Prevalence of Sarcopenia and Its Association with Quality of Life, Postural Stability, and Past Incidence of Falls in Postmenopausal Women with Osteoporosis: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Evaluation of the Status of Osteoporosis
2.3. Diagnosis of Sarcopenia
2.4. Diagnosis of Malnutrition
2.5. Evaluation of the Objective Postural Instability
2.6. Evaluation of QOL
2.7. Evaluation of Other Covariants
2.8. Statistical Analyses
3. Results
3.1. Population and Diagnosis of Sarcopenia and Malnutrition
3.2. Evaluation of BMD
3.3. Factors Associated with Sarcopenia
3.4. Factors Associated with Reduced BMD
3.5. Impact of Sarcopenia and BMD Status on the Stabilometric Measurement
3.6. Multivariate Logistic Regression Analysis of the Effect of Sarcopenia on Postural Stability (Age-Adjusted)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Homepage of the Japanese Ministry of Internal Affairs and Communications. 2020. Available online: https://www.soumu.go.jp/main_sosiki/joho_tsusin/eng (accessed on 9 September 2021).
- Daly, R.M.; Rosengren, B.E.; Alwis, G.; Ahlborg, H.G.; Sernbo, I.; Karlsson, M.K. Gender specific age-related changes in bone density, muscle strength and functional performance in the elderly: A 10-year prospective population-based study. BMC Geriatr. 2013, 13, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.M.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Kanis, J.A.; Adachi, J.D.; Cooper, C.; Clark, P.; Cummings, S.R.; Diaz-Curiel, M.; Harvey, N.; Hiligsmann, M.; Papaioannou, A.; Pierroz, D.D.; et al. Standardising the descriptive epidemiology of osteoporosis: Recommendations from the Epidemiology and Quality of Life Working Group of IOF. Osteoporos. Int. 2013, 24, 2763–2764. [Google Scholar] [CrossRef]
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos. Int. 2004, 15, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. Osteoporos. Int. 1994, 4, 368–381. [Google Scholar] [CrossRef]
- Bliuc, D.; Nguyen, T.V.; Eisman, J.A.; Center, J.R. The impact of non-hip nonvertebral fractures in elderly women and men. J. Clin. Endocrinol. Metab. 2014, 99, 415–423. [Google Scholar] [CrossRef] [Green Version]
- Brauer, C.A.; Coca-Perraillon, M.; Cutler, D.M.; Rosen, A.B. Incidence and mortality of hip fractures in the United States. JAMA 2009, 302, 1573–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leslie, W.D.; Brennan, S.L.; Prior, H.J.; Lix, L.M.; Metge, C.; Elias, B. The contributions of first nations ethnicity, income, and delays in surgery on mortality postfracture: A population-based analysis. Osteoporos. Int. 2013, 2, 1247–1256. [Google Scholar] [CrossRef]
- Tran, T.; Bliuc, D.; Hansen, L.; Abrahamsen, B.; van den Bergh, J.; Eisman, J.A.; van Geel, T.; Geusens, P.; Vestergaard, P.; Nguyen, T.V.; et al. Persistence of excess mortality following individual non-hip fractures: A relative survival analysis. J. Clin. Endocrinol. Metab. 2018, 103, 3205–3214. [Google Scholar] [CrossRef] [Green Version]
- Leslie, W.D. Clinical review: Ethnic differences in bone mass–clinical implications. J. Clin. Endocrinol. Metab. 2012, 97, 4329–4340. [Google Scholar] [CrossRef]
- Burge, R.; Dawson-Hughes, B.; Solomon, D.H.; Wong, J.B.; King, A.; Tosteson, A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Min. Res. 2007, 22, 465–475. [Google Scholar] [CrossRef]
- Weaver, J.; Sajjan, S.; Lewiecki, E.M.; Harris, S.T.; Marvos, P. Prevalence and cost of subsequent fractures among U.S. patients with an incident fracture. J. Manag. Care Spec. Pharm. 2017, 23, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Singer, A.; Exuzides, A.; Spangler, L.; O’Malley, C.; Colby, C.; Johnston, K.; Agodoa, I.; Baker, J.; Kagan, R. Burden of illness for osteoporotic fractures compared with other serious diseases among postmenopausal women in the United States. Mayo Clin. Proc. 2015, 90, 53–62. [Google Scholar] [CrossRef]
- Pike, C.; Birnbaum, H.G.; Schiller, M.; Swallow, E.; Burge, R.T.; Edgell, E.T. Economic burden of privately insured non-vertebral fracture patients with osteoporosis over a 2-year period in the US. Osteoporos. Int. 2011, 22, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Orimo, H.; Hayashi, Y.; Fukunaga, M.; Sone, T.; Fujiwara, S.; Shiraki, M.; Kushida, K.; Miyamoto, S.; Soen, S.; Nishimura, J.; et al. Diagnostic criteria for primary osteoporosis: Year 2000 revision. J. Bone Min. Metab. 2001, 19, 331–337. [Google Scholar] [CrossRef]
- Hagino, H. Revised osteoporosis diagnostic criteria and Japanese practice guideline on osteoporosis. Clin. Calcium 2014, 24, 11–18. [Google Scholar] [PubMed]
- Li, H.L.; Shen, Y.; Tan, L.H.; Fu, S.B.; Dai, R.C.; Yuan, L.Q.; Sheng, Z.F.; Xie, Z.J.; Wu, X.P.; Liao, E.Y.; et al. Relationship between bone mineral density and fragility fracture risk: A case-control study in Changsha, China. BMC Musculoskelet. Disord. 2021, 22, 728. [Google Scholar] [CrossRef]
- Cao, L.; Morley, J.E. Sarcopenia is recognized as an independent condition by an International Classification of Disease, 10th revision, Clinical Modification (ICD-10-CM) Code. J. Am. Med. Dir. Assoc. 2016, 17, 675–677. [Google Scholar] [CrossRef]
- Morley, J.E.; Abbatecola, A.M.; Argiles, J.M.; Baracos, V.; Bauer, J.; Bhasin, S.; Cederholm, T.; Coats, A.J.; Cummings, S.R.; Evans, W.J.; et al. Sarcopenia with limited mobility: An international consensus. J. Am. Med. Dir. Assoc. 2011, 12, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Patel, H.P. Prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) definition: Findings from the Hertfordshire Cohort Study (HCS). Age Ageing 2013, 42, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanse, L.P. Prevalence and associated factors of sarcopenia in older adults with intellectual disabilities. Res. Dev. Disabil. 2012, 33, 2004–2012. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Liperoti, R.; Fusco, D.; Mastropaolo, S.; Quattrociocchi, D.; Proia, A.; Russo, A.; Bernabei, R.; Onder, G. Prevalence and risk factors of sarcopenia among nursing home older residents. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senior, H.E.; Henwood, T.R.; Beller, E.M.; Mitchell, G.K.; Keogh, J.W. Prevalence and risk factors of sarcopenia among adults living in nursing homes. Maturitas 2015, 82, 418–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahat, G.; Saka, B.; Tufan, F.; Akin, S.; Sivrikaya, S.; Yucel, N.; Erten, N.; Karan, M.A. Prevalence of sarcopenia and its association with functional and nutritional status among male residents in a nursing home in Turkey. Aging Male 2010, 13, 211–214. [Google Scholar] [CrossRef]
- Gariballa, S.; Alessa, A. Sarcopenia: Prevalence and prognostic significance in hospitalized patients. Clin. Nutr. 2013, 32, 772–776. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Landi, F.; Schneider, S.M.; Zúñiga, C.; Arai, H.; Boirie, Y.; Chen, L.K.; Fielding, R.A.; Martin, F.C.; Michel, J.P.; et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014, 43, 748–759. [Google Scholar] [CrossRef]
- Okamura, H.; Ishikawa, K.; Kudo, Y.; Matsuoka, A.; Maruyama, H.; Emori, H.; Yamamura, R.; Hayakawa, C.; Tani, S.; Tsuchiya, K.; et al. Risk factors predicting osteosarcopenia in postmenopausal women with osteoporosis: A retrospective study. PLoS ONE 2020, 15, e0237454. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Cruz-Jentoft, A.J.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.; Bernabei, R.; Onder, G. Sarcopenia and mortality risk in frail older persons aged 80 years and older: Results from ilSIRENTE study. Age Ageing 2013, 42, 203–219. [Google Scholar] [CrossRef] [Green Version]
- Verschueren, S.; Gielen, E.; O’Neill, T.W.; Pye, S.R.; Adams, J.E.; Ward, K.A.; Wu, F.C.; Szulc, P.; Laurent, M.; Claessens, F.; et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos. Int. 2013, 24, 87–98. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European working group on sarcopenia in older people. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.K.; Liu, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Bahyah, K.S.; Chou, M.Y.; Chen, L.Y.; Hsu, P.S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef]
- Kaji, H. Interaction between muscle and bone. Horm. Res. 2007, 66, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Hirschfeld, H.P.; Kinsella, R.; Duque, G. Osteosarcopenia: Where bone, muscle, and fat collide. Osteoporos. Int. 2017, 28, 2781–2790. [Google Scholar] [CrossRef]
- World Health Organization. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis: Report of a WHO Study Group; World Health Organization: Geneva, Switzerland, 1994; Volume 843, pp. 1–129. [Google Scholar]
- Soen, S.; Fukunaga, M.; Sugimoto, T.; Sone, T.; Fujiwara, S.; Endo, N.; Gorai, I.; Shiraki, M.; Hagino, H.; Hosoi, T.; et al. Diagnostic criteria for primary osteoporosis: Year 2012 revision. J. Bone Min. Metab. 2013, 31, 247–257. [Google Scholar] [CrossRef]
- Jensen, G.L.; Cederholm, T.; Correia, M.I.T.; Fukushima, R.; Higashiguchi, T.; De Baptista, G.A.; Barazzoni, R.; Blaauw, R.; Coats, A.J.; Crivelli, A.; et al. GLIM criteria for the diagnosis of malnutrition–a consensus report from the global clinical nutrition community. J. Parenter. Enter. Nutr. 2019, 43, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieber, C.C. Malnutrition and sarcopenia. Aging Clin. Exp. Res. 2019, 31, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Yano, T.; Fujishiro, T.; Obo, T.; Mori, K.; Hayama, S.; Nakaya, Y.; Nakano, A.; Baba, I.; Neo, M. Surgical outcomes of postural instability in patients with cervical myelopathy. Clin. Spine Surg. 2020, 33, E466–E471. [Google Scholar] [CrossRef] [PubMed]
- Yano, T.; Fujishiro, T.; Obo, T.; Nakano, A.; Nakaya, Y.; Hayama, S.; Mori, K.; Baba, I.; Neo, M. The effects of surgery on postural instability in patients with cervical compressive myelopathy evaluating subjective perceptions and objective measurements. Clin. Spine Surg. 2021, in press. [Google Scholar] [CrossRef]
- Raymakers, J.A.; Samson, M.M.; Verhaar, H.J.J. The assessment of body sway and the choice of the stability parameter(s). Gait Posture 2005, 21, 48–58. [Google Scholar] [CrossRef]
- Błaszczyk, J.W. The use of force-plate posturography in the assessment of postural instability. Gait Posture 2016, 44, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Brooks, R. EuroQol: The current state of play. Health Policy 1996, 37, 53–72. [Google Scholar] [CrossRef]
- Volpato, S.; Bianchi, L.; Cherubini, A.; Landi, F.; Maggio, M.; Savino, E.; Bandinelli, S.; Ceda, G.P.; Guralnik, J.M.; Zuliani, G.; et al. Prevalence and clinical correlates of sarcopenia in community-dwelling older people: Application of the EWGSOP definition and diagnostic algorithm. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 438–446. [Google Scholar] [CrossRef]
- Lee, W.J.; Liu, L.K.; Peng, L.N.; Lin, M.H.; Chen, L.K. Comparisons of sarcopenia defined by IWGS and EWGSOP criteria among older people: Results from the I-Lan longitudinal aging study. J. Am. Med. Dir. Assoc. 2013, 14, 528.e1–528.e7. [Google Scholar] [CrossRef]
- Legrand, D.; Vaes, B.; Mathei, C.; Swine, C.; Degryse, J.M. The prevalence of sarcopenia in very old individuals according to the European consensus definition: Insights from the BELFRAIL study. Age Ageing 2013, 42, 727–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, R.A.; Ip, E.H.; Zhang, Q.; Boudreau, R.M.; Cawthon, P.M.; Newman, A.B.; Tylavsky, F.A.; Visser, M.; Goodpaster, B.H.; Harris, T.B.; et al. Transition to sarcopenia and determinants of transitions in older adults: A population-based study. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 751–758. [Google Scholar] [CrossRef]
- Tanimoto, Y.; Watanabe, M.; Sun, W.; Sugiura, Y.; Tsuda, Y.; Kimura, M.; Hayashida, I.; Kusabiraki, T.; Kono, K. Association between sarcopenia and higher-level functional capacity in daily living in community-dwelling elderly subjects in Japan. Arch. Gerontol. Geriatr. 2012, 55, e9–e13. [Google Scholar] [CrossRef]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.M.; et al. Diagnostic criteria for malnutrition—An ESPEN consensus statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef]
- Söderström, L.; Rosenblad, A.; Adolfsson, E.T.; Bergkvist, L. Malnutrition is associated with increased mortality in older adults regardless of the cause of death. Br. J. Nutr. 2017, 117, 532–540. [Google Scholar] [CrossRef] [Green Version]
- Malafarina, V.; Reginster, J.Y.; Cabrerizo, S.; Bruyère, O.; Kanis, J.A.; Martinez, J.A.; Zulet, M.A. Nutritional status and nutritional treatment are related to outcomes and mortality in older adults with hip fracture. Nutrients 2018, 10, 555. [Google Scholar] [CrossRef] [Green Version]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin. Nutr. 2018, 38, 10–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morley, J.E. Anorexia, weight loss, and frailty. J. Am. Med. Dir. Assoc. 2010, 11, 225–228. [Google Scholar] [CrossRef]
- Fried, L.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, D.; Marco, E.; Ronquillo-Moreno, N.; Maciel-Bravo, L.; Gonzales-Carhuancho, A.; Duran, X.; Guillén-Solà, A.; Vázquez-Ibar, O.; Escalada, F.; Muniesa, J.M. ASPEN-AND-ESPEN: A postacute-care comparison of the basic definition of malnutrition from the American Society of Parenteral and Enteral Nutrition and Academy of Nutrition and Dietetics with the European Society for Clinical Nutrition and Metabolism definition. Clin. Nutr. 2019, 38, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Rodríguez, D.; Locquet, M.; Reginster, J.Y.; Cavalier, E.; Bruyère, O.; Beaudart, C. Mortality in malnourished older adults diagnosed by ESPEN and GLIM criteria in the SarcoPhAge study. J. Cachexia Sarcopenia Muscle 2020, 11, 1200–1211. [Google Scholar] [CrossRef]
- Maeda, K.; Ishida, Y.; Nonogaki, T.; Mori, N. Reference body mass index values and the prevalence of malnutrition according to the Global Leadership Initiative on Malnutrition criteria. Clin. Nutr. 2020, 39, 180–184. [Google Scholar] [CrossRef]
- Rachner, T.D.; Khosla, S.; Hofbauer, L.C. Osteoporosis: Now and the future. Lancet 2011, 377, 1276–1287. [Google Scholar] [CrossRef] [Green Version]
- Dargent-Molina, P.; Favier, F.; Grandjean, H.; Baudoin, C.; Schott, A.M.; Hausherr, E.; Meunier, P.J.; Breart, G. Fall-related factors and risk of hip fracture: The EPIDOS prospective study. Lancet 1996, 348, 145–149. [Google Scholar] [CrossRef]
- Sambrook, P.N.; Cameron, I.D.; Chen, J.S.; Cumming, R.G.; Lord, S.R.; March, L.M.; Schwarz, J.; Seibel, M.J.; Simpson, J.M. Influence of fall related factors and bone strength on fracture risk in the frail elderly. Osteoporos. Int. 2007, 18, 603–610. [Google Scholar] [CrossRef]
- Qazi, S.L.; Sirola, J.; Kröger, H.; Honkanen, R.; Isanejad, M.; Airaksinen, O.; Rikkonen, T. High postural sway is an independent risk factor for osteoporotic fractures but not for mortality in elderly women. J. Bone Min. Res. 2019, 34, 817–824. [Google Scholar] [CrossRef]
- Allum, J.H.; Pfaltz, C.R. Visual and vestibular contributions to pitch sway stabilization in the ankle muscles of normals and patients with bilateral peripheral vestibular deficits. Exp. Brain Res. 1985, 58, 82–94. [Google Scholar] [CrossRef]
- Khasnis, A.; Gokula, R.M. Romberg’s test. J. Postgrad. Med. 2003, 49, 169–172. [Google Scholar]
- Hita-Contreras, F.; Martínez-Amat, A.; Lomas-Vega, R.; Álvaraz, A.; Aránega, A.; Martínez-López, E.; Mendoza, N. Predictive value of stabilometry and fear of falling on falls in postmenopausal women. Climacteric 2013, 16, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Bruce, D.G.; Devine, A.; Prince, R.L. Recreational physical activity levels in healthy older women: The importance of fear of falling. J. Am. Geriatr. Soc. 2002, 50, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Koslucher, F.; Munafo, J.; Stoffregen, T.A. Postural sway in men and women during nauseogenic motion of the illuminated environment. Exp. Brain Res. 2016, 234, 2709–2720. [Google Scholar] [CrossRef] [PubMed]
- Ku, P.X.; Osman, N.A.A.; Yusof, A.; Wan Abas, W.A.B. Biomechanical evaluation of the relationship between postural control and body mass index. J. Biomech. 2012, 45, 1638–1642. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Rupp, T.; Hoenig, T.; Vettorazzi, E.; Amling, M.; Rolvien, T. Evaluation of postural stability in patients screened for osteoporosis: A retrospective study of 1086 cases. Gait Posture 2021, 88, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Daly, R.M.; Gianoudis, J.; Kersh, M.E.; Bailey, C.A.; Ebeling, P.R.; Krug, R.; Nowson, C.A.; Hill, K.; Sanders, K.M. Effects of a 12-month supervised, community-based, multimodal exercise program followed by a 6-month research-to-practice transition on bone mineral density, trabecular microarchitecture, and physical function in older adults: A randomized controlled trial. J. Bone Min. Res. 2020, 35, 419–429. [Google Scholar] [CrossRef]
- Kirk, B.; Mooney, K.; Cousins, R.; Angell, P.; Jackson, M.; Pugh, J.N.; Coyles, G.; Amirabdollahian, F.; Khaiyat, O. Effects of exercise and whey protein on muscle mass, fat mass, myoelectrical muscle fatigue and health-related quality of life in older adults: A secondary analysis of the Liverpool Hope University—Sarcopenia Ageing Trial (LHU-SAT). Eur. J. Appl. Physiol. 2020, 120, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Kirk, B.; Mooney, K.; Amirabdollahian, F.; Khaiyat, O. Exercise and dietary-protein as a countermeasure to skeletal muscle weakness: Liverpool Hope University—Sarcopenia Aging Trial (LHU-SAT). Front. Physiol. 2019, 10, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cudejko, T.; Gardiner, J.; Akpan, A.; D’Août, K. Minimal shoes improve stability and mobility in persons with a history of falls. Sci. Rep. 2020, 10, 21755. [Google Scholar] [CrossRef] [PubMed]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2017, 52, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Fatima, M.; Brennan-Olsen, S.L.; Duque, G. Therapeutic approaches to osteosarcopenia: Insights for the clinician. Adv. Musculoskelet. Dis. 2019, 11, 1759720X1986700. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, N.; Bourgoin, L.; Biver, E.; Douni, E.; Ferrari, S. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J. Clin. Investig. 2019, 129, 3214–3223. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Category | Mean (SD), n (%), Median (Range) |
---|---|---|
Age, years, mean (SD) | 77.61 (8.12) | |
Total muscle mass, kg, mean (SD) | 32.31 (3.90) | |
Body fat rate, %, mean (SD) | 21.33 (9.32) | |
BMI, kg/m2, mean (SD) | 22.38 (3.14) | |
BMI category, n (%) | Underweight (<22) | 31 (50.8) |
Normal weight (22–25) | 20 (32.8) | |
Overweight (>25) | 10 (16.4) | |
GLIM, n (%) | Well nourished | 47 (77) |
Malnourished | 14 (23) | |
Sarcopenia, n (%) | No sarcopenia | 37 (60.7) |
Sarcopenia | 24 (39.3) | |
SMI, kg/m2, mean (SD) | 5.69 (0.78) | |
CC, cm, mean (SD) | 33.0 (3.24) | |
Hand grip strength, kg, mean (SD) | 18.27 (6.42) | |
Five times sit-stand test, s, mean (SD) | 12.17 (5.11) | |
Number of prescribed drugs, median (range) | 4 (1–11) | |
Number of falls in one year, times, median (range) | 0 (0–2) | |
Lumbar vertebra 2–4 BMD, g/cm2, mean (SD) | 0.95 (0.14) | |
Percentage of young adult BMD, mean (SD) | 80.23 (12.16) |
Variable | Non-Sarcopenia (n = 37) | Sarcopenia (n = 24) | p-Value |
---|---|---|---|
Age, years, mean (SD) | 75.08 (6.71) | 81.5 (8.69) | 0.002 |
Percent body fat, %, mean (SD) | 21.80 (8.72) | 20.62 (10.33) | 0.634 |
BMI, kg/m2, mean (SD) | 23.34 (3.26) | 20.88 (2.30) | 0.002 |
GLIM malnourished, n (%) | 0 (0) | 14 (71) | <0.001 |
SMI, kg/m2, mean (SD) | 6.07 (0.69) | 5.09 (0.50) | <0.001 |
CC, cm, mean (SD) | 34.43 (3.03) | 30.84 (2.20) | <0.001 |
Hand grip strength, kg, mean (SD) | 21.65 (4.79) | 13.05 (4.99) | <0.001 |
Five times sit-stand test, s, mean (SD) | 9.325 (2.62) | 16.55 (4.93) | <0.001 |
Number of prescribed drugs | |||
<4 | 21 | 6 | 0.003 |
≧4 | 16 | 18 | |
Episode of fall in 1 year | |||
no | 34 | 13 | <0.001 |
yes | 3 | 11 | |
EuroQol-5 score, mean (SD) | 5.38 (0.54) | 7.63 (1.49) | <0.001 |
Lumbar vertebra 2–4 BMD, g/cm2, mean (SD) | 0.97 (0.14) | 0.92 (0.13) | 0.119 |
Percentage of young adult BMD, mean (SD) | 82.19 (12.3) | 77.21 (11.5) | 0.119 |
Variable | Non-Reduced BMD (n = 31) | Reduced BMD (n = 30) | p-Value |
---|---|---|---|
Age, years, mean (SD) | 77.16 (9.52) | 78.07 (6.89) | 0.667 |
Percent body fat, %, mean (SD) | 22.91 (9.45) | 19.71 (9.06) | 0.183 |
BMI, kg/m2, mean (SD) | 22.67 (3.12) | 22.08 (3.20) | 0.468 |
GLIM malnourished, n (%) | 6 (19) | 8 (26) | 0.497 |
SMI, kg/m2, mean (SD) | 5.8 (0.80) | 5.57 (0.76) | 0.27 |
CC, cm, mean (SD) | 33.4 (3.08) | 32.63 (3.42) | 0.361 |
Hand grip strength, kg, mean (SD) | 18.21 (5.91) | 18.33 (7.91) | 0.941 |
Five times sit-stand test, s, mean (SD) | 11.74 (4.59) | 12.61 (4.15) | 0.509 |
Number of prescribed drugs | |||
<4 | 15 | 12 | 0.501 |
≧4 | 16 | 18 | |
Episode of fall in 1 year | |||
no | 23 | 24 | 0.579 |
yes | 8 | 6 | |
EuroQol- 5 score, mean (SD) | 6.32 (1.59) | 6.2 (1.54) | 0.753 |
Lumbar vertebra 2–4 BMD, g/cm2, mean (SD) | 1.06 (0.10) | 0.84 (0.08) | 0 |
Percent of young adult BMD, mean (SD) | 89.26 (8.67) | 70.9 (7.15) | 0 |
Stabilometric Measurement | Non-Sarcopenia (n = 37) | Sarcopenia (n = 24) | p-Value |
Sway area (cm2) | 1.59 (0.85) | 1.94 (1.31) | 0.209 |
Sway velocity (cm/s) | 1.30 (0.31) | 1.66 (0.57) | 0.003 |
Total sway length (cm) | 38.01 (8.19) | 51.58 (6.38) | <0.001 |
Stabilometric Measurement | Non-Reduced BMD (n = 31) | Reduced BMD (n = 30) | p-Value |
Sway area (cm2) | 1.68 (1.15) | 1.78 (0.97) | 0.7 |
Sway velocity (cm/s) | 1.39 (0.45) | 1.5 (0.48) | 0.342 |
Total sway length (cm) | 42.34 (12.86) | 44.39 (14.66) | 0.564 |
Sway Velocity (cm/sec) | |||
Variable | Coefficient | 95% CI | p-Value |
Sarcopenia (vs. non-sarcopenia) | 0.264 | 0.021, 0.506 | 0.033 |
Age (per 1 year) | 0.015 | 0.000, 0.029 | 0.049 |
Total sway length (cm) | |||
Variable | Coefficient | 95% CI | p-Value |
Sarcopenia (vs. non-sarcopenia) | 11.078 | 4.353, 17.802 | 0.002 |
Age (per 1 year) | 0.388 | −0.020, 0.795 | 0.062 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okayama, A.; Nakayama, N.; Kashiwa, K.; Horinouchi, Y.; Fukusaki, H.; Nakamura, H.; Katayama, S. Prevalence of Sarcopenia and Its Association with Quality of Life, Postural Stability, and Past Incidence of Falls in Postmenopausal Women with Osteoporosis: A Cross-Sectional Study. Healthcare 2022, 10, 192. https://doi.org/10.3390/healthcare10020192
Okayama A, Nakayama N, Kashiwa K, Horinouchi Y, Fukusaki H, Nakamura H, Katayama S. Prevalence of Sarcopenia and Its Association with Quality of Life, Postural Stability, and Past Incidence of Falls in Postmenopausal Women with Osteoporosis: A Cross-Sectional Study. Healthcare. 2022; 10(2):192. https://doi.org/10.3390/healthcare10020192
Chicago/Turabian StyleOkayama, Akira, Naomi Nakayama, Kaori Kashiwa, Yutaka Horinouchi, Hayato Fukusaki, Hirosuke Nakamura, and Satoru Katayama. 2022. "Prevalence of Sarcopenia and Its Association with Quality of Life, Postural Stability, and Past Incidence of Falls in Postmenopausal Women with Osteoporosis: A Cross-Sectional Study" Healthcare 10, no. 2: 192. https://doi.org/10.3390/healthcare10020192
APA StyleOkayama, A., Nakayama, N., Kashiwa, K., Horinouchi, Y., Fukusaki, H., Nakamura, H., & Katayama, S. (2022). Prevalence of Sarcopenia and Its Association with Quality of Life, Postural Stability, and Past Incidence of Falls in Postmenopausal Women with Osteoporosis: A Cross-Sectional Study. Healthcare, 10(2), 192. https://doi.org/10.3390/healthcare10020192