Examining the Predictors of Mental Ill Health in Esport Competitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. Stressors Measure
2.2.2. Pittsburgh Sleep Quality Index (PSQI)
2.2.3. Athlete Burnout Questionnaire (ABQ)
2.2.4. Social Phobia Inventory (SPIN)
2.2.5. General Health Questionnaire—Short Form (GHQ-12)
2.2.6. Patient Health Questionnaire (PHQ-9)
2.2.7. Distress Screener
2.3. Data Analysis Strategy
3. Results
4. Discussion
4.1. Stressors as Predictors of Sleep, Burnout, and Social Phobia Anxiety
4.2. Stressors Predicting Variables of Mental Ill Health
4.3. Sleep Predicting Variables of Mental Ill Health
4.4. Burnout Predicting Variables of Mental Ill Health
4.5. Social Phobia Anxiety Predicting Variables of Mental ILL Health
4.6. Limitations
4.7. Practical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, A.M.; Teques, P.; Verhagen, E.; Gouttebarge, V.; Figueiredo, P.; Brito, J. Mental health symptoms in electronic football players. BMJ Open Sport Exerc. Med. 2021, 7, e001149. [Google Scholar] [CrossRef] [PubMed]
- Gouttebarge, V.; Backx, F.J.; Aoki, H.; Kerkhoffs, G.M. Symptoms of Common Mental Disorders in Professional Football (Soccer) Across Five European Countries. J. Sports Sci. Med. 2015, 14, 811. [Google Scholar] [PubMed]
- World Health Organization. Promoting Mental Health: Concepts, Emerging Evidence, Practice: Summary Report; World Health Organization: Geneva, Switzerland, 2004; Available online: http://www.who.int/mental_health/evidence/en/promoting_mhh.pdf (accessed on 8 June 2021).
- Henriksen, K.; Schinke, R.; McCann, S.; Durand-Bush, N.; Moesch, K.; Parham, W.D.; Larsen, C.H.; Cogan, K.; Donaldson, A.; Poczwardowski, A.; et al. Athlete mental health in the Olympic/Paralympic quadrennium: A multi-societal consensus statement. Int. J. Sport Exerc. Psychol. 2020, 18, 391–408. [Google Scholar] [CrossRef]
- Pereira, A.M.; Brito, J.; Figueiredo, P.; Verhagen, E. Virtual sports deserve real sports medical attention. BMJ Open Sport Exerc. Med. 2019, 5, e000606. [Google Scholar] [CrossRef] [Green Version]
- Yin, K.; Zi, Y.; Zhuang, W.; Gao, Y.; Tong, Y.; Song, L.; Liu, Y. Linking Esports to health risks and benefits: Current knowledge and future research needs. J. Sport Health Sci. 2020, 9, 485. [Google Scholar] [CrossRef]
- Noblet, A.J.; Gifford, S.M. The Sources of Stress Experienced by Professional Australian Footballers. J. Appl. Sport Psychol. 2002, 14, 1–13. [Google Scholar] [CrossRef]
- Martin-Niedecken, A.L.; Schättin, A. Let the Body’n’Brain Games Begin: Toward Innovative Training Approaches in eSports Athletes. Front. Psychol. 2020, 11, 138. [Google Scholar] [CrossRef] [Green Version]
- Kari, T.; Karhulahti, V.M. Do E-Athletes Move? Int. J. Gaming Comput.-Mediat. Simul. 2016, 8, 53–66. [Google Scholar] [CrossRef]
- Smith, M.J.; Arnold, R.; Thelwell, R.C. “There’s No Place to Hide”: Exploring the Stressors Encountered by Elite Cricket Captains. J. Appl. Sport Psychol. 2018, 30, 150–170. [Google Scholar] [CrossRef]
- Thelwell, R.C.; Wagstaff, C.R.D.; Rayner, A.; Chapman, M.; Barker, J. Exploring athletes’ perceptions of coach stress in elite sport environments. J. Sports Sci. 2017, 35, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Leis, O.; Lautenbach, F. Psychological and physiological stress in non-competitive and competitive esports settings: A systematic review. Psychol. Sport Exerc. 2020, 51, 101738. [Google Scholar] [CrossRef]
- ValladÃo, S.P.; Middleton, J.; Andre, T.L. Esport: Fortnite Acutely Increases Heart Rate of Young Men. Int. J. Exerc. Sci. 2020, 13, 1217–1227. [Google Scholar] [PubMed]
- Himmelstein, D.; Liu, Y.; Shapiro, J.L. An Exploration of Mental Skills Among Competitive League of Legend Players. In Research Anthology on Rehabilitation Practices and Therapy; IGI Global: Hershey, PA, USA, 2021. [Google Scholar] [CrossRef]
- Smith, M.J.; Birch, P.D.J.; Bright, D. Identifying Stressors and Coping Strategies of Elite Esports Competitors. Int. J. Gaming Comput.-Mediat. Simul. 2019, 11, 22–39. [Google Scholar] [CrossRef]
- Fullagar, H.H.; Skorski, S.; Duffield, R.; Hammes, D.; Coutts, A.J.; Meyer, T. Sleep and Athletic Performance: The Effects of Sleep Loss on Exercise Performance, and Physiological and Cognitive Responses to Exercise. Sports Med. 2015, 45, 161–186. [Google Scholar] [CrossRef] [PubMed]
- Biggins, M.; Purtill, H.; Fowler, P.; Bender, A.; Sullivan, K.O.; Samuels, C.; Cahalan, R. Sleep in elite multi-sport athletes: Implications for athlete health and wellbeing. Phys. Ther. Sport 2019, 39, 136–142. [Google Scholar] [CrossRef]
- Van Ramele, S.; Aoki, H.; Kerkhoffs, G.M.; Gouttebarge, V. Mental health in retired professional football players: 12-month incidence, adverse life events and support. Psychol. Sport Exerc. 2017, 28, 85–90. [Google Scholar] [CrossRef]
- Bonnar, D.; Lee, S.; Gradisar, M.; Suh, S. Risk factors and sleep intervention considerations in esports: A review and practical guide. Sleep Med. Res. 2019, 10, 59–66. [Google Scholar] [CrossRef]
- Lee, S.; Bonnar, D.; Kim, Y.; Lee, Y.; Lee, S.; Gradisar, M.; Suh, S. Sleep Characteristics and Risk Factors of Korean Esports Athletes: An Exploratory Study. Sleep Med. Res. 2020, 11, 77–87. [Google Scholar] [CrossRef]
- Lee, S.; Bonnar, D.; Roane, B.; Gradisar, M.; Dunican, I.C.; Lastella, M.; Maisey, G.; Suh, S. Sleep characteristics and mood of professional esports athletes: A multi-national study. Int. J. Environ. Res. Public Health 2021, 18, 664. [Google Scholar] [CrossRef]
- World Health Organization. Burn-Out an “Occupational Phenomenon”: International Classification of Diseases; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Madigan, D.; Gustafsson, H.; Smith, A.; Raedeke, T.; Hill, A. The BASES expert statement on burnout in sport. Sport Exerc. Sci. 2019, 61, 6–7. [Google Scholar]
- Abdulghani, H.; Alharbi, M.; Irshad, M. Stress and its association with working efficiency of junior doctors during three postgraduate residency training programs. Neuropsychiatr. Dis. Treat. 2015, 11, 3023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, R.; Nixdorf, I.; Beckmann, J. Analyzing the Relationship Between Burnout and Depression in Junior Elite Athletes. J. Clin. Sport Psychol. 2017, 11, 287–303. [Google Scholar] [CrossRef]
- Leiter, M.P.; Hakanen, J.J.; Ahola, K.; Toppinen-Tanner, S.; Koskinen, A.; Väänänen, A. Organizational predictors and health consequences of changes in burnout: A 12-year cohort study. J. Organ. Behav. 2013, 34, 959–973. [Google Scholar] [CrossRef]
- Rice, S.M.; Purcell, R.; De Silva, S.; Mawren, D.; McGorry, P.D.; Parker, A.G. The Mental Health of Elite Athletes: A Narrative Systematic Review. Sports Med. 2016, 46, 1333–1353. [Google Scholar] [CrossRef] [Green Version]
- Sacco, D. “Esports Almost Killed Me”–Paul ‘ReDeYe’ Chaloner Talks Burnout and the Importance of Downtime. Esports News UK. Available online: https://esports-news.co.uk/2016/11/04/paul-chaloner-redeye-interview (accessed on 20 June 2021).
- Alden, L.; Mellings, T.M.; Ryder, A. Social anxiety, social phobia, and the self. In From Social Anxiety to Social Phobia: Multiple Perspectives; Hofmann, S., DiBartolo, P., Eds.; Allyn & Bacon: Boston, MA, USA, 2001; pp. 304–320. [Google Scholar]
- Neal, J.A.; Edelmann, R.J.; Glachan, M. Behavioural inhibition and symptoms of anxiety and depression: Is there a specific relationship with social phobia? Br. J. Clin. Psychol. 2002, 41, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, G.H.; Tavoli, A.; Bakhtiari, M.; Melyani, M.; Sahragard, M. Quality of Life in College Students with and without Social Phobia. Soc. Indic. Res. 2010, 97, 247–256. [Google Scholar] [CrossRef]
- Wei, H.T.; Chen, M.H.; Huang, P.C.; Bai, Y.M. The association between online gaming, social phobia, and depression: An internet survey. BMC Psychiatry 2012, 12, 92. [Google Scholar] [CrossRef] [Green Version]
- Sioni, S.R.; Burleson, M.H.; Bekerian, D.A. Internet gaming disorder: Social phobia and identifying with your virtual self. Comput. Hum. Behav. 2017, 71, 11–15. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Raedeke, T.D.; Smith, A.L. Development and preliminary validation of an athlete burnout measure. J. Sport Exerc. Psychol. 2001, 23, 281–306. [Google Scholar] [CrossRef] [PubMed]
- Connor, K.M.; Davidson, J.R.; Churchill, L.E.; Sherwood, A.; Weisler, R.H.; Foa, E. Psychometric properties of the social phobia inventory (SPIN). New self- rating scale. Br. J. Psychiatry 2000, 176, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.P.; Gater, R.; Sartorius, N.; Ustun, T.B.; Piccinelli, M.; Gureje, O.; Rutter, C. The validity of two versions of the GHQ in the WHO study of mental illness in general health care. Psychol. Med. 1997, 27, 191–197. [Google Scholar] [CrossRef]
- Johnson, J.G.; Harris, E.S.; Spitzer, R.L.; Williams, J.B. The patient health questionnaire for adolescents. J. Adolesc. Health 2002, 30, 196–204. [Google Scholar] [CrossRef]
- Foskett, R.L.; Longstaff, F. The mental health of elite athletes in the United Kingdom. J. Sci. Med. Sport 2018, 21, 765–770. [Google Scholar] [CrossRef] [Green Version]
- Thelwell, R.C.; Weston, N.J.; Greenlees, I.A. Batting on a sticky wicket: Identifying sources of stress and associated coping strategies for professional cricket batsmen. Psychol. Sport Exerc. 2007, 8, 219–232. [Google Scholar] [CrossRef]
- Mollayeva, T.; Thurairajah, P.; Burton, K.; Mollayeva, S.; Shapiro, C.M.; Colantonio, A. The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-clinical samples: A systematic review and meta-analysis. Sleep Med. Rev. 2016, 25, 52–73. [Google Scholar] [CrossRef]
- Gerber, M.; Gustafsson, H.; Seelig, H.; Kellmann, M.; Ludyga, S.; Colledge, F.; Brand, S.; Isoard-Gautheur, S.; Bianchi, R. Usefulness of the Athlete Burnout Questionnaire (ABQ) as a screening tool for the detection of clinically relevant burnout symptoms among young elite athletes. Psychol. Sport Exerc. 2018, 39, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Antony, M.M.; Coons, M.J.; McCabe, R.E.; Ashbaugh, A.; Swinson, R.P. Psychometric properties of the social phobia inventory: Further evaluation. Behav. Res. Ther. 2006, 44, 1177–1185. [Google Scholar] [CrossRef]
- Anjara, S.G.; Bonetto, C.; Van Bortel, T.; Brayne, C. Using the GHQ-12 to screen for mental health problems among primary care patients: Psychometrics and practical considerations. Int. J. Mental Health Syst. 2020, 14, 62. [Google Scholar] [CrossRef]
- Lesage, F.X.; Martens-Resende, S.; Deschamps, F.; Berjot, S. Validation of the General Health Questionnaire (GHQ-12) adapted to a work-related context. Open J. Prev. Med. 2011, 1, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Braam, C.; Van Oostrom, S.H.; Terluin, B.; Vasse, R.; De Vet, H.C.W.; Anema, J.R. Validation Study of a Distress Screener. J. Occup. Rehabil. 2009, 19, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouttebarge, V.; Jonkers, R.; Moen, M.; Verhagen, E.; Wylleman, P.; Kerkhoffs, G. The prevalence and risk indicators of symptoms of common mental disorders among current and former Dutch elite athletes. J. Sports Sci. 2017, 35, 2148–2156. [Google Scholar] [CrossRef] [PubMed]
- Shim, E.J.; Noh, H.L.; Yoon, J.; Mun, H.S.; Hahm, B.J. A longitudinal analysis of the relationships among daytime dysfunction, fatigue, and depression in college students. J. Am. Coll. Health 2019, 67, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Toth, A.J.; Ramsbottom, N.; Constantin, C.; Milliet, A.; Campbell, M.J. The effect of expertise, training and neurostimulation on sensory-motor skill in esports. Comput. Hum. Behav. 2021, 121, 106782. [Google Scholar] [CrossRef]
- Owens, J.A.; Weiss, M.R. Insufficient sleep in adolescents: Causes and consequences. Minerva Pediatrica 2017, 69, 326–336. [Google Scholar] [CrossRef]
- Brager, A.J.; Simonelli, G. Current State of Sleep-Related Performance Optimization Current State of Sleep-Related Performance Optimization Interventions for the E-Sports Industry Interventions for the E-Sports Industry. NeuroSports 2020, 1, 3. Available online: https://nsuworks.nova.edu/neurosports (accessed on 13 July 2021).
- Hollist, K.E. Time to be grown-ups about video gaming: The rising eSports industry and the need for regulation. Ariz. Law Rev. 2015, 57, 823. [Google Scholar]
- Bittner, A.; Goodwin, R.D.; Wittchen, H.U.; Beesdo, K.; Höfler, M.; Lieb, R. What characteristics of primary anxiety disorders predict subsequent major depressive disorder? J. Clin. Psychiatry 2004, 65, 2524. [Google Scholar] [CrossRef]
- Kuettel, A.; Larsen, C.H. Risk and protective factors for mental health in elite athletes: A scoping review. Int. Rev.Sport Exerc. Psychol. 2020, 13, 231–265. [Google Scholar] [CrossRef]
- Johns, M.W. A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [Green Version]
Variable | 8. | 9. | 10. | 11. | 12. | 13. | 14. | 15. | 16. | 17. | 18. | 19. | 20. | 21. | 22. | 23. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. PCA1 | 0.052 | 0.07 | 0.091 | 0.103 | 0.059 | 0.088 | 0.004 | 0.204 *** | 0.152 ** | 0.027 | −0.093 | −0.058 | −0.13 * | 0.11 | 0.075 | 0.033 |
2. PCA2 | 0.142 * | 0.103 | 0.136 * | 0.078 | 0.178 ** | 0.001 | 0.218 ** | 0.214 ** | 0.187 *** | 0.052 | 0.299 *** | 0.22 *** | 0.216 *** | 0.308 *** | 0.232 *** | 0.24 *** |
3. PCA3 | 0.013 | 0.052 | 0.211 *** | 0.14 * | 0.121 * | 0.051 | 0.104 | 0.16 ** | 0.21 *** | −0.027 | 0.11 | 0.136 * | 0.028 | 0.207 *** | 0.079 | 0.059 |
4. PCA4 | 0.002 | 0.033 | 0.029 | −0.044 | 0.071 | −0.02 | 0.032 | 0.074 | 0.095 | 0.011 | 0.069 | 0.028 | 0.058 | 0.104 | 0.032 | 0.041 |
5. PCA5 | −0.014 | −0.032 | 0.06 | 0.055 | 0.014 | 0.136 * | 0.058 | 0.026 | 0.121 * | 0.112 * | 0.231 *** | 0.095 | 0.196 *** | 0.141 * | 0.09 | 0.113 * |
6. PCA6 | 0.085 | 0.083 | 0.074 | 0.178 * | 0.166 ** | 0.134 * | 0.277 *** | 0.171 ** | 0.242 *** | 0.154 ** | 0.143 * | 0.165 ** | 0.019 | 0.252 *** | 0.199 *** | 0.23 *** |
7. PCA7 | −0.011 | 0.041 | 0.091 | 0.01 | 0.099 | 0.081 | 0.085 | 0.033 | 0.01 | −0.05 | 0.277 ** | 0.221 *** | 0.22 *** | 0.141 *** | 0.111 * | 0.181 ** |
8. SQ | — | 0.416 *** | 0.269 *** | 0.188 *** | 0.261 *** | −0.037 | 0.276 *** | 0.096 | 0.112 * | 0.005 | 0.13 * | 0.146 ** | 0.049 | 0.18 ** | 0.383 *** | 0.303 *** |
9. SL | — | 0.257 *** | 0.263 *** | 0.325 *** | 0.241 *** | 0.285 *** | 0.17 ** | 0.283 *** | 0.142 * | 0.189 *** | 0.181 ** | 0.079 | 0.275 *** | 0.418 *** | 0.319 *** | |
10. SDur | — | 0.528 *** | 0.168 ** | 0.132 * | 0.284 *** | 0.248 *** | 0.255 *** | 0.176 ** | 0.246 *** | 0.28 *** | 0.201 *** | 0.306 *** | 0.297 *** | 0.229 *** | ||
11. SE | — | 0.238 *** | 0.187 *** | 0.247 *** | 0.228 *** | 0.274 *** | 0.251 *** | 0.174 ** | 0.254 *** | 0.119 * | 0.256 *** | 0.237 *** | 0.196 *** | |||
12. SDis | — | 0.152 ** | 0.303 *** | 0.269 *** | 0.312 *** | 0.245 *** | 0.214 *** | 0.324 *** | 0.142 * | 0.335 *** | 0.411 *** | 0.321 *** | ||||
13. SMed | — | 0.222 *** | 0.197 *** | 0.262 *** | 0.151 ** | 0.231 *** | 0.235 *** | 0.149 ** | 0.245 *** | 0.213 *** | 0.162 ** | |||||
14. DDys | — | 0.315 *** | 0.382 *** | 0.266 *** | 0.454 *** | 0.491 *** | 0.294 *** | 0.514 *** | 0.614 *** | 0.611 *** | ||||||
15. B-RA | — | 0.53 *** | 0.379 *** | 0.312 *** | 0.326 *** | 0.207 *** | 0.38 *** | 0.41 *** | 0.313 *** | |||||||
16. B-E | — | 0.58 *** | 0.319 *** | 0.396 *** | 0.232 *** | 0.452 *** | 0.516 *** | 0.396 *** | ||||||||
17. B-D | — | 0.136 * | 0.239 *** | 0.114 * | 0.236 *** | 0.329 *** | 0.252 *** | |||||||||
18. SP-F | — | 0.751 *** | 0.65 *** | 0.547 *** | 0.51 *** | 0.549 *** | ||||||||||
19. SP-A | — | 0.531 *** | 0.53 *** | 0.527 *** | 0.513 *** | |||||||||||
20. SP-PS | — | 0.351 *** | 0.358 *** | 0.38 *** | ||||||||||||
21. GHQ-12 | — | 0.585 *** | 0.67 *** | |||||||||||||
22. PHQ-9 | — | 0.671 *** | ||||||||||||||
23. DS | — |
DV | Step | R² | β | DV | Step | R² | β | DV | Step | R² | β | DV | Step | R² | β |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SDur | 1. PCA3 | 0.10 * | 0.21 * | SQ | 1. PCA2 | 0.02 * | 0.14 * | SL | 1. PCA1 | 0.03 | 0.07 | SE | 1. PCA6 | 0.03 * | 0.18 * |
2. PCA2 | 0.06 * | 0.14 * | 2. PCA1 | 0.03 | 0.05 | PCA2 | 0.10 | 2. PCA3 | 0.05 * | 0.14 * | |||||
3. PCA1 | 0.09 * | 0.09 | PCA3 | −0.01 | PCA3 | 0.05 | 3. PCA1 | 0.07 * | 0.10 | ||||||
PCA4 | 0.03 | PCA4 | 0 | PCA4 | 0.03 | PCA2 | 0.08 | ||||||||
PCA5 | 0.06 | PCA5 | −0.01 | PCA5 | −0.03 | PCA4 | −0.04 | ||||||||
PCA6 | 0.07 | PCA6 | 0.09 | PCA6 | 0.08 | PCA5 | 0.06 | ||||||||
PCA7 | 0.09 | PCA7 | −0.01 | PCA7 | 0.04 | PCA7 | 0.01 | ||||||||
SDis | 1. PCA2 | 0.03 * | 0.18 * | DDys | 1. PCA6 | 0.08 * | 0.28 * | SMed | 1. PCA5 | 0.02 * | 0.14 * | B-E | 1. PCA6 | 0.06 * | 0.24 * |
2. PCA6 | 0.06 * | 0.17 * | 2. PCA2 | 0.12 * | 0.22 * | 2. PCA6 | 0.04 * | 0.14 * | 2. PCA3 | 0.10 * | 0.21 * | ||||
3. PCA3 | 0.07 * | 0.12 * | 3. PCA1 | 0.15 * | 0 | 3. PCA1 | 0.05 * | 0.09 | 3. PCA2 | 0.14 * | 0.19 * | ||||
4. PCA1 | 0.09 * | 0.06 | PCA3 | 0.10 | PCA2 | 0 | 4. PCA1 | 0.16 * | 0.15 * | ||||||
PCA4 | 0.07 | PCA4 | 0.03 | PCA3 | 0.05 | 5. PCA5 | 0.18 * | 0.12 * | |||||||
PCA5 | 0.01 | PCA5 | 0.06 | PCA4 | −0.02 | 6. PCA4 | 0.18 * | 0.10 | |||||||
PCA7 | 0.01 | PCA7 | 0.09 | PCA7 | 0.08 | PCA7 | 0.01 | ||||||||
B-RA | 1. PCA1 | 0.04 * | 0.20 * | B-D | 1. PCA6 | 0.02 * | 0.05 * | SP-F | 1. PCA2 | 0.09 * | 0.30 * | SP-A | 1. PCA7 | 0.05 * | 0.22 * |
2. PCA2 | 0.09 * | 0.21 * | 2. PCA5 | 0.04 * | 0.12 * | 2. PCA7 | 0.17 * | 0.28 * | 2. PCA2 | 0.10 * | 0.22 * | ||||
3. PCA6 | 0.12 * | 0.17 * | 3. PCA1 | 0.04 | 0.35 | 3. PCA5 | 0.22 * | 0.23 * | 3. PCA6 | 0.12 * | 0.17 * | ||||
4. PCA3 | 0.14 * | 0.16 * | PCA2 | 0.05 | 4. PCA6 | 0.24 * | 0.14 * | 4. PCA3 | 0.14 * | 0.14 * | |||||
5. PCA4 | 0.15 * | 0.07 | PCA3 | −0.03 | 5. PCA1 | 0.27 * | −0.09 | 5. PCA1 | 0.16 * | −0.06 | |||||
PCA5 | 0.03 | PCA4 | 0.01 | PCA3 | 0.11 * | PCA4 | 0.03 | ||||||||
PCA7 | 0.03 | PCA7 | −0.05 | PCA4 | 0.07 | PCA5 | 0.10 | ||||||||
SP-PS | 1. PCA7 | 0.05 * | 0.22 * | GHQ-12 | 1. PCA2 | 0.10 * | 0.31 * | DS | 1. PCA2 | 0.06 * | 0.24 * | PHQ-9 | 1. PCA2 | 0.05 * | 0.23 * |
2. PCA2 | 0.10 * | 0.22 * | 2. PCA6 | 0.16 * | 0.25 * | 2. PCA6 | 0.11 * | 0.23 * | 2. PCA6 | 0.09 * | 0.20 * | ||||
3. PCA5 | 0.13 * | 0.20 * | 3. PCA3 | 0.20 * | 0.21 * | 3. PCA7 | 0.14 * | 0.18 * | 3. PCA7 | 0.11 * | 0.11 * | ||||
4. PCA1 | 0.15 * | −0.13 * | 4. PCA5 | 0.22 * | 0.14 * | 4. PCA5 | 0.16 * | 0.11 * | 4. PCA1 | 0.13 * | 0.08 | ||||
5. PCA3 | 0.16 * | 0.03 | 5. PCA7 | 0.24 * | 0.14 * | 5. PCA1 | 0.16 * | 0.03 | PCA3 | 0.08 | |||||
PCA4 | 0.06 | 6. PCA1 | 0.26 * | 0.11 * | PCA3 | 0.06 | PCA4 | 0.03 | |||||||
PCA6 | 0.02 | PCA4 | 0.10 * | PCA4 | 0.04 | PCA5 | 0.09 |
DV | Step | R² | β | DV | Step | R² | β | DV | Step | R² | β |
---|---|---|---|---|---|---|---|---|---|---|---|
PHQ-9 | 1. DDys | 0.38 * | 0.61 * | GHQ-12 | 1. DDys | 0.26 * | 0.51 * | DS | 1. DDys | 0.37 * | 0.61 * |
2. SL | 0.44 * | 0.27 * | 2. SDis | 0.30 * | 0.20 * | 2. SDis | 0.39 * | 0.15 * | |||
3. SDis | 0.47 * | 0.19 * | 3. SDur | 0.32 * | 0.16 * | 3. SL | 0.41 * | 0.13 * | |||
4. SQ | 0.49 * | 0.14 * | 4. SL | 0.33 * | 0.07 | 4. SQ | 0.41 * | 0.09 | |||
5. SDur | 0.49 * | 0.06 * | 5. SE | 0.33 * | 0.03 | 5. SDur | 0.41 * | 0.01 | |||
6. SE | 0.49 * | −0.02 | 6. SMed | 0.34 * | 0.10 * | 6. SE | 0.41 * | −0.01 | |||
7. SMed | 0.49 * | 0.05 | 7. SQ | 0.34 * | −0.03 | 7. SMed | 0.41 * | 0.01 | |||
PHQ-9 | 1. B-E | 0.27 * | 0.52 * | GHQ-12 | 1. B-E | 0.20 * | 0.45 * | DS | 1. B-E | 0.16 * | 0.40 * |
2. B-RA | 0.29 * | 0.19 * | 2. B-RA | 0.23 * | 0.20 * | 2. B-RA | 0.17 * | 0.14 * | |||
3. B-D | 0.29 * | 0.02 | 3. B-D | 0.23 * | −0.06 | 3. B-D | 0.17 * | 0.02 | |||
PHQ-9 | 1. S-A | 0.28 * | 0.32 * | GHQ-12 | 1. S-F | 0.30 * | 0.55 * | DS | 1. S-F | 0.30 * | 0.55 * |
2. S-F | 0.31 * | 0.26 * | 2. S-A | 0.33 * | 0.27 * | 2. S-A | 0.33 * | 0.23 * | |||
3. S-PS | 0.31 * | 0.02 | 3. S-PS | 0.33 * | −0.03 | 3. S-PS | 0.33 * | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, M.; Sharpe, B.; Arumuham, A.; Birch, P. Examining the Predictors of Mental Ill Health in Esport Competitors. Healthcare 2022, 10, 626. https://doi.org/10.3390/healthcare10040626
Smith M, Sharpe B, Arumuham A, Birch P. Examining the Predictors of Mental Ill Health in Esport Competitors. Healthcare. 2022; 10(4):626. https://doi.org/10.3390/healthcare10040626
Chicago/Turabian StyleSmith, Matthew, Benjamin Sharpe, Atheeshaan Arumuham, and Phil Birch. 2022. "Examining the Predictors of Mental Ill Health in Esport Competitors" Healthcare 10, no. 4: 626. https://doi.org/10.3390/healthcare10040626
APA StyleSmith, M., Sharpe, B., Arumuham, A., & Birch, P. (2022). Examining the Predictors of Mental Ill Health in Esport Competitors. Healthcare, 10(4), 626. https://doi.org/10.3390/healthcare10040626