Sex Differences in Pre-Season Anthropometric, Balance and Range-of-Motion Characteristics in Elite Youth Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Ethical Approval, Participant Recruitment, Informed Consent
2.3. Participants
2.4. Instrumentation
2.5. Procedures
2.5.1. Dominant Limb
2.5.2. Height and Body Mass
2.5.3. Leg Length
2.5.4. Anterior Reach Test
2.5.5. Hip Rotation Active Range of Motion
2.5.6. Active Knee Extension Test
2.5.7. Weightbearing Lunge Test
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Owoeye, O.B.A.; VanderWey, M.J.; Pike, I. Reducing Injuries in Soccer (Football): An Umbrella Review of Best Evidence Across the Epidemiological Framework for Prevention. Sport. Med.-Open 2020, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.; Mjaanes, J.M. Soccer Injuries in Children and Adolescents. Pediatrics 2019, 144, e20192759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montalvo, A.M.; Schneider, D.K.; Webster, K.E.; Yut, L.; Galloway, M.T.; Heidt, R.S.; Kaeding, C.C.; Kremcheck, T.E.; Magnussen, R.A.; Parikh, S.N.; et al. Anterior Cruciate Ligament Injury Risk in Sport: A Systematic Review and Meta-Analysis of Injury Incidence by Sex and Sport Classification. J. Athl. Train. 2019, 54, 472–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PFSA: Is Football a Contact Sport? Available online: https://thepfsa.co.uk/is-football-a-contact-sport/#:~:text=Football (accessed on 26 January 2022).
- Pons, E.; García-Calvo, T.; Resta, R.; Blanco, H.; López del Campo, R.; Díaz García, J.; Pulido, J.J. A comparison of a GPS device and a multi-camera video technology during official soccer matches: Agreement between systems. PLoS ONE 2019, 14, e0220729. [Google Scholar] [CrossRef] [Green Version]
- Newans, T.; Bellinger, P.; Dodd, K.; Minahan, C. Modelling the Acceleration and Deceleration Profile of Elite-level Soccer Players. Int. J. Sports Med. 2019, 40, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Spreco, A.; Bengtsson, H.; Bahr, R. Injury rates decreased in men’s professional football: An 18-year prospective cohort study of almost 12 000 injuries sustained during 1.8 million hours of play. Br. J. Sports Med. 2021, 55, 1084–1091. [Google Scholar] [CrossRef]
- Szymski, D.; Krutsch, V.; Achenbach, L.; Gerling, S.; Pfeifer, C.; Alt, V.; Krutsch, W.; Loose, O. Epidemiological analysis of injury occurrence and current prevention strategies on international amateur football level during the UEFA Regions Cup 2019. Arch. Orthop. Trauma Surg. 2021, 142, 271–280. [Google Scholar] [CrossRef]
- Pfirrmann, D.; Herbst, M.; Ingelfinger, P.; Simon, P.; Tug, S. Analysis of Injury Incidences in Male Professional Adult and Elite Youth Soccer Players: A Systematic Review. J. Athl. Train. 2016, 51, 410–424. [Google Scholar] [CrossRef] [Green Version]
- Esquivel, A.O.; Bruder, A.; Ratkowiak, K.; Lemos, S.E. Soccer-Related Injuries in Children and Adults Aged 5 to 49 Years in US Emergency Departments From 2000 to 2012. Sport. Health A Multidiscip. Approach 2015, 7, 366–370. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.A.; Chounthirath, T.; Xiang, H. Soccer-Related Injuries Treated in Emergency Departments: 1990–2014. Pediatrics 2016, 138, e20160346. [Google Scholar] [CrossRef] [Green Version]
- Robles-Palazón, F.J.; López-Valenciano, A.; Croix, M.D.S.; Oliver, J.L.; García-Gómez, A.; de Baranda, P.S.; Ayala, F. Epidemiology of injuries in male and female youth football players: A systematic review and meta-analysis. J. Sport Health Sci. 2021. [Google Scholar] [CrossRef] [PubMed]
- Cross, K.M.; Gurka, K.K.; Saliba, S.; Conaway, M.; Hertel, J. Comparison of Hamstring Strain Injury Rates Between Male and Female Intercollegiate Soccer Athletes. Am. J. Sports Med. 2013, 41, 742–748. [Google Scholar] [CrossRef]
- Gupta, A.S.; Pierpoint, L.A.; Comstock, R.D.; Saper, M.G. Sex-Based Differences in Anterior Cruciate Ligament Injuries Among United States High School Soccer Players: An Epidemiological Study. Orthop. J. Sports Med. 2020, 8, 232596712091917. [Google Scholar] [CrossRef] [PubMed]
- Von Rosen, P.; Kottorp, A.; Fridén, C.; Frohm, A.; Heijne, A. Young, talented and injured: Injury perceptions, experiences and consequences in adolescent elite athletes. Eur. J. Sport Sci. 2018, 18, 731–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finch, C.; Cassell, E. The public health impact of injury during sport and active recreation. J. Sci. Med. Sport 2006, 9, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Silvers-Granelli, H.; Mandelbaum, B.; Adeniji, O.; Insler, S.; Bizzini, M.; Pohlig, R.; Junge, A.; Snyder-Mackler, L.; Dvorak, J. Efficacy of the FIFA 11+ Injury Prevention Program in the Collegiate Male Soccer Player. Am. J. Sports Med. 2015, 43, 2628–2637. [Google Scholar] [CrossRef] [Green Version]
- Grimm, N.L.; Jacobs, J.C.; Kim, J.; Denney, B.S.; Shea, K.G. Anterior Cruciate Ligament and Knee Injury Prevention Programs for Soccer Players. Am. J. Sports Med. 2015, 43, 2049–2056. [Google Scholar] [CrossRef]
- Al Attar, W.S.A.; Alshehri, M.A. A meta-analysis of meta-analyses of the effectiveness of FIFA injury prevention programs in soccer. Scand. J. Med. Sci. Sports 2019, 29, 1846–1855. [Google Scholar] [CrossRef]
- Portney, L.; Watkins, M. Foundations of Clinical Research: Applications to Practice, 3rd ed.; F.A. Davis Company: Philadelphia, PA, USA, 2015. [Google Scholar]
- Emery, C.A. Risk Factors for Injury in Child and Adolescent Sport: A Systematic Review of the Literature. Clin. J. Sport Med. 2003, 13, 256–268. [Google Scholar] [CrossRef]
- Backous, D.D. Soccer Injuries and Their Relation to Physical Maturity. Arch. Pediatr. Adolesc. Med. 1988, 142, 839. [Google Scholar] [CrossRef]
- Goldberg, B.; Rosenthal, P.; Robertson, L.; Nicholas, J. Injuries in youth football. Pediatrics 1988, 81, 255–261. [Google Scholar] [PubMed]
- Hall, S.J. Basic Biomechanics, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2019; ISBN 978-1-259-91387-7. [Google Scholar]
- Emer, C.A. Injury Prevention and Future Research. In Epidemiology of Pediatric Sports Injuries; KARGER: Basel, Switzerland, 2005; pp. 179–200. [Google Scholar]
- Myer, G.D.; Ford, K.R.; Khoury, J.; Succop, P.; Hewett, T.E. Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury. Br. J. Sports Med. 2011, 45, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, S.; Padua, D.; McGrath, M.; Hewett, T.; Shultz, S.; Griffin, L. Incidence of ACL injury. In Understanding and Preventing Noncontact ACL Injuries; Human Kinetics: Champaign, IL, USA, 2007; pp. 5–29. [Google Scholar]
- Mixed-Gender Soccer: What Level Should Boys and Girls Play Separately? Available online: https://content.thecoachingmanual.com/blog/mixed-gender-soccer-boys-and-girls (accessed on 2 February 2022).
- Caine, D.; Maffulli, N.; Caine, C. Epidemiology of Injury in Child and Adolescent Sports: Injury Rates, Risk Factors, and Prevention. Clin. Sports Med. 2008, 27, 19–50. [Google Scholar] [CrossRef] [PubMed]
- Fousekis, K.; Tsepis, E.; Poulmedis, P.; Athanasopoulos, S.; Vagenas, G. Intrinsic risk factors of non-contact quadriceps and hamstring strains in soccer: A prospective study of 100 professional players. Br. J. Sports Med. 2011, 45, 709–714. [Google Scholar] [CrossRef] [Green Version]
- Manoel, L.S.; Xixirry, M.G.; Soeira, T.P.; Saad, M.C.; Riberto, M. Identification of Ankle Injury Risk Factors in Professional Soccer Players Through a Preseason Functional Assessment. Orthop. J. Sports Med. 2020, 8, 232596712092843. [Google Scholar] [CrossRef]
- Gonell, A.C.; Romero, J.A.P.; Soler, L.M. Relationship between the Y balance test scores and soft tissue injury incidence in a soccer team. Int. J. Sports Phys. Ther. 2015, 10, 955–966. [Google Scholar]
- van Dyk, N.; Farooq, A.; Bahr, R.; Witvrouw, E. Hamstring and Ankle Flexibility Deficits Are Weak Risk Factors for Hamstring Injury in Professional Soccer Players: A Prospective Cohort Study of 438 Players Including 78 Injuries. Am. J. Sports Med. 2018, 46, 2203–2210. [Google Scholar] [CrossRef] [Green Version]
- Saita, Y.; Nagao, M.; Kawasaki, T.; Kobayashi, Y.; Kobayashi, K.; Nakajima, H.; Takazawa, Y.; Kaneko, K.; Ikeda, H. Range limitation in hip internal rotation and fifth metatarsal stress fractures (Jones fracture) in professional football players. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1943–1949. [Google Scholar] [CrossRef]
- van der Worp, H.; van Ark, M.; Roerink, S.; Pepping, G.-J.; van den Akker-Scheek, I.; Zwerver, J. Risk factors for patellar tendinopathy: A systematic review of the literature. Br. J. Sports Med. 2011, 45, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Hamstra-Wright, K.L.; Huxel Bliven, K.C.; Bay, R.C.; Aydemir, B. Risk Factors for Plantar Fasciitis in Physically Active Individuals: A Systematic Review and Meta-analysis. Sports Health Multidiscip. Approach 2021, 13, 296–303. [Google Scholar] [CrossRef]
- Willems, T.M.; Witvrouw, E.; Delbaere, K.; Mahieu, N.; De Bourdeaudhuij, L.; De Clercq, D. Intrinsic Risk Factors for Inversion Ankle Sprains in Male Subjects: A Prospective Study. Am. J. Sports Med. 2005, 33, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Hrysomallis, C.; McLaughlin, P.; Goodman, C. Balance and Injury in Elite Australian Footballers. Int. J. Sports Med. 2007, 28, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Plisky, P.J.; Rauh, M.J.; Kaminski, T.W.; Underwood, F.B. Star Excursion Balance Test as a Predictor of Lower Extremity Injury in High School Basketball Players. J. Orthop. Sports Phys. Ther. 2006, 36, 911–919. [Google Scholar] [CrossRef]
- Witvrouw, E.; Danneels, L.; Asselman, P.; D’Have, T.; Cambier, D. Muscle Flexibility as a Risk Factor for Developing Muscle Injuries in Male Professional Soccer Players. Am. J. Sports Med. 2003, 31, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Alvares, J.B.; Dornelles, M.P.; Fritsch, C.G.; de Lima-e-Silva, F.X.; Medeiros, T.M.; Severo-Silveira, L.; Marques, V.B.; Baroni, B.M. Prevalence of Hamstring Strain Injury Risk Factors in Professional and Under-20 Male Football (Soccer) Players. J. Sport Rehabil. 2019, 29, 339–345. [Google Scholar] [CrossRef]
- Bedi, A.; Warren, R.F.; Wojtys, E.M.; Oh, Y.K.; Ashton-Miller, J.A.; Oltean, H.; Kelly, B.T. Restriction in hip internal rotation is associated with an increased risk of ACL injury. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2024–2031. [Google Scholar] [CrossRef]
- Backman, L.J.; Danielson, P. Low Range of Ankle Dorsiflexion Predisposes for Patellar Tendinopathy in Junior Elite Basketball Players. Am. J. Sports Med. 2011, 39, 2626–2633. [Google Scholar] [CrossRef]
- Clark, N.C. Noncontact Knee Ligament Injury Prevention Screening in Netball: A Clinical Commentary with Clinical Practice Suggestions for Community-Level Players. Int. J. Sports Phys. Ther. 2021, 16, 911. [Google Scholar] [CrossRef]
- Kroll, T.; Neri, M. Designs for Mixed Methods Research. In Mixed Methods Research for Nursing and the Health Sciences; Wiley-Blackwell: Oxford, UK, 2009; pp. 31–45. [Google Scholar]
- Clark, N.C.; Campbell, S.D. Preseason weight-bearing ankle dorsiflexion in male professional football players with and without a history of severe ankle injury: A novel analysis in an English Premier League club. Phys. Ther. Sport 2021, 52, 21–29. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Bishop, C.; Thomas, C.; Comfort, P.; Jones, P.A. The effect of limb dominance on change of direction biomechanics: A systematic review of its importance for injury risk. Phys. Ther. Sport 2019, 37, 179–189. [Google Scholar] [CrossRef]
- Lohman, T.G. Anthropometric Standarization Reference Manual; Human Kinetics Publishers Inc.: Champaign, IL, USA, 1991; ISBN 0873223314. [Google Scholar]
- University of Saskatchewan Prediction of Age of Peak Height Velocity. Available online: https://wwwapps.usask.ca/kin-growthutility/phv_ui.php#reference-1 (accessed on 11 February 2022).
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Gogia, P.P.; Braatz, J.H. Validity and reliability of leg length measurements. J. Orthop. Sports Phys. Ther. 1986, 8, 185–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertel, J.; Miller, S.J.; Denegar, C.R. Intratester and intertester reliability during the star excursion balance tests. J. Sport Rehabil. 2000, 9, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Clark, N.C.; Akins, J.S.; Heebner, N.R.; Sell, T.C.; Abt, J.P.; Lovalekar, M.; Lephart, S.M. Reliability and measurement precision of concentric-to-isometric and eccentric-to-isometric knee active joint position sense tests in uninjured physically active adults. Phys. Ther. Sport 2016, 18, 38–45. [Google Scholar] [CrossRef]
- Gabbe, B.J.; Bennell, K.L.; Wajswelner, H.; Finch, C.F. Reliability of common lower extremity musculoskeletal screening tests. Phys. Ther. Sport 2004, 5, 90–97. [Google Scholar] [CrossRef]
- Konor, M.M.; Morton, S.; Eckerson, J.M.; Grindstaff, T.L. Reliability of three measures of ankle dorsiflexion range of motion. Int. J. Sports Phys. Ther. 2012, 7, 279–287. [Google Scholar]
- Clark, N.C.; Clacher, L.H. Lower-limb motor-performance asymmetries in English community-level female field hockey players: Implications for knee and ankle injury prevention. Phys. Ther. Sport 2020, 43, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Jamovi The Jamovi Project 2021. Available online: https://www.jamovi.org/ (accessed on 11 February 2022).
- Mackbeth, G.; Razumiejczyk, E.; Ledesma, R.D. Cliff’s Delta Calculator: A non-parametric effect size program for two groups of observations. Univ. Psychol. 2011, 10, 545–555. [Google Scholar] [CrossRef]
- Romano, J.; Kromrey, J.; Coraggio, J.; Skowronek, J.; Devine, L. Exploring methods for evaluating group differences on the NSSE and other surveys: Are the t-test and Cohen’s d indices the most appropriate choices? In Proceedings of the Annual Meeting of the Southern Association for Institutional Research, Arlington, VA, USA, 14–17 October 2006; pp. 1–51. [Google Scholar]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity; Human Kinetics Publishers Inc.: Champaign, IL, USA, 2003. [Google Scholar]
- Malina, R.M.; Reyes, M.E.P.; Eisenmann, J.C.; Horta, L.; Rodrigues, J.; Miller, R. Height, mass and skeletal maturity of elite Portuguese soccer players aged 11–16 years. J. Sports Sci. 2000, 18, 685–693. [Google Scholar] [CrossRef]
- Emmonds, S.; Till, K.; Redgrave, J.; Murray, E.; Turner, L.; Robinson, C.; Jones, B. Influence of age on the anthropometric and performance characteristics of high-level youth female soccer players. Int. J. Sports Sci. Coach. 2018, 13, 779–786. [Google Scholar] [CrossRef]
- Mansson, O.; Sernert, N.; Rostgard-Christensen, L.; Kartus, J.J.; Månsson, O.; Sernert, N.; Rostgard-Christensen, L.; Kartus, J.J. Long-term clinical and radiographic results after delayed anterior cruciate ligament reconstruction in adolescents. Am. J. Sports Med. 2015, 43, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malina, R.M.; Peña Reyes, M.E.; Tan, S.K.; Buschang, P.H.; Little, B.B.; Koziel, S. Secular change in height, sitting height and leg length in rural Oaxaca, southern Mexico: 1968–2000. Ann. Hum. Biol. 2004, 31, 615–633. [Google Scholar] [CrossRef] [PubMed]
- Cug, M.; Wikstrom, E.A.; Golshaei, B.; Kirazci, S. The Effects of Sex, Limb Dominance, and Soccer Participation on Knee Proprioception and Dynamic Postural Control. J. Sport Rehabil. 2016, 25, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; Rosen, A.B.; Brown, C.N. Functional performance tests identify lateral ankle sprain risk: A prospective pilot study in adolescent soccer players. Scand. J. Med. Sci. Sports 2018, 28, 2611–2616. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Cumming, S.P.; Rogol, A.D.; Coelho-e-Silva, M.J.; Figueiredo, A.J.; Konarski, J.M.; Kozieł, S.M. Bio-Banding in Youth Sports: Background, Concept, and Application. Sports Med. 2019, 49, 1671–1685. [Google Scholar] [CrossRef]
- Clark, N.; Davies, S.; Reilly, L. Sex differences in lower limb motor performance relevant to knee injury control. Br. J. Sports Med. 2018, 51, A5–A6. [Google Scholar] [CrossRef]
- Chimera, N.J.; Smith, C.A.; Warren, M. Injury History, Sex, and Performance on the Functional Movement Screen and Y Balance Test. J. Athl. Train. 2015, 50, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Sabin, M.J.; Ebersole, K.T.; Martindale, A.R.; Price, J.W.; Broglio, S.P. Balance Performance in Male and Female Collegiate Basketball Athletes: Influence of Testing Surface. J. Strength Cond. Res. 2010, 24, 2073–2078. [Google Scholar] [CrossRef]
- Plisky, P.; Schwartkopf-Phifer, K.; Huebner, B.; Garner, M.B.; Bullock, G. Systematic review and meta-analysis of the y-balance test lower quarter: Reliability, discriminant validity, and predictive validity. Int. J. Sports Phys. Ther. 2021, 16, 1190–1209. [Google Scholar] [CrossRef]
- Stiffler, M.R.; Sanfilippo, J.L.; Brooks, M.A.; Heiderscheit, B.C. Star Excursion Balance Test Performance Varies by Sport in Healthy Division I Collegiate Athletes. J. Orthop. Sports Phys. Ther. 2015, 45, 772–780. [Google Scholar] [CrossRef]
- Miller, M.M.; Trapp, J.L.; Post, E.G.; Trigsted, S.M.; McGuine, T.A.; Brooks, M.A.; Bell, D.R. The Effects of Specialization and Sex on Anterior Y-Balance Performance in High School Athletes. Sports Health 2017, 9, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Chimera, N.J.; Warren, M. Association of Y Balance Test Reach Asymmetry and Injury in Division I Athletes. Med. Sci. Sports Exerc. 2014, 47, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Brophy, R.H.; Chiaia, T.A.; Maschi, R.; Dodson, C.C.; Oh, L.S.; Lyman, S.; Allen, A.A.; Williams, R.J. The Core and Hip in Soccer Athletes Compared by Gender. Int. J. Sports Med. 2009, 30, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Pérez, V.; Ayala, F.; Fernandez-Fernandez, J.; Vera-Garcia, F.J. Descriptive profile of hip range of motion in elite tennis players. Phys. Ther. Sport 2016, 19, 43–48. [Google Scholar] [CrossRef]
- Mitani, Y. Gender-related differences in lower limb alignment, range of joint motion, and the incidence of sports injuries in Japanese university athletes. J. Phys. Ther. Sci. 2017, 29, 12–15. [Google Scholar] [CrossRef] [Green Version]
- Reikeråls, O.; Bjerkreim, I.; Kolbenstvedt, A. Anteversion of the Acetabulum and Femoral Neck in Normals and in Patients with Osteoarthritis of the Hip. Acta Orthop. Scand. 1983, 54, 18–23. [Google Scholar] [CrossRef]
- Bråten, M.; Terjesen, T.; Rossvoll, I. Femoral anteversion in normal adults. Acta Orthop. Scand. 1992, 63, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.-D.; Shultz, S.J. Sex Differences in Clinical Measures of Lower Extremity Alignment. J. Orthop. Sports Phys. Ther. 2007, 37, 389–398. [Google Scholar] [CrossRef]
- Prasad, R.; Vettivel, S.; Isaac, B.; Jeyaseelan, L.; Chandi, G. Angle of torsion of the femur and its correlates. Clin. Anat. 1996, 9, 109–117. [Google Scholar] [CrossRef]
- Hedt, C.A.; Pearson, J.M.; Lambert, B.S.; McCulloch, P.C.; Harris, J.D. Sex-Related Hip Strength Measures Among Professional Soccer Players. J. Strength Cond. Res. 2019, 35, 1992–1999. [Google Scholar] [CrossRef]
- Leetun, D.; Ireland, M.; Willson, J.; Ballantyne, B.; Davis, I. Core Stability Measures as Risk Factors for Lower Extremity Injury in Athletes. Med. Sci. Sport. Exerc. 2004, 36, 926–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malliaropoulos, N. Active knee range of motion assessment in elite track and field athletes: Normative values. Muscles. Ligaments Tendons J. 2015, 5, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Olivencia, O.; Godinez, G.M.; Dages, J.; Duda, C.; Kaplan, K.; Kolber, M.J.; Kaplan; Kolber. The Reliability and Minimal Detectable Change of the Ely and Active Knee Extension Tests. Int. J. Sports Phys. Ther. 2020, 15, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Hamid, M.S.A.; Ali, M.R.M.; Yusof, A. Interrater and Intrarater Reliability of the Active Knee Extension (AKE) Test among Healthy Adults. J. Phys. Ther. Sci. 2013, 25, 957–961. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.K.; Kieffer, H.S.; Kemp, H.E.; Torres, S.E. Off-Season Physiological Profiles of Elite National Collegiate Athletic Association Division III Male Soccer Players. J. Strength Cond. Res. 2011, 25, 1508–1513. [Google Scholar] [CrossRef]
- Hahn, T.; Foldspang, A.; Vestergaard, E.; Ingemann-Hansen, T. Active knee joint flexibility and sports activity. Scand. J. Med. Sci. Sports 2007, 9, 74–80. [Google Scholar] [CrossRef]
- Schulze, A.; Böhme, D.; Weiss, C.; Schmittner, M. Aktive Muskeldehntestung der ischiocruralen Muskulatur: Referenzwerte und Einflussfaktoren. Sport. Sport. 2013, 27, 156–161. [Google Scholar] [CrossRef]
- Onate, J.A.; Starkel, C.; Clifton, D.R.; Best, T.M.; Borchers, J.; Chaudhari, A.; Dawn Comstock, R.; Cortes, N.; Grooms, D.R.; Hertel, J.; et al. Normative functional performance values in high school athletes: The functional pre-participation evaluation project. J. Athl. Train. 2018, 53, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, H.; Fawcett, L.; Rushton, A. Does gender and ankle injury history affect weightbearing dorsiflexion in elite artistic gymnasts? Phys. Ther. Sport 2020, 42, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Cejudo, A.; Sainz de Baranda, P.; Ayala, F.; Santonja, F. A simplified version of the weight-bearing ankle lunge test: Description and test–retest reliability. Man. Ther. 2014, 19, 355–359. [Google Scholar] [CrossRef]
- Kang, M.-H.; Lee, D.-K.; Park, K.-H.; Oh, J.-S. Association of Ankle Kinematics and Performance on the Y-Balance Test With Inclinometer Measurements on the Weight-Bearing-Lunge Test. J. Sport Rehabil. 2015, 24, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Bennell, K.; Talbot, R.; Wajswelner, H.; Techovanich, W.; Kelly, D. Intra-rater and inter-rater reliability of a weight-bearing lunge measure of ankle dorsiflexion. Aust. J. Physiother. 1998, 44, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Lima, Y.L.; Ferreira, V.M.L.M.; de Paula Lima, P.O.; Bezerra, M.A.; de Oliveira, R.R.; Almeida, G.P.L. The association of ankle dorsiflexion and dynamic knee valgus: A systematic review and meta-analysis. Phys. Ther. Sport 2018, 29, 61–69. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.M.; Waddington, G.; Scarvell, J.M.; Ball, N.B.; Creer, R.; Woods, K.; Smith, D. The effect of limb dominance on lower limb functional performance – a systematic review. J. Sports Sci. 2016, 34, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Gentry, V.; Gabbard, C. Foot-Preference Behavior: A Developmental Perspective. J. Gen. Psychol. 1995, 122, 37–45. [Google Scholar] [CrossRef]
- Kapandji, I. The Physiology of the Joints. Lower Limb, 5th ed.; Churchill Livingstone: Edinburgh, Germany, 1987. [Google Scholar]
Variable | Sex | Mean | SD | Median | IQR | ES |
---|---|---|---|---|---|---|
Age | M | 16.8 | 0.9 | 17.0 | 2.0 | 0.0 |
F | 17.2 | 1.7 | 17.0 | 2.0 | ||
Standing Height (cm) | M | 175.9 | 6.8 | 176.6 * | 10.3 | 0.7 |
F | 164.0 | 6.3 | 164.0 | 7.0 | ||
Sitting Height (cm) | M | 135.4 | 3.5 | 135.0 * | 4.6 | 0.8 |
F | 127.8 | 3.5 | 127.0 | 5.0 | ||
Body Mass (kg) | M | 67.9 | 6.3 | 67.6 * | 8.5 | 0.7 |
F | 59.0 | 5.8 | 58.3 | 8.5 | ||
Right Leg Length (cm) | M | 91.4 | 5.0 | 90.1 * | 8.1 | 0.5 |
F | 86.6 | 4.5 | 87.0 | 4.0 | ||
Left Leg Length (cm) | M | 91.8 | 5.3 | 91.0 * | 8.6 | 0.5 |
F | 86.8 | 4.5 | 87.0 | 5.0 |
Variable | Sex | Mean | SD | Median | IQR | ES |
---|---|---|---|---|---|---|
Right ART (cm) | M | 67.7 | 9.9 | 66.0 | 9.0 | 0.2 |
F | 64.4 | 4.4 | 63.5 | 5.9 | ||
Right %LL ART | M | 74.0 | 10.0 | 72.0 | 10.0 | 0.1 |
F | 74.0 | 4.0 | 74.0 | 6.00 | ||
Left ART (cm) | M | 68.0 | 9.7 | 67.0 | 9.0 | 0.3 |
F | 63.9 | 6.6 | 63.8 | 4.4 | ||
Left %LL ART | M | 74.0 | 9.0 | 73.0 | 8.0 | 0.1 |
F | 73.0 | 6.0 | 74.0 | 7.0 | ||
Right HIR (°) | M | 35.5 | 9.9 | 35.0 * | 10.0 | 0.6 |
F | 46.9 | 9.7 | 45.0 | 15.0 | ||
Right HER (°) | M | 65.7 | 9.9 | 70.0 | 10.0 | 0.1 |
F | 68.0 | 9.5 | 65.0 | 10.0 | ||
Left HIR (°) | M | 39.9 | 8.8 | 40.0 * | 10.0 | 0.6 |
F | 51.1 | 9.9 | 55.0 | 10.0 | ||
Left HER (°) | M | 65.0 | 8.7 | 65.0 | 10.0 | 0.1 |
F | 64.4 | 12.5 | 65.0 | 15.0 | ||
Right AKE test (°) | M | 26.7 | 8.9 | 30.0 | 10.0 | 0.1 |
F | 24.9 | 8.5 | 25.0 | 10.0 | ||
Left AKE test (°) | M | 25.9 | 9.3 | 25.0 | 10.0 | 0.1 |
F | 27.7 | 11.0 | 30.0 | 15.0 | ||
Right Dorsiflexion (°) | M | 36.6 | 6.5 | 37.0 | 7.0 | 0.2 |
F | 39.2 | 5.0 | 40.0 | 8.0 | ||
Left Dorsiflexion (°) | M | 37.9 | 7.4 | 39.0 | 8.0 | 0.1 |
F | 39.9 | 4.6 | 39.0 | 6.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llurda-Almuzara, L.; Pérez-Bellmunt, A.; Labata-Lezaun, N.; López-de-Celis, C.; Moran, J.; Clark, N.C. Sex Differences in Pre-Season Anthropometric, Balance and Range-of-Motion Characteristics in Elite Youth Soccer Players. Healthcare 2022, 10, 819. https://doi.org/10.3390/healthcare10050819
Llurda-Almuzara L, Pérez-Bellmunt A, Labata-Lezaun N, López-de-Celis C, Moran J, Clark NC. Sex Differences in Pre-Season Anthropometric, Balance and Range-of-Motion Characteristics in Elite Youth Soccer Players. Healthcare. 2022; 10(5):819. https://doi.org/10.3390/healthcare10050819
Chicago/Turabian StyleLlurda-Almuzara, Luis, Albert Pérez-Bellmunt, Noé Labata-Lezaun, Carlos López-de-Celis, Jason Moran, and Nicholas C. Clark. 2022. "Sex Differences in Pre-Season Anthropometric, Balance and Range-of-Motion Characteristics in Elite Youth Soccer Players" Healthcare 10, no. 5: 819. https://doi.org/10.3390/healthcare10050819