Obstructive Sleep Apnea Syndrome Comorbidity Phenotypes in Primary Health Care Patients in Northern Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. OSAS Definition Severity and Diagnosis
- Normal (AHI < 5);
- Mild (AHI ≥ 5–14);
- Moderate (AHI ≥ 15–29);
- Severe OSAS (AHI ≥ 30).
2.3. Polysomnography (PSG)
2.4. Questionnaires
2.5. Comorbidity Assessment
2.6. Statistical Analysis
2.7. Categorical Principal Component Analysis (CATPCA)
2.8. TwoStep Clustering
3. Results
3.1. Participant Characteristics
3.2. Cluster Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G.N. Long term cardiovascular outcome in men with OSASS with or without treatment with CPAP: An observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef]
- Punjabi, N.M. The Epidemiology of Adult of Adult Obstructive Sleep Apnea. Proc. Am. Thorac. Soc. 2008, 5, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Peppard, E.R.; Young, T.; Barnet, H.J.; Palta, M.; Hagen, E.W.; Jla, K.M. Increased Prevalence of Sleep-Disorders Breathing in Adults. Am. J. Epidiomiol. 2013, 177, 1006–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vavougios, D.G.; Natsios, G.; Pastaka, C.; Zarogiannis, S.G.; Gourgoulianis, K.I. Phenotypes of comorbidity in OSAS patients: Combining categorical principal component analysis with cluster analysis. J. Sleep Res. 2016, 25, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Benassi, M.; Garofalo, S.; Ambrosini, F.; Sant’angelo, R.P.; Raggini, R.; De Paoli, G.; Ravani, C.; Giovagnoli, S.; Orsoni, M.; Piraccini, G. Using Two-Step Cluster Analysis and Latent Class Cluster Analysis to Classify the Cognitive Heterogeneity of Cross-Diagnostic Psychiatric Inpatients. Front. Psychol. 2020, 11, 1085. [Google Scholar] [CrossRef]
- Kent, P.; Jensen, R.K.; Kongsted, A. A comparison of three clustering methods for finding subgroups in MRI, SMS or clinical data: SPSS TwoStep Cluster analysis, Latent Gold and SNOB. BMC Med. Res. Methodol. 2014, 14, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, D.; Rodrigues, A.M.; Cruz, E.B.; Canhão, H.; Branco, J.; Nunes, C. Driving factors for the utilisation of healthcare services by people with osteoarthritis in Portugal: Results from a nationwide population-based study. BMC Health Serv. Res. 2021, 21, 1022. [Google Scholar] [CrossRef]
- Mihaicuta, S.; Udrescu, M.; Topirceanu, A.; Udrescu, L. Network science meets respiratory medicine for OSAS phenotyping and severity prediction. PeerJ 2017, 5, e3289. [Google Scholar] [CrossRef] [Green Version]
- Ma, E.Y.; Kim, J.W.; Lee, Y.; Cho, S.W.; Kim, H.; Kim, J.K. Combined unsupervised-supervised machine learning for phenotyping complex diseases with its application to obstructive sleep apnea. Sci. Rep. 2021, 11, 4457. [Google Scholar] [CrossRef]
- Van Overstraeten, C.; Andreozzi, F.; Youssef, S.B.; Bold, I.; Carlier, S.; Gruwez, A.; Bruyneel, A.V.; Bruyneel, M. Obstructive Sleep Apnea Syndrome Phenotyping by Cluster Analysis: Typical Sleepy, Obese Middle-aged Men with Desaturating Events are A Minority of Patients in A Multi-ethnic Cohort of 33% Women. Curr. Med. Sci. 2021, 41, 729–736. [Google Scholar] [CrossRef]
- Topîrceanu, A.; Udrescu, L.; Udrescu, M.; Mihaicuta, S. Gender Phenotyping of Patients with Obstructive Sleep Apnea Syndrome Using a Network Science Approach. J. Clin. Med. 2020, 9, 4025. [Google Scholar] [CrossRef]
- Olson, E.J.; Moore, W.R.; Morgenthaler, T.I.; Gay, P.C.; Staats, B.A. Obstructive sleep apnoea hypopnoea syndrome. Mayo Clin. Proc. 2003, 78, 1545–1552. [Google Scholar] [CrossRef] [Green Version]
- American Academy of Sleep Medicine (AASM). Available online: https://www.aasm.org (accessed on 5 May 2020).
- Epstein, L.J.; Kristo, D.; Strollo, P.J., Jr.; Friedman, N.; Malhotra, A.; Patil, S.P.; Ramar, K.; Rogers, R.; Schwab, R.J.; Weaver, E.M. Clinical guideline for the evaluation, management, and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep Med. 2009, 15, 263–276. [Google Scholar]
- Netzer, N.C.; Stoohs, R.A.; Netzer, C.M.; Clark, K.; Strohl, K.P. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann. Intern. Med. 1999, 5, 485–491. [Google Scholar] [CrossRef]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Hall, W.H.; Ramachandran, R.; Narayan, S.; Jani, A.B.; Vijayakumar, S. An electronic application for rapidly calculating Charlson comorbidity score. BMC Cancer 2004, 4, 94. [Google Scholar] [CrossRef] [Green Version]
- Meulman, J.J.; Heiser, W.J.; SPSS. SPSS Categories 13.0; SPSS: Chicago, IL, USA, 2004. [Google Scholar]
- Theodoridis, S.; Koutroumbas, K. Pattern Recognition, 4th ed.; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Fraley, C.; Raftery, A.E. How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 1998, 4, 578–588. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Partitioning around Medoids (Program PAM). In Finding Groups in Data: An Introduction to Cluster Analysis; Kaufman, L., Rousseeuw, P.J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1990; pp. 68–125. [Google Scholar]
- Carberry, J.C.; Amatoury, J.; Eckert, D.J. Personalized management approach for OSA. Chest 2018, 153, 744–755. [Google Scholar] [CrossRef]
- Gray, L.E.; McKenzie, K.D.; Eckert, J.D. Obstructive Sleep Apnea without Obesity Is Common and Difficult to Treat: Evidence for a Distinct Pathophysiological Phenotype. J. Clin. Sleep Med. 2017, 13, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Özdilekcan, Ç.; Özdemir, T.; Türkkanı, H.M.; Sur, H.Y.; Katoue, M.G. The Association of Body Mass Index Values with Severity and Phenotype of Sleep-Disordered Breathing. Tuberk Toraks 2019, 67, 265–271. [Google Scholar] [CrossRef]
- Peepard, P.E.; Young, T.; Palta, M.; Depmsey, J.; Skatrud, J. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA 2000, 284, 3015–3021. [Google Scholar] [CrossRef] [Green Version]
- Zinchuk, A.V.; Gentry, M.J.; Concato, J.; Yaggi, H.K. Phenotypes in obstructive sleep apnea: A definition, examples and evolution of approaches. Sleep Med. Rev. 2017, 35, 113–123. [Google Scholar] [CrossRef]
- Gagnadoux, F.; Le Vaillant, M.; Paris, A.; Pigeanne, T.; Leclair-Visonneau, L.; Bizieux-Thaminy, A.; Alizon, C.; Humeau, M.P.; Nguyen, X.L.; Rouault, B.; et al. Relationship between OSA clinical phenotypes and CPAP treatment outcomes. Chest 2016, 149, 288–290. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Pien, G.; Ratcliffe, S.J.; Björnsdottir, E.; Arnardottir, E.S.; Pack, A.I.; Benediktsdottir, B.; Gislason, T. The different clinical faces of obstructive sleep apnoea: A cluster analysis. Eur. Respir. J. 2014, 44, 1600–1617. [Google Scholar] [CrossRef] [Green Version]
- Pien, G.W.; Ye, L.; Keenan, T.B.; Maislin, G.; Bjornsdottir, E.; Arnardottir, E.S.; Benediktsdottir, B.; Gislason, T.; Pack, A.I. Changing faces of Obstructive Sleep Anea: Treatment Effects by Cluster designation in the Icelandic Sleep Apnea Cohort. Sleep 2018, 41, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Keenan, T.B.; Kim, J.; Singh, B.; Bittencourt, L.; Chen, N.-H.; Cistulli, A.P.; Magalang, U.J.; McArdle, N.; Mindel, J.W.; Benediktsdottir, B.; et al. Recognizable clinical subtypes of obstructive sleep apnea across international sleep centers: A cluster analysis. SLEEP J. 2018, 41, 1–14. [Google Scholar] [CrossRef]
- Saaresanta, T.; Hedner, J.; Bonsignore, R.M.; Riha, R.L.; McNicholas, W.T.; Penzel, T.; Anttalainen, U.; Kvamme, J.A.; Pretl, M.; Sliwinski, P.; et al. Clinical Phenotypes and Comorbidity in European Sleep Apnoea Patients. PLoS ONE 2016, 11, e0163439. [Google Scholar]
- Bailley, S.; Destors, M.; Grillet, Y.; Richard, P.; Stach, B.; Vivodtzev, I.; Timsit, J.-F.; Lévy, P.; Tamisier, R.; Pépin, J.-L.; et al. Obstructive Sleep Apnea: A Cluster Analysis at Time of Diagnosis. PLoS ONE 2016, 11, e0157318. [Google Scholar] [CrossRef] [Green Version]
- Lacedonia, D.; Capragnano, E.G.; Sabato, R.; Storto, M.M.L.; Palmiotti, G.A.; Capozzi, V.; Barbaro, M.P.F.; Gallo, C. Characterization of obstructive sleep apnea-hypopnea syndrome (OSA) population by means of cluster analysis. J. Sleep Res. 2016, 25, 724–730. [Google Scholar] [CrossRef] [Green Version]
- Young, T.; Palta, M.; Dempsey, J.; Skatrud, J.; Weber, S.; Badr, S. The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 1993, 328, 1230–1235. [Google Scholar] [CrossRef] [Green Version]
- Nathan, E.C.; Harrison, M.C.; Yee, J.B.; Grunstein, R.R.; Wong, K.K.H.; Britt, H.V.C.; Marshall, N.S. Management of Snoring and Sleep Apnea in Australian Primary Care: The BEACH Study (2000–2014). J. Clin. Sleep Med. 2016, 12, 1167–1173. [Google Scholar]
- Mayos, M.; Penacoba, P.; Ptro Pijoan, N.M.; Santiveri, C.; Flor, X.; Juvanteny, J.; Sampol, G.; Lioberes, P.; Aoiz, J.I.; Bayo, J.; et al. Coordinated program between primary care and sleep unit for the management of obstructive sleep apnea. NPJ Prim. Care Respir. Med. 2019, 29, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarraubella, N.; Battle, J.; Nadal, N.; Castro-Grattoni, A.L.; Gomez, S.; Sanchez-de-la-Torre, M.; Barbe, F. GESAP trial rationale and methodology: Management of patients with suspected obstructive sleep apnea in primary care units compared to sleep units. NPJ Prim. Care Respir. Med. 2017, 27, 8. [Google Scholar] [CrossRef] [Green Version]
All Sample | Gender | p Value | ||
---|---|---|---|---|
n = 136 | Females | Males | ||
Age (years) | 48 (38, 57.75) | 50 (36.8%) 45 (36, 54) | 86 (63.2%) 45 (36, 54) | p < 0.001 |
Weight (kgr) | 91.50 (84, 105) | 88.27 ± 20.32 | 96.5 (86, 11.3) | p = 0.026 |
Height (cm) | 172 ± 9.99 | 163.5 ± 7.70 | 176.8 ± 7.33 | p < 0.001 |
Body Mass Index (BMI) | 32.37 (28.10, 34.08) | 32.73 ± 7.59 | 31.60 (28.03, 33.63) | p = 0.204 |
Low Epworth Sleepiness Scale (ESS) | 68 (50%) 8 (6, 9) | 29 (58%) 9 (7, 9) | 39 (45.3%) 8 (6, 9) | p = 0.214 |
High ESS | 68 (50%) 13 (11.25, 15.75) | 21(42%) 13 (12, 14.5) | 47 (54.7) 13 (11, 16) | p = 0.846 |
Low-Risk Berlin Questionnaire (BQ) | 30 (22%) | 8 (16%) | 22 (25.6%) | |
High-Risk BQ | 106 (78%) | 42 (84%) | 64 (74.4%) | |
Apnea Hypopnea Index (AHI) Mild | 20 (14.7%) 11.70 (10.30, 13.38) | 8 (16%) 10.70 (9.20, 13.85) | 12 (13.9%) 11.70 (11.40, 13.38) | p = 0.333 |
Moderate AHI | 34 (25%) 21.50 (19.85, 25.45) | 14 (28%) 20.70 (18.68, 25.55) | 20 (23.3%) 22.40 (20.03, 25.53) | p = 0.660 |
Severe AHI | 74 (54.4%) 60.40 (41.33, 81.53) | 23 (46%) 60.20 (38.30, 70.10) | 51 (59.3%) 63.20 (44.70, 86.60) | p = 0.382 |
AHI | 31.75 (18.43, 63) | 26.55 (14.43, 52.43) | 34.95 (20.70, 71.25) | p = 0.024 |
Obstructive Apnea Index (OAI) | 7.6 (1.93, 25.33) | 4.25 (0.98, 11.38) | 10.30 (3.08, 40.43) | p = 0.001 |
Oxygen Desaturation Index (ODI) | 24.40 (12.40, 54.53) | 19.40 (10.98, 42.43) | 27.85 (14.25, 60.98) | p = 0.036 |
Respiratory Arousal Index (RAI) | 7.10 (0.5, 28.43) | 14.85 (3.55, 30) | 4.40 (0.2, 23.85) | p = 0.016 |
Desaturation Arousal Index (DAI) | 0.9 (0.3, 2.55) | 1 (0.4, 2.33) | 0.65 (0.2, 3.1) | p = 0.336 |
Arousal Index (AI) | 18.75 (8.33, 36.78) | 21.40 (11.15, 34.95) | 14.75 (5.98, 45.75) | p = 0.228 |
Charlson Comorbidity Index (CCI) | 1 (0, 1) | 1 (0, 1) | 0 (0,1) | p = 0.024 |
Dimension | Cronbach’s Alpha | Variance Accounted for Total (Eigenvalue) | Dimension | Cronbach’s Alpha |
---|---|---|---|---|
1 | 0.729 | 1.946 | 1 | 0.729 |
2 | −0.015 | 0.990 | 2 | −0.015 |
Total | 0.989 | 2.936 | Total | 0.989 |
AHI | ODI | CCI (0–37) | |
---|---|---|---|
AHI | 1.000 | 0.934 | 0.047 |
ODI | 0.934 | 1.000 | 0.100 |
CCI (0–37) | 0.047 | 0.100 | 1.000 |
Dimension | 1 | 2 | 3 |
Eigenvalue | 1.946 | 0.990 | 0.064 |
Cluster 1 | Cluster 2 | Cluster 3 | p-value | |
---|---|---|---|---|
n = 67 (49.3%) | n = 25 (18.4%) | n = 44 (32.4%) | ||
Males Females | 37 (27.2%) 30 (22.05%) | 16 (11.76%) 9 (6.61%) | 33 (24.26%) 11 (8.08%) | |
Age (males) Age (females) | 44.11 ± 9.74 49.43 ± 12.54 p = 0.017 | 48.94 ± 12.55 57.00 ± 7.87 p = 0.96 | 42.91 ± 11.15 55.64 ± 8.29 p =0.001 | |
BMI (males) BMI (females) | 29.43 ± 4.76 30.71 ± 7.57 p = 0.25 | 33.42 ± 3.75 37.49 ± 6.80 p = 0.18 | 34.14 ± 6.04 35.77 ± 6.03 p = 0.46 | |
ESS (0–24) | 10.09 ± 4.13 | 11.60 ± 3.99 | 11.23 ± 3.19 | p = 0.146 |
AHI | 20.08 ± 10.29 | 44.85 ± 31.08 | 73.42 ± 20.46 | p = 0.001 |
ODI | 14.50 ± 8.73 | 40.47 ± 31.31 | 61.46 ± 22.01 | p = 0.001 |
AI | 14.99 ± 10.60 | 32.69 ± 28.26 | 42.70 ± 31.58 | p = 0.001 |
RAI | 7.49 ± 9.01 | 25.42 ± 29.13 | 32.36 ± 32.22 | p = 0.001 |
DAI | 1.02 ± 1.31 | 1.85 ± 2.47 | 3.08 ± 3.69 | p = 0.001 |
SAI | 0.64 ± 1.01 | 0.81 ± 1.10 | 0.52 ± 1.04 | p = 0.541 |
TwoStep Cluster Number | Total | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
CCI (0–37) | 0 | Count | 40 a | 0 b | 23 a | 63 |
Residual | 9.0 | −11.6 | 2.6 | |||
Std. Residual | 1.6 | −3.4 | 0.6 | |||
Adjusted Residual | 3.1 | −5.1 | 1.0 | |||
1 | Count | 27 a | 0 b | 21 a | 48 | |
Residual | 3.4 | −8.8 | 5.5 | |||
Std. Residual | 0.7 | −3.0 | 1.4 | |||
Adjusted Residual | 1.2 | −4.1 | 2.1 | |||
2 | Count | 0 a | 14 b | 0 a | 14 | |
Residual | −6.9 | 11.4 | −4.5 | |||
Std. Residual | −2.6 | 7.1 | −2.1 | |||
Adjusted Residual | −3.9 | 8.3 | −2.7 | |||
3 | Count | 0 a | 8 b | 0 a | 8 | |
Residual | −3.9 | 6.5 | −2.6 | |||
Std. Residual | −2.0 | 5.4 | −1.6 | |||
Adjusted Residual | −2.9 | 6.1 | −2.0 | |||
4 | Count | 0 a | 2 a | 0 a | 2 | |
Residual | −1.0 | 1.6 | −6 | |||
Std. Residual | −1.0 | 2.7 | −8 | |||
Adjusted Residual | −1.4 | 3.0 | −1.0 | |||
8 | Count | 0 a | 1 a | 0 a | 1 | |
Residual | −5 | 8 | −3 | |||
Std. Residual | −7 | 1.9 | −6 | |||
Adjusted Residual | −1.0 | 2.1 | −7 | |||
Total | Count | 67 | 25 | 44 | 136 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntenta, P.K.; Vavougios, G.D.; Zarogiannis, S.G.; Gourgoulianis, K.I. Obstructive Sleep Apnea Syndrome Comorbidity Phenotypes in Primary Health Care Patients in Northern Greece. Healthcare 2022, 10, 338. https://doi.org/10.3390/healthcare10020338
Ntenta PK, Vavougios GD, Zarogiannis SG, Gourgoulianis KI. Obstructive Sleep Apnea Syndrome Comorbidity Phenotypes in Primary Health Care Patients in Northern Greece. Healthcare. 2022; 10(2):338. https://doi.org/10.3390/healthcare10020338
Chicago/Turabian StyleNtenta, Panagiota K., Georgios D. Vavougios, Sotirios G. Zarogiannis, and Konstantinos I. Gourgoulianis. 2022. "Obstructive Sleep Apnea Syndrome Comorbidity Phenotypes in Primary Health Care Patients in Northern Greece" Healthcare 10, no. 2: 338. https://doi.org/10.3390/healthcare10020338
APA StyleNtenta, P. K., Vavougios, G. D., Zarogiannis, S. G., & Gourgoulianis, K. I. (2022). Obstructive Sleep Apnea Syndrome Comorbidity Phenotypes in Primary Health Care Patients in Northern Greece. Healthcare, 10(2), 338. https://doi.org/10.3390/healthcare10020338