.; Pérez-Castilla, A.; Padial, P.; Haff, G.G. Prediction of the maximum number of repetitions and repetitions in reserve from barbell velocity. Int. J. Sport. Physiol. Perform. 2018, 13, 353–359. [Google Scholar] [CrossRef]
- Pestaña-Melero, F.L.; Haff, G.G.; Rojas, F.J.; Pérez-Castilla, A.; García-Ramos, A. Reliability of the load-velocity relationship obtained through linear and polynomial regression models to predict the 1-repetition maximum load. J. Appl. Biomech. 2018, 34, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; McKeever, S.M.; Comfort, P. Training with weightlifting derivatives: The effects of force and velocity overload stimuli. J. Strength Cond. Res. 2020, 34, 1808–1818. [Google Scholar] [CrossRef] [PubMed]
Age (Years) | Height (cm) | Weight (kg) | BF (%) | FFM (kg) | |
---|---|---|---|---|---|
Female | 29.7 ± 5.7 | 158.8 ± 6.7 | 60.8 ± 7.3 | 17.8 ± 7.6 | 48.9 ± 7.7 |
Male | 28.1 ± 5.0 | 174.5 ± 6.0 | 79.5 ± 5.3 | 17.0 ± 5.1 | 65.9 ± 5.0 |
Total | 28.8 ± 5.3 | 167.8 ± 10.1 | 71.5 ± 11.2 | 17.3 ± 6.2 | 58.6 ± 10.6 |
Parameter | Weightlifting Derivative | Mean ± SD | SEM | MD (95% CI) | p (ES) | |
---|---|---|---|---|---|---|
ROM (cm) | SPT | Baseline | ||||
106.49 ± 7.49 | 1.64 | |||||
Post | ||||||
Pair 1 | Muscle Snatch | 107.33 ± 7.75 | 1.69 | −0.85 (−2.65; 0.95) | 0.338 (−0.214) | |
Pair 2 | Power Snatch | 105.15 ± 7.93 | 1.73 | 1.34 (−0.36; 3.04) | 0.116 (0.358) | |
Pair 3 | Snatch | 104.19 ± 7.85 | 1.71 | 2.30 (0.87; 3.73) | 0.003 * (0.731) | |
Pair 4 | Snatch Pull | 102.82 ± 8.63 | 1.88 | 3.67 (1.97; 5.36) | <0.001 ** (0.986) | |
Pair 5 | Back Squat | 103.97 ± 9.41 | 2.05 | 2.52 (0.42; 4.62) | 0.021 * (0.547) | |
Mean Power (w) | SPT | Baseline | ||||
706.55 ± 187.58 | 40.93 | |||||
Post | ||||||
Pair 1 | Muscle Snatch | 701.93 ± 189.80 | 41.42 | 4.61 (−18.41; 27.64) | 0.680 (0.091) | |
Pair 2 | Power Snatch | 681.19 ± 181.14 | 39.53 | 25.36 (0.93; 49.79) | 0.043 * (0.472) | |
Pair 3 | Snatch | 677.11 ± 183.49 | 40.04 | 29.44 (0.32; 58.55) | 0.048 * (0.460) | |
Pair 4 | Snatch Pull | 664.41 ± 180.76 | 39.44 | 42.14 (15.84; 68.44) | 0.003 * (0.729) | |
Pair 5 | Back Squat | 671.32 ± 190.58 | 41.59 | 35.22 (10.03; 60.42) | 0.009 * (0.636) | |
Peak Velocity (m/s) | SPT | Baseline | ||||
1.81 ± 0.17 | 0.04 | |||||
Post | ||||||
Pair 1 | Muscle Snatch | 1.78 ± 0.18 | 0.04 | 0.04 (−0.01; 0.09) | 0.125 (0.350) | |
Pair 2 | Power Snatch | 1.76 ± 0.19 | 0.04 | 0.06 (0.02; 0.10) | 0.008 * (0.638) | |
Pair 3 | Snatch | 1.73 ± 0.17 | 0.04 | 0.08 (0.05; 0.12) | <0.001 ** (0.998) | |
Pair 4 | Snatch Pull | 1.72 ± 0.15 | 0.03 | 0.09 (0.05; 0.14) | <0.001 ** (0.906) | |
Pair 5 | Back Squat | 1.73 ± 0.18 | 0.04 | 0.08 (0.04; 0.13) | <0.001 ** (0.906) | |
Mean Velocity (m/s) | SPT | Baseline | ||||
0.94 ± 0.13 | 0.03 | |||||
Post | ||||||
Pair 1 | Muscle Snatch | 0.93 ± 0.12 | 0.03 | 0.01 (−0.02; 0.04) | 0.508 (0.147) | |
Pair 2 | Power Snatch | 0.91 ± 0.13 | 0.03 | 0.03 (0.00; 0.06) | 0.050 (0.455) | |
Pair 3 | Snatch | 0.90 ± 0.13 | 0.03 | 0.04 (0.00; 0.07) | 0.030 * (0.509) | |
Pair 4 | Snatch Pull | 0.92 ± 0.15 | 0.03 | 0.02 (−0.06; 0.10) | 0.604 (0.115) | |
Pair 5 | Back Squat | 0.89 ± 0.13 | 0.03 | 0.05 (0.02; 0.08) | 0.003 * (0.727) |
Parameter | Weightlifting Derivative | Mean ± SD | SEM | MD (95% CI) | p (ES) | ||
---|---|---|---|---|---|---|---|
ROM (cm) | Female | SPT | Baseline | ||||
105.22 ± 8.25 | 2.75 | ||||||
Post | |||||||
Pair 1 | Muscle Snatch | 105.16 ± 9.00 | 3.00 | 0.07 (−2.18; 2.32) | 0.947 (0.023) | ||
Pair 2 | Power Snatch | 104.58 ± 9.29 | 3.10 | 0.64 (−1.95; 3.23) | 0.585 (0.189) | ||
Pair 3 | Snatch | 102.04 ± 9.17 | 3.06 | 3.18 (1.17; 5.18) | 0.006 * (1.218) | ||
Pair 4 | Snatch Pull | 100.40 ± 10.44 | 3.48 | 4.82 (2.73; 6.91) | 0.001 * (1.776) | ||
Pair 5 | Back Squat | 100.03 ± 10.91 | 3.64 | 5.19 (2.48; 7.90) | 0.002 * (1.474) | ||
Male | SPT | Baseline | |||||
107.43 ± 7.10 | 2.05 | ||||||
Post | |||||||
Pair 1 | Muscle Snatch | 108.97 ± 6.59 | 1.90 | −1.53 (−4.45; 1.38) | 0.272 (−0.334) | ||
Pair 2 | Power Snatch | 105.57 ± 7.16 | 2.10 | 1.87 (−0.71; 4.44) | 0.139 (0.460) | ||
Pair 3 | Snatch | 105.79 ± 6.66 | 1.92 | 1.64 (−0.55; 3.84) | 0.128 (0.475) | ||
Pair 4 | Snatch Pull | 104.63 ± 6.91 | 2.00 | 2.80 (0.11; 5.49) | 0.042 * (0.663) | ||
Pair 5 | Back Squat | 106.91 ± 7.23 | 2.09 | 0.52 (−2.28; 3.32) | 0.692 (0.117) | ||
Mean Power (w) | Female | SPT | Baseline | ||||
557.79 ± 128.94 | 42.98 | ||||||
Post | |||||||
Pair 1 | Muscle Snatch | 540.79 ± 113.25 | 37.75 | 17.00 (−0.81; 34.81) | 0.059 (0.734) | ||
Pair 2 | Power Snatch | 536.32 ± 121.34 | 40.45 | 21.47 (−4.20; 47.13) | 0.090 (0.643) | ||
Pair 3 | Snatch | 521.19 ± 113.48 | 37.83 | 36.60 (13.67; 59.53) | 0.006 * (1.227) | ||
Pair 4 | Snatch Pull | 518.99 ± 121.16 | 40.39 | 38.80 (19.07; 58.53 | 0.002 * (1.512) | ||
Pair 5 | Back Squat | 518.82 ± 128.90 | 42.97 | 38.97 (21.13; 56.81) | 0.001 * (1.679) | ||
Male | SPT | Baseline | |||||
818,12 ± 142.13 | 41.03 | ||||||
Post | |||||||
Pair 1 | Muscle Snatch | 822.79 ± 137.79 | 39.78 | −4.68 (−45.08; 35.73) | 0.804 (−0.074) | ||
Pair 2 | Power Snatch | 789.84 ± 137.47 | 39.68 | 28.28 (−13.89; 70.44) | 0.168 (0.426) | ||
Pair 3 | Snatch | 794.05 ± 130.53 | 37.68 | 24.07 (−28.01; 76.14) | 0.331 (0.294) | ||
Pair 4 | Snatch Pull | 773.47 ± 135.84 | 39.21 | 44.65 (−2.79; 92.08) | 0.063 (0.598) | ||
Pair 5 | Back Squat | 785.70 ± 143.73 | 41.49 | 32.42 (−13.22; 78.05) | 0.146 (0.451) | ||
Peak Velocity (m/s) | Female | SPT | Baseline | ||||
1.88 ± 0.17 | 0.06 | ||||||
Post | |||||||
Pair 1 | Muscle Snatch | 1.84 ± 0.15 | 0.05 | 0.04 (−0.01; 0.09) | 0.102 (0.615) | ||
Pair 2 | Power Snatch | 1.86 ± 0.16 | 0.05 | 0.02 (−0.04; 0.08) | 0.422 (0.282) | ||
Pair 3 | Snatch | 1.78 ± 0.15 | 0.05 | 0.10 (0.05; 0.16) | 0.002 * (1.469) | ||
Pair 4 | Snatch Pull | 1.76 ± 0.17 | 0.06 | 0.12 (0.05; 0.20) | 0.005 * (1.258) | ||
Pair 5 | Back Squat | 1.74 ± 0.21 | 0.07 | 0.14 (0.09; 0.20) | <0.001 * (2.058) | ||
Male | SPT | Baseline | |||||
1.76 ± 0.16 | 0.05 | ||||||
Post | |||||||
Pair 1 | Muscle Snatch | 1.73 ± 0.19 | 0.05 | 0.04 (−0.05; 0.12) | 0.378 (0.265) | ||
Pair 2 | Power Snatch | 1.68 ± 0.18 | 0.05 | 0.09 (0.03; 0.14) | 0.009 * (0.910) | ||
Pair 3 | Snatch | 1.69 ± 0.17 | 0.05 | 0.07 (0.01; 0.13) | 0.025 * (0.745) | ||
Pair 4 | Snatch Pull | 1.69 ± 0.14 | 0.04 | 0.07 (0.00; 0.14) | 0.039 * (0.675) | ||
Pair 5 | Back Squat | 1.73 ± 0.17 | 0.05 | 0.04 (−0.01; 0.09) | 0.134 (0.467) | ||
Mean Velocity (m/s) | Female | SPT | Baseline | ||||
0.99 ± 0.14 | 0.05 | ||||||
Post | |||||||
Pair 1 | Muscle Snatch | 0.97 ± 0.13 | 0.04 | 0.03 (−0.00; 0.06) | 0.063 (0.719) | ||
Pair 2 | Power Snatch | 0.97 ± 0.14 | 0.05 | 0.02 (−0.01; 0.06) | 0.144 (0.540) | ||
Pair 3 | Snatch | 0.93 ± 0.14 | 0.05 | 0.06 (0.02; 0.10) | 0.006 * (1.228) | ||
Pair 4 | Snatch Pull | 0.92 ± 0.11 | 0.04 | 0.07 (0.03; 0.11) | 0.003 * (1.372) | ||
Pair 5 | Back Squat | 0.92 ± 0.14 | 0.05 | 0.07 (0.04; 0.10) | 0.001 * (1.660) | ||
Male | SPT | Baseline | |||||
0.89 ± 0.12 | 0.03 | ||||||
Post | |||||||
Pair 1 | Muscle Snatch | 0.90 ± 0.10 | 0.03 | −0.01 (−0.05; 0.04) | 0.806 (−0.073) | ||
Pair 2 | Power Snatch | 0.86 ± 0.11 | 0.03 | 0.03 (−0.02; 0.08) | 0.174 (0.419) | ||
Pair 3 | Snatch | 0.87 ± 0.12 | 0.03 | 0.02 (−0.04; 0.08) | 0.412 (0.246) | ||
Pair 4 | Snatch Pull | 0.91 ± 0.18 | 0.05 | −0.02 (−0.17; 0.13) | 0.800 (−0.075) | ||
Pair 5 | Back Squat | 0.86 ± 0.13 | 0.04 | 0.03 (−0.02; 0.09) | 0.174 (0.420) |
Parameter | Weightlifting Derivative | Mean ± SD | SEM | MD (95% CI) | p (ES) | |
---|---|---|---|---|---|---|
ROM(cm) | SPT | Baseline | ||||
106.01 ± 8.00 | 1.75 | |||||
Post | ||||||
Pair 1 | Power Clean | 105.77 ± 7.91 | 1.73 | 0.24 (−0.91; 1.39) | 0.671 (0.094) | |
Pair 2 | Clean and Jerk | 103.91 ± 8.88 | 1.94 | 2.10 (0.46; 3.73) | 0.015 * (0.582) | |
Pair 3 | Clean | 104.67 ± 8.77 | 1.91 | 1.34 (−0.27; 2.96) | 0.098 (0.378) | |
Pair 4 | High Hang Clean | 105.03 ± 8.98 | 1.96 | 0.98 (−0.43; 2.38) | 0.164 (0.316) | |
Pair 5 | Hang Power Clean | 104.92 ± 8.41 | 1.83 | 1.09 (−0.81; 2.99) | 0.245 (0.261) | |
Mean Power(w) | SPT | Baseline | ||||
699.81 ± 176.31 | 38.47 | |||||
Post | ||||||
Pair 1 | Power Clean | 700.49 ± 183.15 | 39.97 | −0.68 (−16.10; 14.74) | 0.928 (−0.020) | |
Pair 2 | Clean and Jerk | 675.26 ± 170.43 | 37.19 | 24.55 (1.65; 47.44) | 0.037 * (0.488) | |
Pair 3 | Clean | 679.59 ± 180.17 | 39.32 | 20.22 (−5.70; 46.14) | 0.119 (0.355) | |
Pair 4 | High Hang Clean | 690.40 ± 178.72 | 39.00 | 9.41 (−16.66; 35.48) | 0.460 (0.164) | |
Pair 5 | Hang Power Clean | 687.63 ± 176.81 | 38.58 | 12.18 (−13.46; 37.82) | 0.334 (0.216) | |
Peak Velocity (m/s) | SPT | Baseline | ||||
1.75 ± 0.16 | 0.03 | |||||
Post | ||||||
Pair 1 | Power Clean | 1.75 ± 0.17 | 0.04 | −0.01 (−0.05; 0.04) | 0.809 (−0.054) | |
Pair 2 | Clean and Jerk | 1.74 ± 0.18 | 0.04 | 0.01 (−0.02; 0.04) | 0.456 (0.166) | |
Pair 3 | Clean | 1.74 ± 0.18 | 0.04 | 0.01 (−0.03; 0.04) | 0.712 (0.082) | |
Pair 4 | High Hang Clean | 1.74 ± 0.16 | 0.03 | 0.01 (−0.02; 0.04) | 0.511 (0.146) | |
Pair 5 | Hang Power Clean | 1.75 ± 0.15 | 0.03 | 0.00 (−0.03; 0.04) | 0.819 (0.051) | |
Mean Velocity (m/s) | SPT | Baseline | ||||
0.93 ± 0.11 | 0.02 | |||||
Post | ||||||
Pair 1 | Power Clean | 0.93 ± 0.11 | 0.02 | 0.00 (−0.02; 0.02) | 0.846 (0.043) | |
Pair 2 | Clean and Jerk | 0.90 ± 0.12 | 0.03 | 0.03 (0.00; 0.06) | 0.050 (0.478) | |
Pair 3 | Clean | 0.90 ± 0.11 | 0.02 | 0.03 (−0.00; 0.06) | 0.071 (0.415) | |
Pair 4 | High Hang Clean | 0.91 ± 0.11 | 0.03 | 0.01 (−0.02; 0.04) | 0.358 (0.205) | |
Pair 5 | Hang Power Clean | 0.91 ± 0.11 | 0.02 | 0.02 (−0.01; 0.05) | 0.227 (0.272) |
Parameter | Weightlifting Derivative | Mean ± SD | SEM | MD (95% CI) | p (ES) | ||
---|---|---|---|---|---|---|---|
ROM (cm) | Female | SPT | Baseline | ||||
102.14 ± 6.68 | 2.23 | ||||||
Post | |||||||
Pair 1 | Power Clean | 102.77 ± 7.98 | 2.66 | −0.62 (−2.78; 1.54) | 0.525 (−0.222) | ||
Pair 2 | Clean and Jerk | 101.93 ± 8.16 | 2.72 | 0.21 (−2.16; 2.58) | 0.843 (0.068) | ||
Pair 3 | Clean | 102.18 ± 8.70 | 2.90 | −0.03 (−3.03; 2.96) | 0.980 (−0.009) | ||
Pair 4 | High Hang Clean | 102.03 ± 8.87 | 2.96 | 0.11 (−2.42; 2.64) | 0.922 (0.034) | ||
Pair 5 | Hang Power Clean | 101.47 ± 7.26 | 2.42 | 0.68 (−1.42; 2.77) | 0.477 (0.248) | ||
Male | SPT | Baseline | |||||
108.91 ± 7.91 | 2.28 | ||||||
Post | |||||||
Pair 1 | Power Clean | 108.03 ± 7.38 | 2.13 | 0.88 (−0.51; 2.28) | 0.192 (0.401) | ||
Pair 2 | Clean and Jerk | 105.40 ± 9.44 | 2.73 | 3.51 (1.35; 5.67) | 0.004 * (1.033) | ||
Pair 3 | Clean | 106.53 ± 8.72 | 2.52 | 2.38 (0.46; 4.29) | 0.020 * (0.786) | ||
Pair 4 | High Hang Clean | 107.28 ± 8.74 | 2.52 | 1.63 (−0.22; 3.47) | 0.079 (0.559) | ||
Pair 5 | Hang Power Clean | 107.51 ± 8.55 | 2.47 | 1.40 (−1.84; 4.64) | 0.362 (0.275) | ||
Mean Power (w) | Female | SPT | Baseline | ||||
536.97 ± 100.78 | 33.59 | ||||||
Post | |||||||
Pair 1 | Power Clean | 539.52 ± 125.88 | 41.96 | −2.56 (−27.66; 22.55) | 0.820 (−0.078) | ||
Pair 2 | Clean and Jerk | 539.18 ± 132.05 | 44.02 | −2.21 (−33.10; 28.63) | 0.873 (−0.055) | ||
Pair 3 | Clean | 533.22 ± 130.91 | 43.64 | 3.74 (−26.22; 33.70) | 0.781 (0.096) | ||
Pair 4 | High Hang Clean | 542.37 ± 125.61 | 41.87 | −5.40 (−27.63; 16.83) | 0.591 (−0.187) | ||
Pair 5 | Hang Power Clean | 528.48 ± 120.75 | 40.30 | 8.49 (−15.44; 32.41) | 0.437 (0.273) | ||
Male | SPT | Baseline | |||||
821.94 ± 105.66 | 30.50 | ||||||
Post | |||||||
Pair 1 | Power Clean | 821.21 ± 111.21 | 32.10 | 0.73 (−22.23; 23.69) | 0.945 (0.020) | ||
Pair 2 | Clean and Jerk | 777.33 ± 116.69 | 33.68 | 44.62 (13.47; 75.76) | 0.009 * (0.910) | ||
Pair 3 | Clean | 789.37 ± 126.03 | 36.38 | 32.58 (−9.58; 74.73) | 0.117 (0.491) | ||
Pair 4 | High Hang Clean | 801.42 ± 123.38 | 35.62 | 20.53(−24.59; 65.64) | 0.338 (0.289) | ||
Pair 5 | Hang Power Clean | 806.99 ± 99.85 | 28.82 | 14.95 (−30.17; 60.07) | 0.481 (0.211) | ||
Peak Velocity (m/s) | Female | SPT | Baseline | ||||
1.80 ± 0.13 | 0.04 | ||||||
Post | |||||||
Pair 1 | Power Clean | 1.80 ± 0.15 | 0.05 | −0.01 (−0.10; 0.05) | 0.795 (−0.090) | ||
Pair 2 | Clean and Jerk | 1.82 ± 0.12 | 0.04 | −0.02 (−0.06; 0.02) | 0.231 (−0.081) | ||
Pair 3 | Clean | 1.81 ± 0.15 | 0.05 | −0.01 (−0.07; 0.05) | 0.725 (−0.121) | ||
Pair 4 | High Hang Clean | 1.79 ± 0.15 | 0.05 | 0.01 (−0.06; 0.07) | 0.849 (0.066) | ||
Pair 5 | Hang Power Clean | 1.77 ± 0.16 | 0.05 | 0.03 (−0.04; 0.10) | 0.377 (0.312) | ||
Male | SPT | Baseline | |||||
1.72 ± 0.17 | 0.05 | ||||||
Post | |||||||
Pair 1 | Power Clean | 1.72 ± 0.18 | 0.05 | −0.00 (−0.08; 0.07) | 0.903 (−0.036) | ||
Pair 2 | Clean and Jerk | 1.68 ± 0.20 | 0.06 | 0.04 (−0.01; 0.08) | 0.089 (0.539) | ||
Pair 3 | Clean | 1.70 ± 0.19 | 0.05 | 0.02 (−0.03; 0.07) | 0.437 (0.233) | ||
Pair 4 | High Hang Clean | 1.70 ± 0.16 | 0.05 | 0.01 (−0.03; 0.05) | 0.459 (0.222) | ||
Pair 5 | Hang Power Clean | 1.73 ± 0.15 | 0.04 | −0.02 (−0.06; 0.03) | 0.492 (−0.205) | ||
Mean Velocity (m/s) | Female | SPT | Baseline | ||||
0.96 ± 0.12 | 0.04 | ||||||
Post | |||||||
Pair 1 | Power Clean | 0.96 ± 0.12 | 0.04 | 0.00 (−0.04; 0.04) | 0.901 (0.043) | ||
Pair 2 | Clean and Jerk | 0.96 ± 0.12 | 0.04 | 0.01 (−0.04; 0.06) | 0.773 (0.099) | ||
Pair 3 | Clean | 0.95 ± 0.11 | 0.04 | 0.02 (−0.04; 0.07) | 0.493 (0.239) | ||
Pair 4 | High Hang Clean | 0.96 ± 0.11 | 0.04 | −0.00 (−0.04; 0.04) | 0.947 (−0.023) | ||
Pair 5 | Hang Power Clean | 0.94 ± 0.11 | 0.04 | 0.02 (−0.03; 0.07) | 0.322 (0.352) | ||
Male | SPT | Baseline | |||||
0.90 ± 0.10 | 0.03 | ||||||
Post | |||||||
Pair 1 | Power Clean | 0.90 ± 0.10 | 0.03 | 0.00 (−0.02; 0.03) | 0.890 (0.041) | ||
Pair 2 | Clean and Jerk | 0.86 ± 0.10 | 0.03 | 0.05 (0.01; 0.08) | 0.011 * (0.876) | ||
Pair 3 | Clean | 0.86 ± 0.10 | 0.03 | 0.04 (−0.01; 0.08) | 0.091 (0.535) | ||
Pair 4 | High Hang Clean | 0.88 ± 0.11 | 0.03 | 0.02 (−0.02; 0.07) | 0.282 (0.326) | ||
Pair 5 | Hang Power Clean | 0.89 ± 0.11 | 0.03 | 0.01 (−0.03; 0.06) | 0.489 (0.207) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, J.P.; Oliveira, R.; Reis, V.M.; Romero, F.; Moutão, J.; Brito, J.P. Comparison between Olympic Weightlifting Lifts and Derivatives for External Load and Fatigue Monitoring. Healthcare 2022, 10, 2499. https://doi.org/10.3390/healthcare10122499
Antunes JP, Oliveira R, Reis VM, Romero F, Moutão J, Brito JP. Comparison between Olympic Weightlifting Lifts and Derivatives for External Load and Fatigue Monitoring. Healthcare. 2022; 10(12):2499. https://doi.org/10.3390/healthcare10122499
Chicago/Turabian StyleAntunes, Joaquim Paulo, Rafael Oliveira, Victor Machado Reis, Félix Romero, João Moutão, and João Paulo Brito. 2022. "Comparison between Olympic Weightlifting Lifts and Derivatives for External Load and Fatigue Monitoring" Healthcare 10, no. 12: 2499. https://doi.org/10.3390/healthcare10122499
APA StyleAntunes, J. P., Oliveira, R., Reis, V. M., Romero, F., Moutão, J., & Brito, J. P. (2022). Comparison between Olympic Weightlifting Lifts and Derivatives for External Load and Fatigue Monitoring. Healthcare, 10(12), 2499. https://doi.org/10.3390/healthcare10122499