Long-Term Trends of Asthma Mortality in China from 2000 to 2019: A Joinpoint Regression and Age-Period-Cohort Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Statistics
2.2.1. Joinpoint Regression Analysis
2.2.2. Age-Period-Cohort (APC) Analysis with the Intrinsic Estimator Method
3. Results
3.1. Descriptive Analysis of Asthma Mortality
3.2. Joinpoint Regression Analysis
3.3. Age-Period-Cohort (APC) Analysis with the Intrinsic Estimator Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Gender | Age | Period | Cohort | Deaths | Population | Mortality_Rate |
Male | 0–4 | 2005–2009 | 2005–2009 | 15 | 10,302,692 | 0.15 |
5–9 | 2005–2009 | 2000–2004 | 0 | 11,486,538 | 0.00 | |
10–14 | 2005–2009 | 1995–1999 | 3 | 14,854,739 | 0.02 | |
15–19 | 2005–2009 | 1990–1994 | 6 | 15,167,036 | 0.04 | |
20–24 | 2005–2009 | 1985–1989 | 11 | 14,567,776 | 0.08 | |
25–29 | 2005–2009 | 1980–1984 | 20 | 15,310,241 | 0.13 | |
30–34 | 2005–2009 | 1975–1979 | 24 | 16,262,504 | 0.15 | |
35–39 | 2005–2009 | 1970–1974 | 24 | 16,455,988 | 0.15 | |
40–44 | 2005–2009 | 1965–1969 | 48 | 14,498,430 | 0.33 | |
45–49 | 2005–2009 | 1960–1964 | 68 | 12,806,412 | 0.53 | |
50–54 | 2005–2009 | 1955–1959 | 97 | 11,505,559 | 0.84 | |
55–59 | 2005–2009 | 1950–1954 | 119 | 8801332 | 1.35 | |
60–64 | 2005–2009 | 1945–1949 | 175 | 6,764,049 | 2.59 | |
65–69 | 2005–2009 | 1940–1944 | 294 | 5,411,831 | 5.43 | |
70–74 | 2005–2009 | 1935–1939 | 535 | 4,159,463 | 12.86 | |
75–79 | 2005–2009 | 1930–1934 | 644 | 2,604,952 | 24.72 | |
80–84 | 2005–2009 | 1925–1929 | 634 | 1,272,530 | 49.82 | |
85–89 | 2005–2009 | 1920–1924 | 430 | 564,682 | 76.15 | |
0–4 | 2010–2014 | 2010–2014 | 13 | 2,1769,046 | 0.06 | |
5–9 | 2010–2014 | 2005–2009 | 4 | 21589614 | 0.02 | |
10–14 | 2010–2014 | 2000–2004 | 8 | 18,777,194 | 0.04 | |
15–19 | 2010–2014 | 1995–1999 | 8 | 23,444,034 | 0.03 | |
20–24 | 2010–2014 | 1990–1994 | 23 | 32,385,604 | 0.07 | |
25–29 | 2010–2014 | 1985–1989 | 37 | 26,185,176 | 0.14 | |
30–34 | 2010–2014 | 1980–1984 | 32 | 22,922,084 | 0.14 | |
35–39 | 2010–2014 | 1975–1979 | 56 | 29,599,475 | 0.19 | |
40–44 | 2010–2014 | 1970–1974 | 102 | 33,096,379 | 0.31 | |
45–49 | 2010–2014 | 1965–1969 | 160 | 34,631,453 | 0.46 | |
50–54 | 2010–2014 | 1960–1964 | 188 | 22,948,378 | 0.82 | |
55–59 | 2010–2014 | 1955–1959 | 275 | 25,131,014 | 1.09 | |
60–64 | 2010–2014 | 1950–1954 | 380 | 18,330,443 | 2.07 | |
65–69 | 2010–2014 | 1945–1949 | 497 | 12,072,933 | 4.12 | |
70–74 | 2010–2014 | 1940–1944 | 733 | 9,144,874 | 8.02 | |
75–79 | 2010–2014 | 1935–1939 | 1136 | 6,735,551 | 16.87 | |
80–84 | 2010–2014 | 1930–1934 | 1198 | 3660639 | 32.73 | |
85–89 | 2010–2014 | 1925–1929 | 1002 | 1,591,059 | 62.98 | |
0–4 | 2015–2019 | 2015–2019 | 13 | 41,789,374 | 0.03 | |
5–9 | 2015–2019 | 2010–2014 | 9 | 41,231,974 | 0.02 | |
10–14 | 2015–2019 | 2005–2009 | 11 | 34,958,289 | 0.03 | |
15–19 | 2015–2019 | 2000–2004 | 8 | 39,173,109 | 0.02 | |
20–24 | 2015–2019 | 1995–1999 | 21 | 55,746,884 | 0.04 | |
25–29 | 2015–2019 | 1990–1994 | 50 | 49,642,972 | 0.10 | |
30–34 | 2015–2019 | 1985–1989 | 65 | 42789762 | 0.15 | |
35–39 | 2015–2019 | 1980–1984 | 98 | 50,440,677 | 0.19 | |
40–44 | 2015–2019 | 1975–1979 | 177 | 57,366,114 | 0.31 | |
45–49 | 2015–2019 | 1970–1974 | 295 | 66,277,957 | 0.45 | |
50–54 | 2015–2019 | 1965–1969 | 432 | 45,468,678 | 0.95 | |
55–59 | 2015–2019 | 1960–1964 | 530 | 45,850,969 | 1.16 | |
60–64 | 2015–2019 | 1955–1959 | 860 | 37,262,641 | 2.31 | |
65–69 | 2015–2019 | 1950–1954 | 1058 | 27,472,871 | 3.85 | |
70–74 | 2015–2019 | 1945–1949 | 1448 | 19,714,766 | 7.34 | |
75–79 | 2015–2019 | 1940–1944 | 2052 | 14,562,421 | 14.09 | |
80–84 | 2015–2019 | 1935–1939 | 2471 | 8,651,077 | 28.56 | |
85–89 | 2015–2019 | 1930–1934 | 2625 | 4,051,670 | 64.79 | |
Female | 0–4 | 2005–2009 | 2005–2009 | 3 | 9,170,664 | 0.03 |
5–9 | 2005–2009 | 2000–2004 | 0 | 10,301,247 | 0.00 | |
10–14 | 2005–2009 | 1995–1999 | 2 | 13,624,932 | 0.01 | |
15–19 | 2005–2009 | 1990–1994 | 8 | 14285845 | 0.06 | |
20–24 | 2005–2009 | 1985–1989 | 10 | 13,959,495 | 0.07 | |
25–29 | 2005–2009 | 1980–1984 | 12 | 14,676,580 | 0.08 | |
30–34 | 2005–2009 | 1975–1979 | 15 | 15,702,603 | 0.10 | |
35–39 | 2005–2009 | 1970–1974 | 20 | 15877449 | 0.13 | |
40–44 | 2005–2009 | 1965–1969 | 34 | 13858639 | 0.25 | |
45–49 | 2005–2009 | 1960–1964 | 56 | 12,280,360 | 0.46 | |
50–54 | 2005–2009 | 1955–1959 | 59 | 11,008,176 | 0.54 | |
55–59 | 2005–2009 | 1950–1954 | 76 | 8,426,655 | 0.90 | |
60–64 | 2005–2009 | 1945–1949 | 113 | 6,457,070 | 1.75 | |
65–69 | 2005–2009 | 1940–1944 | 156 | 5,362,863 | 2.91 | |
70–74 | 2005–2009 | 1935–1939 | 388 | 4,415,361 | 8.79 | |
75–79 | 2005–2009 | 1930–1934 | 503 | 3,034,901 | 16.57 | |
80–84 | 2005–2009 | 1925–1929 | 607 | 1,743,194 | 34.82 | |
85–89 | 2005–2009 | 1920–1924 | 574 | 942,167 | 60.92 | |
0–4 | 2010–2014 | 2010–2014 | 7 | 18,530,266 | 0.04 | |
5–9 | 2010–2014 | 2005–2009 | 1 | 19,385,234 | 0.01 | |
10–14 | 2010–2014 | 2000–2004 | 2 | 15,977,281 | 0.01 | |
15–19 | 2010–2014 | 1995–1999 | 11 | 21,167,780 | 0.05 | |
20–24 | 2010–2014 | 1990–1994 | 18 | 31,547,084 | 0.06 | |
25–29 | 2010–2014 | 1985–1989 | 22 | 25602753 | 0.09 | |
30–34 | 2010–2014 | 1980–1984 | 24 | 22,298,569 | 0.11 | |
35–39 | 2010–2014 | 1975–1979 | 46 | 28,647,133 | 0.16 | |
40–44 | 2010–2014 | 1970–1974 | 83 | 32,162,435 | 0.26 | |
45–49 | 2010–2014 | 1965–1969 | 94 | 34,083,923 | 0.28 | |
50–54 | 2010–2014 | 1960–1964 | 100 | 21,731,878 | 0.46 | |
55–59 | 2010–2014 | 1955–1959 | 137 | 24,662,801 | 0.56 | |
60–64 | 2010–2014 | 1950–1954 | 196 | 17,775,156 | 1.10 | |
65–69 | 2010–2014 | 1945–1949 | 300 | 12,108,491 | 2.48 | |
70–74 | 2010–2014 | 1940–1944 | 411 | 9,516,569 | 4.32 | |
75–79 | 2010–2014 | 1935–1939 | 761 | 7,692,556 | 9.89 | |
80–84 | 2010–2014 | 1930–1934 | 991 | 4,720,603 | 20.99 | |
85–89 | 2010–2014 | 1925–1929 | 1303 | 2,600,818 | 50.10 | |
0–4 | 2015–2019 | 2015–2019 | 8 | 35,444,479 | 0.02 | |
5–9 | 2015–2019 | 2010–2014 | 3 | 36,848,740 | 0.01 | |
10–14 | 2015–2019 | 2005–2009 | 10 | 29,706,564 | 0.03 | |
15–19 | 2015–2019 | 2000–2004 | 8 | 34,945,414 | 0.02 | |
20–24 | 2015–2019 | 1995–1999 | 9 | 54,116,986 | 0.02 | |
25–29 | 2015–2019 | 1990–1994 | 36 | 48,632,652 | 0.07 | |
30–34 | 2015–2019 | 1985–1989 | 58 | 42,295,897 | 0.14 | |
35–39 | 2015–2019 | 1980–1984 | 73 | 49,196,742 | 0.15 | |
40–44 | 2015–2019 | 1975–1979 | 122 | 56,122,066 | 0.22 | |
45–49 | 2015–2019 | 1970–1974 | 213 | 65,991,738 | 0.32 | |
50–54 | 2015–2019 | 1965–1969 | 230 | 43,734,168 | 0.53 | |
55–59 | 2015–2019 | 1960–1964 | 236 | 45,325,971 | 0.52 | |
60–64 | 2015–2019 | 1955–1959 | 339 | 36,356,060 | 0.93 | |
65–69 | 2015–2019 | 1950–1954 | 512 | 27,751,156 | 1.84 | |
70–74 | 2015–2019 | 1945–1949 | 791 | 20,292,172 | 3.90 | |
75–79 | 2015–2019 | 1940–1944 | 1297 | 16,219,613 | 8.00 | |
80–84 | 2015–2019 | 1935–1939 | 2129 | 10,804,065 | 19.71 | |
85–89 | 2015–2019 | 1930–1934 | 3249 | 6,371,222 | 50.99 |
References
- Asthma, G.I.F. Global Strategy for Asthma Management and Prevention. Available online: www.ginasthma.org (accessed on 11 January 2022).
- Huang, K.; Yang, T.; Xu, J.; Yang, L.; Zhao, J.; Zhang, X.; Bai, C.; Kang, J.; Ran, P.; Shen, H.; et al. Prevalence, risk factors, and management of asthma in China: A national cross-sectional study. Lancet 2019, 394, 407–418. [Google Scholar] [CrossRef]
- Ebmeier, S.; Thayabaran, D.; Braithwaite, I.; Bénamara, C.; Weatherall, M.; Beasley, R. Trends in international asthma mortality: Analysis of data from the WHO Mortality Database from 46 countries (1993–2012). Lancet 2017, 390, 935–945. [Google Scholar] [CrossRef]
- Masoli, M.; Fabian, D.; Holt, S.; Beasley, R. The global burden of asthma: Executive summary of the GINA Dissemination Committee report. Allergy 2004, 59, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Brusselle, G.G.; Ko, F.W. Prevalence and burden of asthma in China: Time to act. Lancet 2019, 394, 364–366. [Google Scholar] [CrossRef]
- Abouzahr, C.; Bratschi, M.W.; Cercone, E.; Mangharam, A.; Savigny, D.; Dincu, I.; Forsingdal, A.B.; Joos, O.; Kamal, M.; Fat, D.M.; et al. The COVID-19 Pandemic: Effects on Civil Registration of Births and Deaths and on Availability and Utility of Vital Events Data. Am. J. Public Health 2021, 111, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wu, X.; Lopez, A.D.; Wang, L.; Cai, Y.; Page, A.; Yin, P.; Liu, Y.; Li, Y.; Liu, J.; et al. An integrated national mortality surveillance system for death registration and mortality surveillance, China. B World Health Organ 2016, 94, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Fay, M.P.; Feuer, E.J.; Midthune, D.N. Permutation tests for joinpoint regression with applications to cancer rates. Stat. Med. 2000, 19, 335–351. [Google Scholar] [CrossRef]
- Clegg, L.X.; Hankey, B.F.; Tiwari, R.; Feuer, E.J.; Edwards, B.K. Estimating average annual per cent change in trend analysis. Stat. Med. 2009, 28, 3670–3682. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Land, K. Age-Period-Cohort Analysis: New Models, Methods, and Empirical Applications; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2013; 355p. [Google Scholar]
- Ma, Y.; Lin, C.; Li, C.; Chiang, J.; Li, T.; Lin, J. Time-trend analysis of prevalence, incidence and traditional Chinese medicine use among children with asthma: A population-based study. J. Public Health 2016, 38, e263–e271. [Google Scholar] [CrossRef]
- Townsend, E.A.; Miller, V.M.; Prakash, Y.S. Sex differences and sex steroids in lung health and disease. Endocr. Rev. 2012, 33, 1–47. [Google Scholar] [CrossRef] [Green Version]
- Gern, J.E. The Urban Environment and Childhood Asthma study. J. Allergy Clin. Immunol. 2010, 125, 545–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, G.W.; Chow, C.M. Childhood asthma epidemiology: Insights from comparative studies of rural and urban populations. Pediatr. Pulmonol. 2008, 43, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Lutz, W.; Sanderson, W.; Scherbov, S. The coming acceleration of global population ageing. Nature 2008, 451, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Fiocchi, A.; Valluzzi, R.; Dahdah, L. Zero tolerance for asthma deaths in children. J. Pediatr. 2020, 96, 403–405. [Google Scholar] [CrossRef]
- Wong, G.W. Zero tolerance to asthma death. Hong Kong Med. J. 2010, 16, 84–85. [Google Scholar] [CrossRef]
- Li, X.; Song, P.; Zhu, Y.; Lei, H.; Chan, K.Y.; Campbell, H.; Theodoratou, E.; Rudan, I. The disease burden of childhood asthma in China: A systematic review and meta-analysis. J. Glob. Health 2020, 10, 10801. [Google Scholar] [CrossRef]
- Reddel, H.K.; FitzGerald, J.M.; Bateman, E.D.; Bacharier, L.B.; Becker, A.; Brusselle, G.; Buhl, R.; Cruz, A.A.; Fleming, L.; Inoue, H.; et al. GINA 2019: A fundamental change in asthma management: Treatment of asthma with short-acting bronchodilators alone is no longer recommended for adults and adolescents. Eur. Respir. J. 2019, 53, 1901046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beasley, R.; Crane, J. Reducing asthma mortality with the asthma self-management plan system of care. Am. J. Respir. Crit. Care Med. 2001, 163, 3–4. [Google Scholar] [CrossRef]
- Carlsten, C.; Dybuncio, A.; Becker, A.; Chan-Yeung, M.; Brauer, M. Traffic-related air pollution and incident asthma in a high-risk birth cohort. Occup. Environ. Med. 2011, 68, 291–295. [Google Scholar] [CrossRef]
- Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef] [Green Version]
- Tiotiu, A.I.; Novakova, P.; Nedeva, D.; Chong-Neto, H.J.; Novakova, S.; Steiropoulos, P.; Kowal, K. Impact of Air Pollution on Asthma Outcomes. Int. J. Environ. Res. Public Health 2020, 17, 6212. [Google Scholar] [CrossRef] [PubMed]
- Burbank, A.J.; Peden, D.B. Assessing the impact of air pollution on childhood asthma morbidity: How, when, and what to do. Curr. Opin. Allergy Clin. Immunol. 2018, 18, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.L. National Review of Asthma Deaths (NRAD). Br. J. Gen. Pract. 2014, 64, 564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Year | ASR | Crude Rate | Men | Women | Urban | Rural | Eastern | Central | Western |
---|---|---|---|---|---|---|---|---|---|
2004 | 2.12 | 2.42 | 2.55 | 2.28 | 2.60 | 2.32 | 2.09 | 2.92 | 2.22 |
2005 | 2.16 | 2.49 | 2.60 | 2.37 | 2.74 | 2.37 | 2.07 | 3.24 | 2.12 |
2006 | 1.43 | 1.69 | 1.74 | 1.64 | 2.28 | 1.41 | 1.52 | 2.27 | 1.16 |
2007 | 1.19 | 1.45 | 1.55 | 1.35 | 2.18 | 1.07 | 1.24 | 1.87 | 1.21 |
2008 | 1.05 | 1.33 | 1.50 | 1.14 | 1.81 | 1.07 | 1.21 | 1.52 | 1.26 |
2009 | 0.96 | 1.15 | 1.24 | 1.06 | 1.72 | 0.84 | 1.06 | 1.18 | 1.24 |
2010 | 1.02 | 1.20 | 1.30 | 1.09 | 1.74 | 0.86 | 1.17 | 1.09 | 1.36 |
2011 | 0.91 | 1.15 | 1.28 | 1.00 | 1.47 | 0.93 | 1.09 | 1.03 | 1.40 |
2012 | 0.76 | 1.12 | 1.23 | 1.01 | 1.37 | 0.96 | 1.07 | 1.05 | 1.30 |
2013 | 0.95 | 1.52 | 1.70 | 1.33 | 1.61 | 1.48 | 1.52 | 1.36 | 1.75 |
2014 | 1.01 | 1.66 | 1.83 | 1.48 | 1.73 | 1.63 | 1.77 | 1.47 | 1.76 |
2015 | 1.01 | 1.66 | 1.83 | 1.47 | 1.72 | 1.62 | 1.78 | 1.26 | 1.98 |
2016 | 0.90 | 1.62 | 1.77 | 1.45 | 1.65 | 1.60 | 1.72 | 1.27 | 1.92 |
2017 | 0.88 | 1.59 | 1.80 | 1.37 | 1.73 | 1.52 | 1.65 | 1.29 | 1.90 |
2018 | 0.82 | 1.59 | 1.78 | 1.39 | 1.66 | 1.55 | 1.65 | 1.37 | 1.78 |
2019 | 0.83 | 1.58 | 1.77 | 1.38 | 1.67 | 1.53 | 1.58 | 1.48 | 1.71 |
Annual Percent Change (APC) | ||||||||
---|---|---|---|---|---|---|---|---|
Cohort | Segment | Lower Endpoint | Upper Endpoint | APC | Lower CI | Upper CI | Test Statistic (t) | Prob > |t| |
Male | 1 | 2004 | 2008 | −17.1 * | −25.7 | −7.5 | −3.8 | 0.003 |
Male | 2 | 2008 | 2019 | −1.6 | −3.5 | 0.3 | −1.9 | 0.084 |
Female | 1 | 2004 | 2008 | −18.9 * | −27.9 | −8.8 | −3.9 | 0.002 |
Female | 2 | 2008 | 2019 | −2.3 * | −4.4 | −0.2 | −2.4 | 0.033 |
Urban | 1 | 2004 | 2009 | −12.3 * | −17.9 | −6.2 | −4.3 | 0.001 |
Urban | 2 | 2009 | 2019 | −3.4 * | −5.2 | −1.6 | −4.1 | 0.002 |
Rural | 1 | 2004 | 2007 | −26.1 * | −42.8 | −4.5 | −2.6 | 0.025 |
Rural | 2 | 2007 | 2019 | −1.1 | −3.7 | 1.6 | −0.9 | 0.392 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, G.; Liu, J.; Li, T.; Hou, D.; Liu, W.; Xie, Y.; Zhang, T.; Cheng, Y. Long-Term Trends of Asthma Mortality in China from 2000 to 2019: A Joinpoint Regression and Age-Period-Cohort Analysis. Healthcare 2022, 10, 346. https://doi.org/10.3390/healthcare10020346
Huang G, Liu J, Li T, Hou D, Liu W, Xie Y, Zhang T, Cheng Y. Long-Term Trends of Asthma Mortality in China from 2000 to 2019: A Joinpoint Regression and Age-Period-Cohort Analysis. Healthcare. 2022; 10(2):346. https://doi.org/10.3390/healthcare10020346
Chicago/Turabian StyleHuang, Guimin, Junting Liu, Tao Li, Dongqing Hou, Wenqian Liu, Yixuan Xie, Tong Zhang, and Yijing Cheng. 2022. "Long-Term Trends of Asthma Mortality in China from 2000 to 2019: A Joinpoint Regression and Age-Period-Cohort Analysis" Healthcare 10, no. 2: 346. https://doi.org/10.3390/healthcare10020346