A SARS-CoV-2 Infection High-Uptake Program on Healthcare Workers and Cancer Patients of the National Cancer Institute of Naples, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- The first wave, from 4 March 2020, to 31 May 2020;
- A transition phase, from 1 June 2020, to 27 September 2020;
- The second wave from 28 September 2020, to 3 January 2021;
- The second transition phase from 4 January 2021, to 4 April 2021.
2.2. Sample
2.3. Tests Used for SARS-CoV-2
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gagliano, A.; Villani, P.G.; Co’, F.M.; Manelli, A.; Paglia, S.; Bisagni, P.A.G.; Perotti, G.; Storti, E.; Lombardo, M. COVID-19 Epidemic in the Middle Province of Northern Italy: Impact, Logistics, and Strategy in the First Line Hospital. Disaster Med. Public Health Prep. 2020, 14, 372–376. [Google Scholar] [CrossRef] [Green Version]
- COVID-19 Situazione Italia—Dati del Dipartimento della Protezione Civile 2021. Available online: https://www.salute.gov.it/portale/nuovocoronavirus/dettaglioContenutiNuovoCoronavirus.jsp?area=nuovoCoronavirus&id=5351&lingua=italiano&menu=vuoto (accessed on 3 May 2021).
- Italian Ministry of Health. Coronavirus. Available online: https://www.salute.gov.it/portale/nuovocoronavirus/dettaglioContenutiNuovoCoronavirus.jsp?lingua=italiano&id=5373&area=nuovoCoronavirus&menu=vuoto (accessed on 3 May 2021).
- Bielicki, J.A.; Duval, X.; Gobat, N.; Goossens, H.; Koopmans, M.; Tacconelli, E.; van der Werf, S. Monitoring approaches for health-care workers during the COVID-19 pandemic. Lancet Infect. Dis. 2020, 20, e261–e267. [Google Scholar] [CrossRef]
- Moscola, J.; Sembajwe, G.; Jarrett, M.; Farber, B.; Chang, T.; McGinn, T.; Davidson, K.W. Northwell Health COVID-19 Research Consortium. Prevalence of SARS-CoV-2 Antibodies in Health Care Personnel in the New York City Area. JAMA 2020, 324, 893–895. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Y.; Okwan-Duodu, E.A.D.; Basho, R.; Cui, X. COVID-19 in cancer patients: Risk, clinical features, and management. Cancer Biol. Med. 2020, 17, 519–527. [Google Scholar] [CrossRef]
- Lee, K.A.; Ma, W.; Sikavi, D.R.; Drew, D.A.; Nguyen, L.H.; Bowyer, R.C.E.; Cardoso, M.J.; Fall, T.; Freidin, M.B.; Gomez, M.; et al. Cancer and Risk of COVID-19 Through a General Community Survey. Oncologist 2020, 26, e182–e185. [Google Scholar] [CrossRef]
- Iorio, G.C.; Ammendolia, A.; Marotta, N.; Ricardi, U.; de Sire, A. A bond between rheumatic diseases and cancer in the elderly: The interleukin-6 pathway. Int. J. Rheum. Dis. 2021, 24, 1317–1320. [Google Scholar] [CrossRef]
- Crispo, A.; Montagnese, C.; Perri, F.; Grimaldi, M.; Bimonte, S.; Augustin, L.S.; Amore, A.; Celentano, E.; Di Napoli, M.; Cascella, M.; et al. COVID-19 Emergency and Post-Emergency in Italian Cancer Patients: How Can Patients Be Assisted? Front. Oncol. 2020, 10, 1571. [Google Scholar] [CrossRef]
- Buonaguro, F.M.; Botti, G.; Ascierto, P.A.; Pignata, S.; Ionna, F.; Delrio, P.; Petrillo, A.; Cavalcanti, E.; Di Bonito, M.; Perdonà, S.; et al. The clinical and translational research activities at the INT—IRCCS “Fondazione Pascale” cancer center (Naples, Italy) during the COVID-19 pandemic. Infect. Agents Cancer 2020, 15, 69. [Google Scholar] [CrossRef]
- Laboratory testing strategy recommendations for COVID-19—Interim guidance 2020. Available online: https://apps.who.int/iris/bitstream/handle/10665/331509/WHO-COVID-19-lab_testing-2020.1-eng.pdf?sequence=1&isAllowed=y (accessed on 3 May 2021).
- Jin, Y.-H.; Cai, L.; Cheng, Z.-S.; Cheng, H.; Deng, T.; Fan, Y.-P.; Fang, C.; Huang, D.; Huang, L.-Q.; Huang, Q.; et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil. Med. Res. 2020, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [Green Version]
- Black, J.R.M.; Bailey, C.; Przewrocka, J.; Dijkstra, K.K.; Swanton, C. COVID-19: The case for health-care worker screening to prevent hospital transmission. Lancet 2020, 395, 1418–1420. [Google Scholar] [CrossRef]
- Huff, H.V.; Singh, A. Asymptomatic Transmission During the Coronavirus Disease 2019 Pandemic and Implications for Public Health Strategies. Clin. Infect. Dis. 2020, 71, 2752–2756. [Google Scholar] [CrossRef]
- Barranco, R.; Ventura, F. COVID-19 and infections in health care workers: An emerging problem. Med.-Leg. J. 2020, 88, 65–66. [Google Scholar] [CrossRef]
- Iavicoli, S.; Boccuni, F.; Buresti, G.; Gagliardi, D.; Persechino, B.; Valenti, A.; Rondinone, B.M. Risk assessment at work and prevention strategies on COVID-19 in Italy. PLoS ONE 2021, 16, e0248874. [Google Scholar] [CrossRef]
- Gosain, R.; Abdou, Y.; Singh, A.; Rana, N.; Puzanov, I.; Ernstoff, M.S. COVID-19 and Cancer: A Comprehensive Review. Curr. Oncol. Rep. 2020, 22, 53. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Drew, D.A.; Joshi, A.D.; Guo, C.G.; Ma, W.; Mehta, R.S.; Sikavi, D.R.; Lo, C.H.; Kwon, S.; Song, M.; et al. Risk of COVID-19 among frontline healthcare workers and the general community: A prospective cohort study. medRxiv 2020. [Google Scholar] [CrossRef]
- Barrett, E.S.; Horton, D.B.; Roy, J.; Gennaro, M.L.; Brooks, A.; Tischfield, J.; Greenberg, P.; Andrews, T.; Jagpal, S.; Reilly, N.; et al. Prevalence of SARS-CoV-2 infection in previously undiagnosed health care workers at the onset of the U.S. COVID-19 epidemic. medRxiv 2020. [Google Scholar] [CrossRef]
- Houlihan, C.F.; Vora, N.; Byrne, T.; Lewer, D.; Kelly, G.; Heaney, J.; Gandhi, S.; Spyer, M.J.; Beale, R.; Cherepanov, P.; et al. Pandemic peak SARS-CoV-2 infection and seroconversion rates in London frontline health-care workers. Lancet 2020, 396, e6–e7. [Google Scholar] [CrossRef]
- Rivett, L.; Sridhar, S.; Sparkes, D.; Routledge, M.; Jones, N.K.; Forrest, S.; Young, J.; Pereira-Dias, J.; Hamilton, W.L.; Ferris, M.; et al. Screening of healthcare workers for SARS-CoV-2 highlights the role of asymptomatic carriage in COVID-19 transmission. eLife 2020, 9, e58728. [Google Scholar] [CrossRef]
- Shields, A.; Faustini, S.E.; Perez-Toledo, M.; Jossi, S.; Aldera, E.; Allen, J.D.; Al-Taei, S.; Backhouse, C.; Bosworth, A.; Dunbar, L.A.; et al. SARS-CoV-2 seroprevalence and asymptomatic viral carriage in healthcare workers: A cross-sectional study. Thorax 2020, 75, 1089–1094. [Google Scholar] [CrossRef]
- Sahu, A.K.; Amrithanand, V.; Mathew, R.; Aggarwal, P.; Nayer, J.; Bhoi, S. COVID-19 in health care workers—A systematic review and meta-analysis. Am. J. Emerg. Med. 2020, 38, 1727–1731. [Google Scholar] [CrossRef]
- Ran, L.; Chen, X.; Wang, Y.; Wu, W.; Zhang, L.; Tan, X. Risk Factors of Healthcare Workers with Coronavirus Disease 2019: A Retrospective Cohort Study in a Designated Hospital of Wuhan in China. Clin. Infect. Dis. 2020, 71, 2218–2221. [Google Scholar] [CrossRef] [Green Version]
- Iversen, K.; Bundgaard, H.; Hasselbalch, R.B.; Kristensen, J.H.; Nielsen, P.B.; Pries-Heje, M.M.; Knudsen, A.D.; Christensen, C.E.; Fogh, K.; Norsk, J.B.; et al. Risk of COVID-19 in health-care workers in Denmark: An observational cohort study. Lancet Infect. Dis. 2020, 20, 1401–1408. [Google Scholar] [CrossRef]
- Eyre, D.W.; Lumley, S.; O’Donnell, D.; Campbell, M.; Sims, E.; Lawson, E.; Warren, F.; James, T.; Cox, S.; Howarth, A.; et al. Differential occupational risks to healthcare workers from SARS-CoV-2 observed during a prospective observational study. eLife 2020, 9, e60675. [Google Scholar] [CrossRef]
- Lombardi, A.; Consonni, D.; Carugno, M.; Bozzi, G.; Mangioni, D.; Muscatello, A.; Castelli, V.; Palomba, E.; Cantù, A.; Ceriotti, F.; et al. Characteristics of 1573 healthcare workers who underwent nasopharyngeal swab testing for SARS-CoV-2 in Milan, Lombardy, Italy. Clin. Microbiol. Infect. 2020, 26, 1413.e9–1413.e13. [Google Scholar] [CrossRef]
- de Sire, A.; Marotta, N.; Raimo, S.; Lippi, L.; Inzitari, M.T.; Tasselli, A.; Gimigliano, A.; Palermo, L.; Invernizzi, M.; Ammendolia, A. Psychological Distress and Work Environment Perception by Physical Therapists from Southern Italy during COVID-19 Pandemic: The C.A.L.A.B.R.I.A Study. Int. J. Environ. Res. Public Health 2021, 18, 9676. [Google Scholar] [CrossRef]
- Farì, G.; de Sire, A.; Giorgio, V.; Rizzo, L.; Bruni, A.; Bianchi, F.P.; Zonno, A.; Pierucci, P.; Ranieri, M.; Megna, M. Impact of COVID-19 on the mental health in a cohort of Italian rehabilitation healthcare workers. J. Med. Virol. 2021, 94, 110–118. [Google Scholar] [CrossRef]
- Calò, F.; Russo, A.; Camaioni, C.; De Pascalis, S.; Coppola, N. Burden, risk assessment, surveillance and management of SARS-CoV-2 infection in health workers: A scoping review. Infect. Dis. Poverty 2020, 9, 139. [Google Scholar] [CrossRef]
- Lahner, E.; Dilaghi, E.; Prestigiacomo, C.; Alessio, G.; Marcellini, L.; Simmaco, M.; Santino, I.; Orsi, G.B.; Anibaldi, P.; Marcolongo, A.; et al. Prevalence of SARS-CoV-2 Infection in Health Workers (HWs) and Diagnostic Test Performance: The Experience of a Teaching Hospital in Central Italy. Int. J. Environ. Res. Public Health 2020, 17, 4417. [Google Scholar] [CrossRef]
- Crispo, A.; Bimonte, S.; Porciello, G.; Forte, C.A.; Cuomo, G.; Montagnese, C.; Prete, M.; Grimaldi, M.; Celentano, E.; Amore, A.; et al. Strategies to evaluate outcomes in long-COVID-19 and post-COVID survivors. Infect. Agents Cancer 2021, 16, 62. [Google Scholar] [CrossRef]
- Jin, H.; Chen, Y.; Fu, Q.; Qu, Q. Occupational risk factors of contracting COVID-19 among health workers: A systematic review. Work 2021, 69, 721–734. [Google Scholar] [CrossRef]
- Cascella, M.; Marinangeli, F.; Vittori, A.; Scala, C.; Piccinini, M.; Braga, A.; Miceli, L.; Vellucci, R. Open Issues and Practical Suggestions for Telemedicine in Chronic Pain. Int. J. Environ. Res. Public Health 2021, 18, 12416. [Google Scholar] [CrossRef]
- Cascella, M.; Miceli, L.; Cutugno, F.; Di Lorenzo, G.; Morabito, A.; Oriente, A.; Massazza, G.; Magni, A.; Marinangeli, F.; Cuomo, A.; et al. A Delphi Consensus Approach for the Management of Chronic Pain during and after the COVID-19 Era. Int. J. Environ. Res. Public Health 2021, 18, 13372. [Google Scholar] [CrossRef]
- Gallè, F.; Sabella, E.A.; Roma, P.; Da Molin, G.; Diella, G.; Montagna, M.T.; Ferracuti, S.; Liguori, G.; Orsi, G.B.; Napoli, C. Acceptance of COVID-19 Vaccination in the Elderly: A Cross-Sectional Study in Southern Italy. Vaccines 2021, 9, 1222. [Google Scholar] [CrossRef]
HCWs and CPs | First Wave: March–May 2020 | 1^ Transition Phase June–September 2020 | Second Wave October–December 2020 | 2^ Transition Phase January–March 2021 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HCWs | CPs | HCWs | CPs | HCWs | CPs | HCWs | CPs | |||||
Total (%) 1 | 1204 (79.7%) | 2152 (24.6%) | 1268 (84.0%) | 1793 (20.5%) | 1385 (91.7%) | 3462 (39.6%) | 1249 (82.7%) | 3439 (39.4%) | ||||
Positive (%) | 20 (1.7%) | 100 (4.6%) | 3 (0.2%) | 14 (0.8%) | 127 (9.2%) | 168 (4.9%) | 9 (0.7%) | 40 (1.2%) | ||||
Positive/TOT (%) | p-Value 2 | Positive/TOT (%) | p-Value 2 | Posivtive/TOT (%) | p-Value 2 | Positive/TOT (%) | p-Value 2 | |||||
Age | ||||||||||||
≤44 | 13/551 (2.4%) | 8/269 (3.0%) | 0.77 | 3/612 (0.5%) | 5/261 (1.9%) | 0.10 | 51/682 (7.5%) | 28/530 (5.3%) | 0.16 | 10/621 (1.6%) | 10/615 (1.6%) | 1 |
>44 | 7/653 (1.1%) | 92/1883 (4.9%) | <0.001 | 0/656 | 9/1532 (0.6%) | 0.11 | 76/703 (10.8%) | 140/2932 (4.8%) | <0.001 | 2/625 (0.3%) | 30/2824 (1.1%) | 0.13 |
Gender | ||||||||||||
Male | 6/588 (1.0%) | 40/992 (4.0%) | 0.001 | 1/566 (0.2%) | 6/840 (0.7%) | 0.31 | 66/638 (10.3%) | 83/1683 (4.9%) | <0.001 | 8/556 (1.4%) | 24/1717 (1.4%) | 1 |
Female | 14/616 (2.3%) | 60/1160 (5.2%) | 0.005 | 2/702 (0.3%) | 8/953 (0.8%) | 0.26 | 61/747 (8.2%) | 85/1779 (4.8%) | 0.001 | 4/693 (0.6%) | 16/1722 (0.9%) | 0.54 |
Healthcare Workers (HCWs) | First Wave March–May 2020 | 1^ Transition Phase June–September 2020 2 | Second Wave October–December 2020 3 | 2^ Transition Phase January–March 2021 4 |
---|---|---|---|---|
Departments | ||||
Clinical care | 8/403 (2.0%) | 0/432 | 46/444 (10.4%) | 2/418 (0.5%) |
Surgery | 11/293 (3.8%) | 1/315 (0.3%) | 34/332 (10.2%) | 4/305 (1.3%) |
Research | 0/206 | 1/240 (0.4%) | 16/248 (6.5%) | 2/234 (0.9%) |
Administrative | 0/150 | 1/175 (0.6%) | 14/203 (6.9%) | 0/183 |
Operational Services | 1/152 (0.7%) | 0/105 | 17/156 (10.9%) | 1/105 (1.0%) |
Job Title | ||||
Ancillary services 1 | 1/152 (0.7%) | 0/105 | 17/156 (10.9%) | 1/105 (1.0%) |
Non medical-area | 1/173 (0.6%) | 0/185 | 13/193 (6.7%) | 2/189 (1.1%) |
Nurse | 4/356 (1.1%) | 1/387 (0.3%) | 62/416 (14.9%) | 4/377 (1.1%) |
Physician | 7/238 (2.9%) | 1/247 (0.4%) | 12/251 (4.8%) | 0/233 |
Research staff | 7/205 (3.4%) | 0/242 | 19/252 (7.5%) | 2/236 (0.8%) |
Techno/Administr. Staff/Other | 0/80 | 1/101 (1.0%) | 4/114 (3.5%) | 0/105 |
Molecular Swabs | ||||
Total (%) | 1877 (14.8%) | 2374 (18.7%) | 5951 (46.9%) | 2475 (19.5%) |
Mean (SD) | 1.56 (1.09) | 1.87 (0.85) | 4.30 (1.70) | 1.98 (1.28) |
Cancer Patients | First Wave: March–May 2020 | 1^ Transition Phase June–September 2020 | Second Wave October–December 2020 | 2^ Transition Phase January–March 2021 |
---|---|---|---|---|
Number of accesses | ||||
One | 56/1562 (3.6%) | 7/1338 (0.5%) | 50/2349 (2.1%) | 22/2741 (0.8%) |
Two | 33/494 (6.7%) | 3/344 (0.9%) | 57/757 (7.5%) | 10/500 (2.0%) |
Three | 8/78 (10.3%) | 2/76 (2.6%) | 35/209 (16.7%) | 3/102 (2.9%) |
Four or more | 3/18 (16.7%) | 2/35 (5.7%) | 26/147 (17.7%) | 5/96 (5.2%) |
Molecular Swabs | ||||
Total (%) | 2859 (18.9%) | 2405 (15.9%) | 5177 (34.2%) | 4714 (31.1%) |
Mean for patient (SD) | 1.33 (0.59) | 1.34 (0.68) | 1.50 (0.92) | 1.37 (1.21) |
Healthcare Workers | Second Wave October–December 2020 1 | |||||
---|---|---|---|---|---|---|
Univariate | Multivariate | |||||
Negative | Positive (%) | p-Value 2 | Effect-Size 4 | OR (95% CI) | p-Value 3 | |
Age | 0.04 | 0.06 | 0.06 | |||
≤44 | 631 | 51 (7.5%) | 1† | |||
>44 | 627 | 76 (10.8%) | 1.44 (0.98–2.12) | |||
Gender | 0.6 | 0.01 | 0.2 | |||
Male | 616 | 66 (9.7%) | 1† | |||
Female | 642 | 61 (8.7%) | 0.80 (0.55–1.17) | |||
Job Title | <0.001 | 0.07 | <0.001 | |||
Research, administrative staff and other | 343 | 23 (6.3%) | 1† | |||
Ancillary services | 139 | 17 (10.9%) | 1.68 (0.55–1.17) | |||
Non medical-area | 180 | 13 (6.7%) | 0.96 (0.47–1.98) | |||
Nurse | 354 | 62 (14.9%) | 2.24 (1.23–4.08) | |||
Physician | 239 | 12 (4.8%) | 0.58 (0.26–1.27) | |||
Departments | 0.3 | 0.03 | 0.6 | |||
Research, administrative and operational services | 560 | 47 (7.7%) | 1† | |||
Clinical care | 398 | 46 (10.4%) | 1.24 (0.71–2.17) | |||
Surgery | 298 | 34 (10.2%) | 1.02 (0.54–1.91) |
Cancer Patients (CPs) | Second Wave October–December 2020 | |||||
---|---|---|---|---|---|---|
Univariate | Multivariate | |||||
Negative | Positive (%) | p-Value 1 | Effect-Size 3 | OR (95% CI) | p-Value 2 | |
Age | 0.7 | 0.06 | 0.39 | |||
≤44 | 502 | 28 (5.3%) | 1 † | |||
>44 | 2792 | 140 (4.8%) | 0.83 (0.54–1.27) | |||
Gender | 0.9 | 0.01 | 0.57 | |||
Male | 1600 | 83 (4.9%) | 1 † | |||
Female | 1694 | 85 (4.8%) | 1.10 (0.80–1.51) | |||
Number of accesses | <0.001 | 0.1 | <0.001 | |||
One | 2299 | 50 (2.1%) | 1 † | |||
Two | 700 | 57 (7.5%) | 3.76 (2.55–5.55) | |||
Three | 174 | 35 (16.7%) | 9.38 (5.92–14.86) | |||
Four or more | 121 | 26 (17.7%) | 10.12 (6.07–16.86) |
Cox-Model for Cancer Patients (CPs) | Second Wave October–December 2020 | |
---|---|---|
HR 1 (95% CI) | p-Value | |
Number of accesses | ||
One | 1 † | |
Two | 4.13 (2.82–6.04) | <0.001 |
Three | 10.80 (6.99–16.68) | <0.001 |
Four or more | 21.04 (13.09–33.82) | <0.001 |
Cox-Model for Healthcare Workers (HCWs) | Second Wave October–December 2020 | |
---|---|---|
HR 1 (95% CI) | p-Value | |
Job Title | ||
Research and admin, staff/other | 1 † | |
Ancillary services | 1.70 (0.88–3.29) | 0.117 |
Non medical-area | 0.95 (0.48–1.91) | 0.895 |
Nurse | 2.05 (1.16–3.64) | 0.014 |
Physician | 0.60 (0.28–1.29) | 0.189 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crispo, A.; Di Gennaro, P.; Coluccia, S.; Gandini, S.; Montagnese, C.; Porciello, G.; Nocerino, F.; Grimaldi, M.; Tafuri, M.; Luongo, A.; et al. A SARS-CoV-2 Infection High-Uptake Program on Healthcare Workers and Cancer Patients of the National Cancer Institute of Naples, Italy. Healthcare 2022, 10, 205. https://doi.org/10.3390/healthcare10020205
Crispo A, Di Gennaro P, Coluccia S, Gandini S, Montagnese C, Porciello G, Nocerino F, Grimaldi M, Tafuri M, Luongo A, et al. A SARS-CoV-2 Infection High-Uptake Program on Healthcare Workers and Cancer Patients of the National Cancer Institute of Naples, Italy. Healthcare. 2022; 10(2):205. https://doi.org/10.3390/healthcare10020205
Chicago/Turabian StyleCrispo, Anna, Piergiacomo Di Gennaro, Sergio Coluccia, Sara Gandini, Concetta Montagnese, Giuseppe Porciello, Flavia Nocerino, Maria Grimaldi, Mariangela Tafuri, Assunta Luongo, and et al. 2022. "A SARS-CoV-2 Infection High-Uptake Program on Healthcare Workers and Cancer Patients of the National Cancer Institute of Naples, Italy" Healthcare 10, no. 2: 205. https://doi.org/10.3390/healthcare10020205