Difference in Quality of Vision Outcome among Extended Depth of Focus, Bifocal, and Monofocal Intraocular Lens Implantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Surgery Details
2.3. Ophthalmic Examinations
2.4. Questionnaire Survey
2.5. Primary and Secondary Outcome
2.6. Sample Size
2.7. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to vision 2020: The right to sight: An analysis for the global burden of disease study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef]
- Hsu, W.-M.; Liu, J.-H. Ophthalmology in taiwan. Taiwan J. Ophthalmol. 2014, 4, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.F.; Liu, H.R.; Zhang, Y.; Bai, W.L.; Li, R.Y.; Sun, R.Z.; Wang, N.L. Prevalence of cataract and cataract surgery in urban and rural chinese populations over 50 years old: A systematic review and meta-analysis. Int. J. Ophthalmol. 2022, 15, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Schallhorn, J.M.; Pantanelli, S.M.; Lin, C.C.; Al-Mohtaseb, Z.N.; Steigleman, W.A., 3rd; Santhiago, M.R.; Olsen, T.W.; Kim, S.J.; Waite, A.M.; Rose-Nussbaumer, J.R. Multifocal and accommodating intraocular lenses for the treatment of presbyopia: A report by the american academy of ophthalmology. Ophthalmology 2021, 128, 1469–1482. [Google Scholar] [CrossRef] [PubMed]
- Rampat, R.; Gatinel, D. Multifocal and extended depth-of-focus intraocular lenses in 2020. Ophthalmology 2021, 128, e164–e185. [Google Scholar] [CrossRef]
- Cochener, B. Clinical outcomes of a new extended range of vision intraocular lens: International multicenter concerto study. J. Cataract Refract. Surg. 2016, 42, 1268–1275. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Allan, B.; Rubin, G. Spectacle use after routine cataract surgery. Br. J. Ophthalmol. 2009, 93, 1307–1312. [Google Scholar] [CrossRef] [Green Version]
- Nijkamp, M.D.; Dolders, M.G.; de Brabander, J.; van den Borne, B.; Hendrikse, F.; Nuijts, R.M. Effectiveness of multifocal intraocular lenses to correct presbyopia after cataract surgery: A randomized controlled trial. Ophthalmology 2004, 111, 1832–1839. [Google Scholar] [CrossRef]
- Labiris, G.; Giarmoukakis, A.; Patsiamanidi, M.; Papadopoulos, Z.; Kozobolis, V.P. Mini-monovision versus multifocal intraocular lens implantation. J. Cataract. Refract. Surg. 2015, 41, 53–57. [Google Scholar] [CrossRef]
- Cillino, S.; Casuccio, A.; Di Pace, F.; Morreale, R.; Pillitteri, F.; Cillino, G.; Lodato, G. One-year outcomes with new-generation multifocal intraocular lenses. Ophthalmology 2008, 115, 1508–1516. [Google Scholar] [CrossRef]
- Rasp, M.; Bachernegg, A.; Seyeddain, O.; Ruckhofer, J.; Emesz, M.; Stoiber, J.; Grabner, G.; Dexl, A.K. Bilateral reading performance of 4 multifocal intraocular lens models and a monofocal intraocular lens under bright lighting conditions. J. Cataract Refract. Surg. 2012, 38, 1950–1961. [Google Scholar] [CrossRef] [PubMed]
- Uusitalo, R.J.; Brans, T.; Pessi, T.; Tarkkanen, A. Evaluating cataract surgery gains by assessing patients’ quality of life using the vf-7. J. Cataract Refract. Surg. 1999, 25, 989–994. [Google Scholar] [CrossRef]
- Harman, F.E.; Maling, S.; Kampougeris, G.; Langan, L.; Khan, I.; Lee, N.; Bloom, P.A. Comparing the 1cu accommodative, multifocal, and monofocal intraocular lenses: A randomized trial. Ophthalmology 2008, 115, 993–1001.e1002. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.A.; Hida, W.T.; Tzeliks, P.F.; Goncalves, M.R.; Nogueira Fde, B.; Nakano, C.T.; Motta, A.F.; Araujo, A.G.; Alves, M.R. Comparative study on optical performance and visual outcomes between two diffractive multifocal lenses: Amo tecnis (r) zmb00 and acrysof (r) iq restor (r) multifocal iol sn6ad1. Arq. Bras. Oftalmol. 2016, 79, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Cillino, G.; Casuccio, A.; Pasti, M.; Bono, V.; Mencucci, R.; Cillino, S. Working-age cataract patients: Visual results, reading performance, and quality of life with three diffractive multifocal intraocular lenses. Ophthalmology 2014, 121, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Pepose, J.S.; Qazi, M.A.; Chu, R.; Stahl, J. A prospective randomized clinical evaluation of 3 presbyopia-correcting intraocular lenses after cataract extraction. Am. J. Ophthalmol. 2014, 158, 436–446.e431. [Google Scholar] [CrossRef]
- Alió, J.L.; Kaymak, H.; Breyer, D.; Cochener, B.; Plaza-Puche, A.B. Quality of life related variables measured for three multifocal diffractive intraocular lenses: A prospective randomised clinical trial. Clin. Exp. Ophthalmol. 2018, 46, 380–388. [Google Scholar] [CrossRef]
- Zalevsky, Z.; Ben-Yaish, S. Extended depth of focus imaging with birefringent plate. Opt. Express 2007, 15, 7202–7210. [Google Scholar] [CrossRef]
- Pedrotti, E.; Carones, F.; Aiello, F.; Mastropasqua, R.; Bruni, E.; Bonacci, E.; Talli, P.; Nucci, C.; Mariotti, C.; Marchini, G. Comparative analysis of visual outcomes with 4 intraocular lenses: Monofocal, multifocal, and extended range of vision. J. Cataract Refract. Surg. 2018, 44, 156–167. [Google Scholar] [CrossRef]
- Monaco, G.; Gari, M.; Di Censo, F.; Poscia, A.; Ruggi, G.; Scialdone, A. Visual performance after bilateral implantation of 2 new presbyopia-correcting intraocular lenses: Trifocal versus extended range of vision. J. Cataract Refract. Surg. 2017, 43, 737–747. [Google Scholar] [CrossRef]
- Mencucci, R.; Favuzza, E.; Caporossi, O.; Savastano, A.; Rizzo, S. Comparative analysis of visual outcomes, reading skills, contrast sensitivity, and patient satisfaction with two models of trifocal diffractive intraocular lenses and an extended range of vision intraocular lens. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 1913–1922. [Google Scholar] [CrossRef] [PubMed]
- McAlinden, C.; Pesudovs, K.; Moore, J.E. The development of an instrument to measure quality of vision: The quality of vision (qov) questionnaire. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5537–5545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arden, G.B.; Jacobson, J.J. A simple grating test for contrast sensitivity: Preliminary results indicate value in screening for glaucoma. Investig. Ophthalmol. Vis. Sci. 1978, 17, 23–32. [Google Scholar]
- Arden, G.B. The importance of measuring contrast sensitivity in cases of visual disturbance. Br. J. Ophthalmol. 1978, 62, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Pieh, S.; Marvan, P.; Lackner, B.; Hanselmayer, G.; Schmidinger, G.; Leitgeb, R.; Sticker, M.; Hitzenberger, C.K.; Fercher, A.F.; Skorpik, C. Quantitative performance of bifocal and multifocal intraocular lenses in a model eye: Point spread function in multifocal intraocular lenses. Arch. Ophthalmol. 2002, 120, 23–28. [Google Scholar] [CrossRef]
- Anton, A.; Böhringer, D.; Bach, M.; Reinhard, T.; Birnbaum, F. Contrast sensitivity with bifocal intraocular lenses is halved, as measured with the freiburg vision test (fract), yet patients are happy. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 539–544. [Google Scholar] [CrossRef]
- Mangione, C.M.; Lee, P.P.; Gutierrez, P.R.; Spritzer, K.; Berry, S.; Hays, R.D. Development of the 25-item national eye institute visual function questionnaire. Arch. Ophthalmol. 2001, 119, 1050–1058. [Google Scholar] [CrossRef]
- Shah, S.; Peris-Martinez, C.; Reinhard, T.; Vinciguerra, P. Visual outcomes after cataract surgery: Multifocal versus monofocal intraocular lenses. J. Refract. Surg. 2015, 31, 658–666. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Wolffsohn, J.S.; Naroo, S.A.; Davies, L.N.; Gibson, G.A.; Shah, S. Development of a near activity visual questionnaire to assess accommodating intraocular lenses. Cont. Lens Anterior Eye 2007, 30, 134–143. [Google Scholar] [CrossRef]
- Buckhurst, P.J.; Wolffsohn, J.S.; Gupta, N.; Naroo, S.A.; Davies, L.N.; Shah, S. Development of a questionnaire to assess the relative subjective benefits of presbyopia correction. J. Cataract Refract. Surg. 2012, 38, 74–79. [Google Scholar] [CrossRef]
- Sheppard, A.L.; Shah, S.; Bhatt, U.; Bhogal, G.; Wolffsohn, J.S. Visual outcomes and subjective experience after bilateral implantation of a new diffractive trifocal intraocular lens. J. Cataract Refract. Surg. 2013, 39, 343–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, S.; Mangione, C.M.; Lindblad, A.S.; McDonnell, P.J. Development of the national eye institute refractive error correction quality of life questionnaire: Focus groups. Ophthalmology 2003, 110, 2285–2291. [Google Scholar] [CrossRef] [PubMed]
- Aryadoust, V.; Tan, H.A.H.; Ng, L.Y. A scientometric review of rasch measurement: The rise and progress of a specialty. Front. Psychol. 2019, 10, 2197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteve-Taboada, J.J.; Domínguez-Vicent, A.; Del Águila-Carrasco, A.J.; Ferrer-Blasco, T.; Montés-Micó, R. Effect of large apertures on the optical quality of three multifocal lenses. J. Refract. Surg. 2015, 31, 666–676. [Google Scholar] [CrossRef]
- Pandit, R.T. Monocular clinical outcomes and range of near vision following cataract surgery with implantation of an extended depth of focus intraocular lens. J. Ophthalmol. 2018, 2018, 8205824. [Google Scholar] [CrossRef] [Green Version]
- Pedrotti, E.; Chierego, C.; Talli, P.M.; Selvi, F.; Galzignato, A.; Neri, E.; Barosco, G.; Montresor, A.; Rodella, A.; Marchini, G. Extended depth of focus versus monofocal iols: Objective and subjective visual outcomes. J. Refract. Surg. 2020, 36, 214–222. [Google Scholar] [CrossRef]
- Kohnen, T.; Böhm, M.; Hemkeppler, E.; Schönbrunn, S.; DeLorenzo, N.; Petermann, K.; Herzog, M. Visual performance of an extended depth of focus intraocular lens for treatment selection. Eye 2019, 33, 1556–1563. [Google Scholar] [CrossRef]
- Caporossi, A.; Casprini, F.; Martone, G.; Balestrazzi, A.; Tosi, G.M.; Ciompi, L. Contrast sensitivity evaluation of aspheric and spherical intraocular lenses 2 years after implantation. J. Refract. Surg. 2009, 25, 578–590. [Google Scholar]
- Camps, V.J.; Tolosa, A.; Piñero, D.P.; de Fez, D.; Caballero, M.T.; Miret, J.J. In vitro aberrometric assessment of a multifocal intraocular lens and two extended depth of focus iols. J. Ophthalmol. 2017, 2017, 7095734. [Google Scholar] [CrossRef] [Green Version]
Parameter | Bifocal | EDOF | Monofocal | p Value |
---|---|---|---|---|
Mean age (SD) | 64.4 (±5.9) | 60.5 (±9.8) | 67.4 (±6.5) | 0.004 * |
Patients, n | 24 | 29 | 34 | |
Women | 20 (83%) | 17 (59%) | 29 (67%) | 0.243 |
Preop CDVA (logMAR) | 0.37 (±0.29) | 0.52 (±0.37) | 0.45 (±0.30) | 0.215 |
Axial length (mm) | 24.03 ± 1.46 | 24.65 ± 1.53 | 23.18 ± 0.73 | 0.0001 * |
Cornea K (D) | 44.44 ± 1.98 | 43.83 ± 1.59 | 44.77 ± 1.31 | 0.0899 |
IOL power (D) | 19.1 ± 4.1 | 18.5 ± 4.2 | 20.7 ± 2.0 | 0.0958 |
Preop SE | −1.05 ± 3.98 | −2.45 ± 4.69 | 1.01 ± 2.20 | 0.0057 * |
Index | AcrySof IQ SV25T0 | TECNIS ZXR00 | AR40e |
---|---|---|---|
Design | With +2.50D and 7 diffractive steps, IOL with anterior apodized diffractive aspheric surface with a central refractive zone | Biconvex, wavefront-designed anterior aspheric surface, posterior achromatic diffractive surface, and echelette feature | Biconvex, aspheric-correcting optics at anterior and posterior surface |
Filtration | UV and blue-light filtering | UV-blocking | UV-blocking |
Optic material | Acrylate/methacrylate copolymer | Hydrophobic acrylic | Hydrophobic acrylic |
Optic diameter | 6.0 mm | 6.0 mm | 6.0 mm |
Overall length | 13.0 mm | 13.0 mm | 13.0 mm |
Refractive index | 1.55 | 1.47 | 1.47 |
Parameters (Mean ± SD) | Bifocal (n = 24) | EDOF (n = 29) | Monofocal (n = 34) | p Value of Pairwise Comparison | |
---|---|---|---|---|---|
B vs. E | M vs. E | ||||
VA (LogMAR) | |||||
UCVA | 0.08 ± 0.03 | 0.12 ± 0.03 | 0.07 ± 0.11 | 0.1897 | 0.0360 * |
CDVA | 0.09 ± 0.02 | 0.02 ± 0.02 | 0.04 ± 0.09 | 0.0430 * | 0.2710 |
UNVA (40 cm) | 0.17 ± 0.05 | 0.31 ± 0.05 | NA | 0.0266 * | NA |
Refraction | |||||
Sphere | 0.04 ± 0.36 | −0.05 ± 0.50 | 0.04 ± 0.45 | 0.0689 | 0.1250 |
Cylinder | −0.49 ± 0.40 | −0.31 ± 0.38 | −0.68 ± 0.47 | 0.0442 * | 0.0005 * |
Log CS | |||||
Glare off | |||||
3 CPD | 1.36 ± 0.05 | 1.46 ± 0.05 | 1.28 ± 0.27 | 0.0296 * | 0.0010 * |
6 CPD | 1.40 ± 0.05 | 1.61 ± 0.05 | 1.42 ± 0.24 | 0.0014 * | 0.0008 * |
12 CPD | 1.02 ± 0.04 | 1.17 ± 0.05 | 1.00 ± 0.14 | 0.0055 * | 0.0090 * |
Glare on | |||||
3 CPD | 1.23 ± 0.04 | 1.50 ± 0.05 | 1.02 ± 0.06 | 0.0001 * | 0.0000 * |
6 CPD | 1.40 ± 0.05 | 1.61 ± 0.05 | 1.31 ± 0.15 | 0.0012 * | 0.0000 * |
12 CPD | 1.02 ± 0.04 | 1.18 ± 0.04 | 0.98 ± 0.12 | 0.0011 * | 0.0005 * |
HOAs/RMS (μm) | |||||
Total HOAs | 0.49 ± 0.04 | 0.46 ± 0.04 | 0.47 ± 0.17 | 0.1055 | 0.2185 |
Coma | 0.23 ± 0.03 | 0.25 ± 0.03 | 0.26 ± 0.16 | 0.3100 | 0.3656 |
Spherical aberration | 0.07 ± 0.03 | 0.01 ± 0.03 | 0.02 ± 0.14 | 0.0356 * | 0.2676 |
Trefoil | 0.44 ± 0.51 | 0.12 ± 0.09 | 0.41 ± 0.27 | 0.0003 * | 0.0000 * |
Question | Item | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Far vision | 14.07 | 37.09 | 58.22 | |
Far vision-Judging distances | 13.28 | 36.54 | 55.85 | 71.02 |
Far vision-Getting used to the dark | 10.70 | 32.60 | 47.70 | 66.62 |
Far vision-Driving at night | 12.38 | 33.70 | 50.96 | 60.28 |
Diurnal fluctuation | 9.24 | 29.49 | 50.02 | |
Glare and halos | N/A | |||
Spectacle dependence | N/A | |||
Near vision-Reading small print | 12.78 | 35.04 | 49.89 | 62.45 |
Near vision-For work and hobbies | 16.05 | 34.85 | 46.46 | 72.27 |
Near vision-Overall satisfaction | 11.72 | 34.14 | 46.58 | 67.69 |
Intermediate vision | 12.63 | 35.80 | 53.35 | 75.25 |
Parameter | Bifocal (n = 24) | EDOF (n = 29) | Monofocal (n = 34) | p Value of Pairwise Comparison | |
---|---|---|---|---|---|
B vs. E | M vs. E | ||||
Far vision | 31.0 ± 16.4 | 31.2 ± 16.5 | 23.4 ± 13.7 | 0.485 | 0.0252 * |
Far vision
| 32.0 ± 15.2 | 28.4 ± 17.3 | 21.9 ± 13.4 | 0.139 | 0.0633 |
Far vision
| 33.4 ± 12.6 | 29.2 ± 16.1 | 20.0 ± 12.4 | 0.127 | 0.0085 * |
Far vision
| 33.6 ± 13.6 | 34.7 ± 16.9 | 20.6 ± 13.0 | 0.469 | 0.0003 * |
Diurnal fluctuation | 30.5 ± 16.0 | 30.3 ± 16.2 | 23.0 ± 14.8 | 0.480 | 0.0355 * |
Near vision Reading small print | 22.6 ± 15.3 | 29.6 ± 16.7 | 22.8 ± 12.9 | 0.042 * | 0.0483 * |
Near vision For work and hobbies | 22.8 ± 13.8 | 25.3 ± 13.9 | 24.9 ± 12.4 | 0.175 | 0.4805 |
Near vision
| 28.8 ± 16.5 | 28.9 ± 15.4 | 21.8 ± 13.4 | 0.479 | 0.0348 * |
Intermediate vision | 27.9 ± 16.8 | 26.7 ± 17.4 | 21.5 ± 14.7 | 0.360 | 0.110 |
Total score | 24.1 ± 10.7 | 24.4 ± 10.0 | 18.4 ± 9.6 | 0.438 | 0.003 * |
Glare (Frequency) (χ2 Contribution) | Bifocal (n = 24) | EDOF (n = 29) | Monofocal (n = 34) | Total |
---|---|---|---|---|
None of the time | 5 (1.1) | 5 (2.3) | 19 (5.2) | 29 (8.6) |
A little of the time | 8 (0.0) | 6 (1.2) | 14 (0.9) | 28 (2.1) |
Some of the time | 5 (0.1) | 10 (4.1) | 1 (4.4) | 19 (8.6) |
Most of the time | 4 (0.9) | 5 (1.3) | 0 (3.5) | 9 (5.8) |
All of the time | 2 (0.3) | 3 (1.1) | 0 (2.0) | 5 (3.3) |
Total | 24 (2.4) | 29 (9.9) | 34 (15.9) | 87 (28.3) |
p value | <0.001 |
Spectacle Dependence (Frequency) (χ2 Contribution) | Bifocal (n = 24) | EDOF (n = 29) | Monofocal (n = 34) | Total |
---|---|---|---|---|
Yes | 3 (7.1) | 8 (3.3) | 34 (15.3) | 45 (25.7) |
No | 21 (7.6) | 21 (3.5) | 0 (16.4) | 42 (27.6) |
Total | 24 (14.8) | 29 (6.8) | 34 (31.7) | 87 (53.3) |
p-Value | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, C.-C.; Lin, H.-Y.; Lee, C.-Y.; Mai, E.L.-C.; Lian, I.-B.; Chang, C.-K. Difference in Quality of Vision Outcome among Extended Depth of Focus, Bifocal, and Monofocal Intraocular Lens Implantation. Healthcare 2022, 10, 1000. https://doi.org/10.3390/healthcare10061000
Chao C-C, Lin H-Y, Lee C-Y, Mai EL-C, Lian I-B, Chang C-K. Difference in Quality of Vision Outcome among Extended Depth of Focus, Bifocal, and Monofocal Intraocular Lens Implantation. Healthcare. 2022; 10(6):1000. https://doi.org/10.3390/healthcare10061000
Chicago/Turabian StyleChao, Chen-Cheng, Hung-Yuan Lin, Chia-Yi Lee, Elsa Lin-Chin Mai, Ie-Bin Lian, and Chao-Kai Chang. 2022. "Difference in Quality of Vision Outcome among Extended Depth of Focus, Bifocal, and Monofocal Intraocular Lens Implantation" Healthcare 10, no. 6: 1000. https://doi.org/10.3390/healthcare10061000
APA StyleChao, C.-C., Lin, H.-Y., Lee, C.-Y., Mai, E. L.-C., Lian, I.-B., & Chang, C.-K. (2022). Difference in Quality of Vision Outcome among Extended Depth of Focus, Bifocal, and Monofocal Intraocular Lens Implantation. Healthcare, 10(6), 1000. https://doi.org/10.3390/healthcare10061000