Ovarian Endometrioid and Clear Cell Carcinomas with Low Prevalence of Microsatellite Instability: A Unique Subset of Ovarian Carcinomas Could Benefit from Combination Therapy with Immune Checkpoint Inhibitors and Other Anticancer Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Tissue Samples
2.3. Immunohistochemistry
2.4. Microsatellite Instability Analysis
2.5. Statistical Analysis
3. Results
3.1. Clinicopathological Factors
3.2. Microsatellite Instability
3.3. Relationship between MSI-H and the Expression of CD8, PD-1, and PD-L1
3.4. Prognostic Analysis Using the Kaplan–Meier Method
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hyuna, S.; Jacques, F.; Rebecca, L.; Mathieu, L.; Isabelle, S.; Ahmedin, J.; Fressie, B. Global Cancer Statics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar]
- Center for Cancer Control and Information Services National Cancer Center, Japan 2018. Available online: https://ganjoho.jp/reg_stat/statistics/stat/cancer/19_ovary.html (accessed on 1 February 2022).
- Morice, P.; Gouy, S.; Leary, A. Mucinous Ovarian Carcinoma. N. Eng. J. Med. 2019, 380, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Aurelien, M.; Dung, T.L.; Paolo, A.A.; Anna, M.D.; Ana, D.J.; Jean, P.D.; Ravit, G.; Maya, G.; Nicolas, P.; Aaron, R.H.; et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar]
- Nojadeh, J.N.; Sharif, S.B.; Sakhinia, E. Microsatellite instability in colorectal cancer. EXCLI J. 2018, 159–168. [Google Scholar]
- Pengfei, Z.; Li, L.; Xiaoyue, J. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J. Hematol. Oncol. 2019, 12, 54. [Google Scholar]
- Jianfeng, S.; Zhenlin, J.; Wei, Z.; Lulu, W.; Yang, P.; Zhongqi, G.; Zachary, D.N.; Jun, Z.; Chen, W.; Prabodh, K.; et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockage. Nat. Med. 2018, 24, 556–562. [Google Scholar]
- Xinxin, Z.; Jinghe, L. Soluble PD-1 and PD-L1: Predictive and prognostic significance in cancer. Oncotarget 2017, 8, 97671–97682. [Google Scholar]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Leheru, D.; et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [Green Version]
- Andre, F.; Oliveira, L.B.; Irene, F. Review of PD-1/PD-L1 inhibitors in metastatic dMMR/MSI-H colorectal cancer. Front. Oncol. 2019, 9, 396. [Google Scholar]
- Aysal, A.; Karnezis, A.; Medhi, I.; Grenert, J.P.; Zaloudek, C.J.; Rabban, J.T. Ovarian endometrioid adenocarcinoma: Incidence and clinical significance of the morphologic and immunohistochemical markers of mismatch repair protein defects and tumor microsatellite instability. Am. J. Surg. Pathol. 2012, 36, 163–172. [Google Scholar] [CrossRef]
- Rambau, P.F.; Duggan, M.A.; Ghatage, P.; Warfa, K.; Steed, H.; Perrier, R.; Kelemen, L.E.; Köbel, M. Significant frequency of MSH2/MSH6 abnormality in ovarian endometrioid carcinoma supports histotype-specific Lynch syndrome screening in ovarian carcinomas. Histopathology 2016, 69, 288–297. [Google Scholar] [CrossRef]
- Segev, Y.; Akbari, M.R.; Sun, P.; Sellers, T.A.; McLaughlin, J.; Risch, H.A.; Rosen, B.; Shaw, P.; Schildkraut, J.; Narod, S.A.; et al. Survival in women with ovarian cancer with and without microsatellite instability. Eur. J. Gynecol. Oncol. 2015, 36, 681–684. [Google Scholar]
- Howitt, B.E.; Strickland, K.C.; Sholl, L.M.; Rodig, S.; Ritterhouse, L.L.; Chowdhury, D.; D’Andrea, A.D.; Matulonis, U.A.; Konstantinopoulos, P.A. Clear cell ovarian cancers with microsatellite instability: A unique subset of ovarian cancers with increased tumor-infiltrating lymphocytes and PD-1/PD-L1 expression. Oncoimmunology 2017, 6, e1277308. [Google Scholar] [CrossRef] [Green Version]
- Ali-Fehmi, R.; Khalifeh, I.; Bandyopadhyay, S.; Lawrence, W.D.; Silva, E.; Liao, D.; Sarkar, F.H.; Munkarah, A.R. Patterns of loss of heterozygosity at 10q23.3 and microsatellite instability in endometriosis, atypical endometriosis, and ovarian carcinoma arising in association with endometriosis. Int. J. Gynecol. Pathol. 2006, 25, 223–229. [Google Scholar] [CrossRef]
- Munksgaard, P.S.; Blaakaer, J. The association between endometriosis and ovarian cancer: A review of histological, genetic and molecular alterations. Gynecol. Oncol. 2012, 124, 164–169. [Google Scholar] [CrossRef]
- Maeda, D.; Shih, I.M. Pathogenesis and the role of ARID1A mutation in endometriosis-related ovarian neoplasms. Adv. Anat. Pathol. 2013, 20, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, M.; Nakayama, K.; Nakamura, K.; Ono, R.; Sanuki, K.; Yamashita, H.; Ishibashi, T.; Minamoto, T.; Iida, K.; Razia, S.; et al. Affinity-purified DNA-based mutation profiles of endometriosis-related ovarian neoplasms in Japanese patients. Oncotarget 2018, 9, 14754–14763. [Google Scholar] [CrossRef]
- Prat, J.; FIGO Committee on Gynecologic Oncology. Staging classification for of the ovary, fallopian tube, and peritoneum. Int. J. Gynaecol. Obstet. 2014, 124, 1–5. [Google Scholar] [CrossRef]
- Kurman, R.J.; Carcangiu, M.L.; Herrington, C.S.; Young, R.H. WHO Classification of Tumors of Female Reproductive Organs; WHO Press: Geneva, Switzerland, 2014. [Google Scholar]
- Olivier, B.; Francesca, C.; Yick, F.W.; So, F.Y.; Eitan, F.; Jean, F.F.; Alex, D.; Richard, H. Multipopulation analysis of polymorphisms in five mononucleotide repeats used to determine the microsatellite instability status of human tumors. J. Clin. Oncol. 2006, 24, 241–251. [Google Scholar]
- Ji, H.; Deborah, C.; Zachary, T.; Domenico, C.; Santo, V.N.; Mohammad, A.; Shiyu, Z.; John, M.; Steven, N.; Joellen, S.; et al. Association Between IHC and MSI testing to identify mismatch repair-deficient patients with ovarian cancer. Genet. Test. Mol. Biomark. 2014, 18, 229–235. [Google Scholar]
- Allemani, C.; Matsuda, T.; Di, C.V.; Harewood, R.; Matz, M.; Niksic, M.; Bonaventure, A.; Valkov, M.; Johnson, C.; Esteve, J.; et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, T.; Nakayama, K.; Razia, S.; Ishibashi, M.; Nakamura, K.; Yamashita, H.; Dey, P.; Iida, K.; Kurioka, H.; Nakayama, S.; et al. High Frequency of PIK3CA Mutations in Low-Grade Serous Ovarian Caricnomas of Japanese Patients. Diagnostics 2019, 10, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, M.S.; Chung, H.L.; Alexander, N.S.; Matthew, D.H.; Ronglai, S.; Yelena, Y.J.; David, A.B.; Ahmet, Z.; Emmet, J.J.; Antonio, O.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar]
- Taube, J.M.; Anders, R.A.; Young, G.D.; Xu, H.; Sharma, R.; McMiller, T.L.; Chen, S.; Klein, A.P.; Pardoll, D.M.; Topalian, S.L.; et al. Colocalization of inflammatory Response with B7-H1 Expression in Human Melanocytic Lesions Supports an Adaptive Resistance Mechanism of Immune Escape. Sci. Transl. Med. 2012, 4, 127ra37. [Google Scholar] [CrossRef] [Green Version]
- Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz, A.L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Taube, J.M.; Klein, A.; Brahmer, J.R.; Xu, H.; Pan, X.; Kim, J.H.; Chen, L.; Pardoll, D.M.; Topalian, S.L.; Anders, R.A. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 2014, 20, 5064–5074. [Google Scholar] [CrossRef] [Green Version]
- Spira, A.I.; Park, K.; Mazieres, J.; Vansteenkiste, J.F.; Rittmeyer, A.; Ballinger, M.; Waterkamp, D.; Kowanetz, M.; Mokatrin, A.; Fehrenbacher, L. Efficacy, safety and predictive biomarker results from a randomized phase II study comparing atezolizumab vs docetaxel in 2L/3L NSCLC (POPLAR). J. Clin. Oncol. 2015, 33, 8010. [Google Scholar] [CrossRef]
- Spigel, D.R.; Chaft, J.E.; Gettinger, S.N.; Chao, B.H.; Dirix, L.Y.; Schmid, P.; Chow, L.; Chappey, C.; Kowanetz, M.; Sandler, A.; et al. Clinical activity and safety from a phase II study (FIR) of MPDL3280A (anti-PDL1) in PD-L1-selected patients with non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2015, 33, 8028. [Google Scholar] [CrossRef]
- Paul, T.N.; Shailender, B.; Evan, J.L.; Ragini, R.K.; Natalie, J.M.; Lakshmanan, A.; Sneha, B.; Elliot, K.C.; Adil, D.; Steven, P.F.; et al. PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma. N. Engl. J. Med. 2016, 374, 2542–2552. [Google Scholar]
- Smyrk, T.C.; Watson, P.; Kaul, K.; Lynch, H.T. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 2001, 91, 2417–2422. [Google Scholar] [CrossRef]
- Yoon, Y.C.; Jung, M.B.; Ji, Y.A.; In, G.K.; In, C.; Hyun, B.S.; Tanaka, E.; Mohammad, A.; Hyung, I.; Jae, H.; et al. Is microsatellite instability a prognostic marker in gastric cancer? A systematic review with meta-analysis. J. Surg. Oncol. 2014, 110, 129–135. [Google Scholar]
- Zhu, L.; Li, Z.; Wang, Y.; Zhang, C.; Liu, Y.; Qu, X. Microsatellite instability and survival in gastric cancer: A systematic review and meta-analysis. Mol. Clin. Oncol. 2015, 3, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Chang, G.K.; Joong, B.; Minkyu, J.; Seung, H.B.; Chan, K.; Joo, H.; Su, J.H.; Hyung, S.P.; Jee, H.K.; Nam, K.K.; et al. Effects of microsatellite instability on recurrence patterns and outcomes in colorectal cancers. Br. J. Cancer 2016, 115, 25–33. [Google Scholar]
- Daniele, M.; Karol, P.; Valeria, P.; Carla, V.; Riccardo, P.; Lorenzo, D.F.; Francesco, F.; Giandomenico, R.; Lorenzo, G.; Roberto, P.; et al. Strong prognostic value of microsatellite instability in intestinal type non-cardia gastric cancer. Ann. Surg. Oncol. 2016, 23, 943–950. [Google Scholar]
- Mohan, H.M.; Ryan, E.; Balasubramanian, I.; Kennelly, R.; Geraghty, R.; Sclafani, F.; Fennelly, D.; McDermott, R.; Ryan, E.J.; O’Donoghue, D.; et al. Microsatellite instability is associated with reduced disease specific survival in stage III colon cancer. Eur. J. Surg. Oncol. 2016, 42, 1680–1686. [Google Scholar] [CrossRef]
- Giuseppe, B.; Daniele, F.; Lorena, I.; Nadia, B.; Angela, L.; Rossella, M.; Bruno, V.; Valentina, C.; Juan, L.I.; Viviana, B.; et al. Role of tumor-infiltrating lymphocytes in patients with solid tumors: Can a drop dig a stone? Cell Immunol. 2019, 343, 103753. [Google Scholar]
- Matulonis, U.A.; Frommer, R.S.; Santin, A.D.; Lisyanskaya, A.S.; Pignata, S.; Vergote, I.; Raspagliesi, F.; Sonke, G.S.; Birrer, M.; Provencher, M.; et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: Results from the phase II KEYNOTE-100 study. Ann. Oncol. 2019, 30, 1080–1087. [Google Scholar] [CrossRef]
- Hamanishi, J.; Mandai, M.; Ikeda, T.; Minami, M.; Kawaguchi, A.; Murayama, T.; Kanai, M.; Mori, Y.; Matsumoto, S.; Chikuma, S.; et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J. Clin. Oncol. 2015, 33, 4015–4022. [Google Scholar] [CrossRef]
- Marius, C.N.; Martin, T.; Lien, M.D.; Jan, O.; Beata, G.; Olesya, S.; Erik, R. Early experiences with PD-1 inhibitor treatment of platinum resistant epithelial ovarian cancer. J. Gynecol. Oncol. 2019, 30, e56. [Google Scholar]
- Kato, Y.; Tabata, K.; Kimura, T.; Kinoshita, A.Y.; Ozawa, Y.; Yamada, K.; Ito, J.; Tachino, S.; Hori, Y.; Matsuki, M.; et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+Tcells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS ONE 2019, 14, e0212513. [Google Scholar] [CrossRef] [PubMed]
- Zarnie, L.; Carlps, G.R.; Esma, S.B.; Yanez, E.; Longo Muñoz, F.; Im, S.A.; Castanon, E.; Senellart, H.; Graham, D.; Voss, M.; et al. LBA41 LEAP-005: Phase II study of lenvatinib (len) plus pembrolizumab (pembro) in patients (pts) with previously treated advanced solid tumours. Investig. Immunother. 2020, 31, s1170. [Google Scholar]
- Andrea, V.; Sarina, P.; Patrick, A.; Janice, M.; Dominique, B.; Anne, M.; Ping, Y.; Jane, R.; Daniela, M. Pembrolizumab in patients with programmed death ligand 1-positive advanced ovarian cancer: Analysis of KEYNOTE-028. Gynecol. Oncol. 2019, 152, 243–250. [Google Scholar]
- Joyce, F.; Christina, H.; Kathryn, P.; Richard, T.; Neil, H.; Panagiotis, A.; Cesar, M.; Sarah, J.; Jennifer, C.; Weixiu, L.; et al. Assessment of Combined Nivolumab and Bevacizumab in relapsed ovarian cancer: A phase 2 clinical trial. JAMA Oncol. 2019, 5, 1731–1738. [Google Scholar]
- Peng, J.; Hamanishi, J.; Matsumura, N.; Abiko, K.; Murat, K.; Baba, T.; Yamaguchi, K.; Horikawa, N.; Hosoe, Y.; Murphy, S.K.; et al. Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-κB to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res. 2015, 75, 5034–5045. [Google Scholar] [CrossRef] [Green Version]
- Böhm, S.; Montfort, A.; Pearce, O.M.; Topping, J.; Chakravarty, P.; Everitt, G.L.; Clear, A.; McDermott, J.R.; Ennis, D.; Dowe, T.; et al. Neoadjuvant Chemotherapy Modulates the Immune Microenvironment in Metastases of Tubo-Ovarian High-Grade Serous Carcinoma. Clin. Cancer Res. 2016, 22, 3025–3036. [Google Scholar] [CrossRef] [Green Version]
- Leena, G.; Delvys, R.A.; Shirish, G.; Emilio, E.; Enriqueta, F.; Flávia, D.A.; Manuel, D.; Philip, C.; Maximilian, J.H.; Steven, F.P.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar]
- Anand, R. Combination of CTLA-4 and PD-1 brockers for treatment of cancer. J. Exp. Clin. Cancer Res. 2019, 38, 255. [Google Scholar]
- Vicky, M.; Nicoletta, C.; Antonio, C.; Alessandro, D.; Emeline, C.; David, S.; Keiichi, F.; Sandro, P.; Sally, B.; Isabelle, R.; et al. Lenvatinib plus Pembrolizumab for advanced endometrial cancer. N. Engl. J. Med. 2022, 386, 437–448. [Google Scholar]
Characteristic | MSI-H | MSS | p-Value |
---|---|---|---|
N = 5 | N = 86 | ||
Age | 0.249 | ||
<60 years | 4 (80%) | 46 (53%) | |
≥60 years | 1 (20%) | 40 (47%) | |
FIGO stage | 0.301 | ||
Ⅰ, Ⅱ | 5 (100%) | 67 (78%) | |
Ⅲ, Ⅳ | 0 (0%) | 19 (22%) | |
Initial treatment | 0.055 | ||
PDS | 4 (80%) | 86 (100%) | |
NAC | 1 (20%) | 0 (0%) | |
Residual tumor after PDS or IDS | 0.517 | ||
No residual tumor (R0) | 5 (100%) | 75 (87%) | |
Yes | 0 (0%) | 11 (13%) | |
ARID1A | 0.406 | ||
Intact | 2 (40%) | 48 (56%) | |
Loss | 3 (60%) | 38 (44%) | |
MMR protein (IHC) | 0.000 | ||
p-MMR | 1 (20%) | 80 (93%) | |
d-MMR | 4 (80%) | 6 (7%) | |
Endometriosis | 0.265 | ||
No | 4 (80%) | 47 (55%) | |
Yes | 1 (20%) | 39 (45%) | |
Organization type | 0.012 | ||
Clear cell | 0 (0%) | 52 (60%) | |
Endometrioid | 5 (100%) | 34 (40%) | |
CD-8 | 0.026 | ||
Positive | 4 (80%) | 23 (27%) | |
Negative | 1 (20%) | 63 (73%) | |
PD-1 | 0.251 | ||
Positive | 1 (20%) | 4 (5%) | |
Negative | 4 (80%) | 82 (95%) | |
PD-L1 | 0.664 | ||
Positive | 0 (0%) | 7 (8%) | |
Negative | 5 (100%) | 79 (92%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nonomura, Y.; Nakayama, K.; Nakamura, K.; Razia, S.; Yamashita, H.; Ishibashi, T.; Ishikawa, M.; Sato, S.; Nakayama, S.; Otsuki, Y.; et al. Ovarian Endometrioid and Clear Cell Carcinomas with Low Prevalence of Microsatellite Instability: A Unique Subset of Ovarian Carcinomas Could Benefit from Combination Therapy with Immune Checkpoint Inhibitors and Other Anticancer Agents. Healthcare 2022, 10, 694. https://doi.org/10.3390/healthcare10040694
Nonomura Y, Nakayama K, Nakamura K, Razia S, Yamashita H, Ishibashi T, Ishikawa M, Sato S, Nakayama S, Otsuki Y, et al. Ovarian Endometrioid and Clear Cell Carcinomas with Low Prevalence of Microsatellite Instability: A Unique Subset of Ovarian Carcinomas Could Benefit from Combination Therapy with Immune Checkpoint Inhibitors and Other Anticancer Agents. Healthcare. 2022; 10(4):694. https://doi.org/10.3390/healthcare10040694
Chicago/Turabian StyleNonomura, Yuki, Kentaro Nakayama, Kohei Nakamura, Sultana Razia, Hitomi Yamashita, Tomoka Ishibashi, Masako Ishikawa, Seiya Sato, Satoru Nakayama, Yoshiro Otsuki, and et al. 2022. "Ovarian Endometrioid and Clear Cell Carcinomas with Low Prevalence of Microsatellite Instability: A Unique Subset of Ovarian Carcinomas Could Benefit from Combination Therapy with Immune Checkpoint Inhibitors and Other Anticancer Agents" Healthcare 10, no. 4: 694. https://doi.org/10.3390/healthcare10040694
APA StyleNonomura, Y., Nakayama, K., Nakamura, K., Razia, S., Yamashita, H., Ishibashi, T., Ishikawa, M., Sato, S., Nakayama, S., Otsuki, Y., & Kyo, S. (2022). Ovarian Endometrioid and Clear Cell Carcinomas with Low Prevalence of Microsatellite Instability: A Unique Subset of Ovarian Carcinomas Could Benefit from Combination Therapy with Immune Checkpoint Inhibitors and Other Anticancer Agents. Healthcare, 10(4), 694. https://doi.org/10.3390/healthcare10040694