Behavioral and Emotional Changes One Year after the First Lockdown Induced by COVID-19 in a French Adult Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Measures
2.3. Sample
2.4. Statistical Analyses
3. Results
3.1. Evolution of Anthropometry
3.2. Evolution of Physical Activities
3.3. Evolution of Eating Behaviors
3.4. Evolution of Emotions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Décret n°2020-260 du 16 Mars 2020 Portant Réglementation des Déplacements dans le Cadre de la Lutte Contre la Propagation du Virus COVID-19. Available online: https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000041728476 (accessed on 16 March 2020).
- Credoc. Enquête sur la Diffusion des Technologies de l’Information et de la Communication dans la Société Française. Baromètre du Numérique. Edition 2021. Available online: https://www.credoc.fr/publications/barometre-du-numerique-edition-2021 (accessed on 1 July 2021).
- Petersen, J.M.; Naish, C.; Ghoneim, D.; Cabaj, J.L.; Doyle-Baker, P.K.; McCormak, G.R. Impact of the COVID-19 pandemic on physical activity and sedentary behavior: A qualitative study in a Canadian city. Int. J. Environ. Res. Public Health 2021, 18, 4441. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, E.A.; Lee, G.; Jenkins, M.; Calverley, J.R.; Hodge, K.; Mackenzie, S.H. Changes in physical activity pre-, during and post-lockdown COVID-19 restrictions in New Zealand and the explanatory role of daily hassles. Front. Psychol. 2021, 12, 642954. [Google Scholar] [CrossRef] [PubMed]
- Amatrian-Fernandez, S.; Murillo-Rodriguez, E.S.; Gronwald, T.; Machado, S.; Budde, H. Benefits of physical exercise in the time of pandemic. Psychol. Trauma Theory Res. Pract. Policy 2020, 12 (Suppl. 1), S264–S266. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Gómez, C.; de la Higuera, M.; Rivas-García, L.; Diaz-Castro, J.; Moreno-Fernandez, J.; Lopez-Frias, M. Has COVID-19 changed the lifestyle and dietary habits in the Spanish population after confinement? Foods 2021, 10, 2443. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Puviani, M.B.; Nasi, M.; Farinetti, A. COVID-19 pandemic: The effects of quarantine on cardiovascular risk. Eur. J. Clin. Nutr. 2020, 74, 852–855. [Google Scholar] [CrossRef]
- Bhoyroo, R.; Chivers, P.; Millar, L.; Bulsara, C.; Piggott, B.; Lambert, M.; Codde, J. Life in a time of COVID: A mixed method study of the changes in lifestyle, mental and psychosocial health during and after lockdown in Western Australians. BMC Public Health 2021, 21, 1947. [Google Scholar] [CrossRef]
- Zhao, A.; Li, Z.; Ke, Y.; Huo, S.; Ma, Y.; Zhang, Y.; Ren, Z. Dietary diversity among Chinese residents during the COVID-19 outbreak and its associated factors. Nutrients 2020, 12, 1699. [Google Scholar] [CrossRef]
- Zhang, J.; Ke, Y.; Huo, S.; Ma, Y.; Zhang, Y.; Ren, Z.; Li, Z.; Liu, K. Dietary behaviors in the post-Lockdown period and its effects on dietary diversity: The second stage of a nutrition survey in a longitudinal Chinese study in the COVID-19 era. Nutrients 2020, 12, 3269. [Google Scholar] [CrossRef]
- Lau, J.T.F.; Yang, X.; Tsui, H.Y.; Kim, J.H. Impacts of SARS on health-seeking behaviors in general population in Hong Kong. Prev. Med. 2005, 41, 454–462. [Google Scholar] [CrossRef]
- Caso, D.; Guidetti, M.; Capasso, M.; Casvazza, N. Finally, the chance to eat healthy: Longitudinal study about food consumption during and after the first COVID-19 lockdown in Italy. Food Qual. Prefer. 2022, 95, 104275. [Google Scholar] [CrossRef]
- Pérez-Rodrigo, C.; Citores, M.G.; Hervás Bárbara, G.; Litago, F.R.; Casis Sáenz, L.; Aranceta-Bartrina, J.; Val, V.A.; López-Sobaler, A.M.; Martínez De Victoria, E.; Ortega, R.M.; et al. Cambios en los hábitos alimentarios durante el período de confinamiento por la pandemia COVID-19 en España. Rev. Esp. Nutr. Comunitaria 2020, 26, 28010. [Google Scholar]
- Guidoux, R.; Duclos, M.; Fleury, G.; Lacomme, P.; Lamaudière, N.; Saboul, D.; Ren, L.; Rousset, S. The eMouveRecherche application competes with research devices to evaluate energy expenditure, physical activity and still time in free-living conditions. J. Biomed. Inform. 2017, 69, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Rousset, S.; Guidoux, R.; Paris, L.; Farigon, N.; Miolanne, M.; Lahaye, C.; Duclos, M.; Boirie, Y.; Saboul, D. A novel smartphone accelerometer application for low-intensity activity and energy expenditure estimations in overweight and obese adults. J. Med. Syst. 2017, 41, 117. [Google Scholar] [CrossRef] [PubMed]
- Hercberg, S.; Chat-Yung, S.; Chauliac, M. The French National Nutrition and Health Program: 2001–2006–2010. Int. J. Public Health 2008, 53, 68–77. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services. U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; December 2015. Available online: http://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 1 December 2015).
- Cissoko, J.; Boirie, Y.; Duclos, M.; Fardet, A.; Guidoux, R.; Paris, L.; Phan, R.; Ren, L.; Rousset, S. NutriQuantic: A smartphone application to determine the adequacy of food intake to nutritional requirements. In Proceedings of the 6èmes Journées Ouvertes en Biologie, Informatique & Mathématiques, Clermont-Ferrand, France, 6–9 July 2015. [Google Scholar]
- Belmahjoub, M. Belmahjoub, M. Développement d’une application mobile pour évaluer l’impact des émotions sur le comportement alimentaire. Engineer Report 2017. Institut Supérieur d’Informatique, de Modélisation et leurs Applications. Filière Systèmes d’Information et Aide à la Décision. Available online: https://activcollector.clermont.inra.fr/resources/documents/rapport-stage-MBelmahjoub.pdf (accessed on 2 June 2022).
- Stunkard, A.J.; Sorenson, T.; Schulsinger, F. Use of the Danish Adoption Register for the study of obesity and thinness. In The Genetics of Neurological and Psychiatric Disorders; Kety, S.S., Rowland, L.P., Sidman, R.L., Matthysse, S.W., Eds.; Raven Press: New York, NY, USA, 1983; pp. 115–120. [Google Scholar]
- Guilbeault, D.; Nadler, E.O.; Chu, M.; Lo Sardo, D.R.; Kar, A.A.; Desikan, B.S. Color associations in abstract semantic domains. Cognition 2020, 201, 104306. [Google Scholar] [CrossRef] [PubMed]
- Nummenmaa, L.; Glerean, E.; Hari, R.; Hietanen, J.K. Bodily maps of emotions. Proc. Natl. Acad. Sci. USA 2014, 111, 646–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherer, K.R. What are emotions? And how can they be measured? Soc. Sci. 2005, 44, 695–729. [Google Scholar] [CrossRef]
- Scherer, K.R.; Shuman, V.; Fontaine, J.J.R.; Soriano, C. The GRID meets the wheel: Assessing emotional feeling via self-report. In Components of Emotional Meaning: A Sourcebook; Fontaine, J.J.R., Scherer, K.R., Soriano, C., Eds.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Verdot, C.; Torres, M.; Salanave, B.; Deschamps, V. Children and adults body mass index in France in 2015. Results of the Esteban study and trends since 2006. Bull. Épidémiol. Hebd. 2017, 13, 234–241. Available online: http://beh.santepubliquefrance.fr/beh/2017/13/2017_13_1.html (accessed on 13 June 2017).
- Dares. Activité et Conditions d’Emploi de la Main d’Oeuvre Pendant la Crise Sanitaire COVID-19. 2021. Available online: https://dares.travail-emploi.gouv.fr/sites/default/files/3a0c0e024e543875bbe468ad34d67aa8/Dares_Acemo-covid_Synthese_décembre2021.pdf (accessed on 11 December 2021).
- Maltoni, G.; Zioutas, M.; Deiana, G.; Biserni, G.B.; Pession, A.; Zucchini, S. Gender differences in weight gain during lockdown due to COVID-19 pandemic in adolescents with obesity. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2181–2185. [Google Scholar] [CrossRef]
- Andreu, A.; Flores, L.; Molero, J.; Mestre, C.; Obach, A.; Torres, F.; Moizé, V.; Vidal, J.; Navines, R.; Peri, J.M.; et al. Patients undergoing bariatric surgery: A special risk group for lifestyle, emotional and behavioral adaptations during the COVID-19 lockdown. Lessons from the first wave. Obes. Surg. 2022, 32, 441–449. [Google Scholar] [CrossRef]
- Rodriguez-Perez, C.; Molina-Montes, E.; Verardo, V.; Artacho, R.; Garcia-Villanova, B.; Guerra-Hernandez, E.J.; Ruiz-Lopez, M.D. Changes in dietary behaviours during the COVID-19 outbreak confinement in the Spanish Covidiet study. Nutrients 2020, 12, 1730. [Google Scholar] [CrossRef] [PubMed]
- Sarda, B.; Delamaire, C.; Serry, A.-J.; Ducrot, P. Changes in home cooking practices among the French population during the COVID-19 lockdown. Appetite 2022, 168, 105763. [Google Scholar] [CrossRef] [PubMed]
- Deschasaux-Tanguy, M.; Druesne-Pecollo, N.; Esseddik, Y.; Szabo de Edelenyi, F.; Allès, B.; Andreeva, V.A.; Baudry, J.; Charreire, H.; Deschamps, V.; Egnell, M.; et al. Diet and physical activity during the COVID-19 lockdown period (March–May 2020): Results from the French NutriNet-Santé cohort study. Am. J. Clin. Nutr. 2021, 113, 924–938. [Google Scholar] [CrossRef] [PubMed]
- Nielsen. Coronavirus: La Spesa in Quarantena. Available online: https://nielseniq.com/global/it/insights/analysis/2020/coronavirus-la-spesa-in-quarantena/ (accessed on 27 March 2020).
- Pellegrini, M.; Ponzo, V.; Rosato, R.; Scumaci, E.; Goitre, I.; Benso, A.; Belcastro, S.; Crespi, C.; De Michieli, F.; Ghigo, E.; et al. Changes in weight and nutritional habits in adults with obesity during the “lockdown” period caused by the COVID-19 virus emergency. Nutrients 2020, 12, 2016. [Google Scholar] [CrossRef] [PubMed]
- Jacob, L.; Smith, L.; Armstrong, N.C.; Yakkundi, A.; Barnett, Y.; Butler, L.; McDermott, D.T.; Koyanagi, A.; Shin, J.I.; Meyer, J.; et al. Alcohol use and mental health during COVID-19 lockdown: A cross-sectional study in a sample of UK adults. Drug Alcohol Depen. 2021, 219, 108488. [Google Scholar] [CrossRef] [PubMed]
- Guignard, R.; Andler, R.; Quatreme, G.; Pasquereau, A.; du Roscoat, E.; Arwidson, P.; Berlin, I.; Nguyen-Thanh, V. Changes in smoking and alcohol consumption during COVID-19-related lockdown: A cross-sectional study in France. Eur. J. Public Health 2021, 31, 1076–1083. [Google Scholar] [CrossRef]
- Gao, Y.; Ao, H.; Hu, X.; Wang, X.; Huang, D.; Huang, W.; Han, Y.; Zhou, C.; He, L.; Lei, X.; et al. Social media exposure during COVID-19 lockdowns could lead to emotional overeating via anxiety: The moderating role of neuroticism. Appl. Psychol. Health Well-Being 2022, 14, 64–80. [Google Scholar] [CrossRef]
- Sánchez, E.; Lecube, A.; Bellido, D.; Monereo, S.; Malagón, M.M.; Tinahones, F.J. Leading factors for weight gain during COVID-19 lockdown in a Spanish Population: A cross-sectional study. Nutrients 2021, 13, 894. [Google Scholar] [CrossRef]
- Loth, K.; van den Berg, P.; Eisenberg, M.E.; Neumark-Sztainer, D. Stressful life events and disordered eating behaviors: Findings from project eat. J. Adolesc. Health 2008, 43, 514–516. [Google Scholar] [CrossRef]
- Webb, C.M.; Thuras, P.; Peterson, C.B.; Lampert, J.; Miller, D.; Crow, S.J. Eating-related anxiety in individuals with eating disorders. Eat. Weight Disord. 2011, 16, e236–e241. [Google Scholar] [CrossRef] [Green Version]
- Zeigler, Z. COVID-19 self quarantine and weight gain risks factors in adults. Curr. Obes. Rep. 2021, 10, 423–433. [Google Scholar] [CrossRef]
- Frayn, M.; Knäuper, B. Emotional eating and weight in adults: A review. Curr. Psychol. 2018, 37, 924–933. [Google Scholar] [CrossRef]
- Taylor, C.; Lafarge, C.; Cahill, S.; Milani, R.; Görzig, A. Living through lockdown: A qualitative exploration of individuals’ experiences in the UK. Health Soc. Care Comm. 2022. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, J.P.; Forbes, P.A.; Ali, N.; Cutler, J.; Apps, M.A.; Lockwood, P.L.; Lamm, C. Resilience during uncertainty? Greater social connectedness during COVID-19 lockdown is associated with reduced distress and fatigue. Brit. J. Health Psych. 2021, 26, 553–569. [Google Scholar] [CrossRef] [PubMed]
- Massar, S.A.A.; Ng, A.S.C.; Soon, C.S.; Ong, J.L.; Chua, X.Y.; Chee, N.I.Y.N.; Lee, T.S.; Chee, M.W. Reopening after lockdown: The influence of working-from-home and digital device use on sleep, physical activity, and wellbeing following COVID-19 lockdown and reopening. Sleep 2022, 45, 1–10. [Google Scholar] [CrossRef] [PubMed]
Subsample | n | Age (y) | Height (cm) | Weight (kg) | BMI (kg/m2) |
---|---|---|---|---|---|
Women | 66 | 38.3 (7.9) | 164.6 (6.5) | 66.1 (14.0) | 24.5 (5.5) |
Men | 25 | 37.6 (8.9) | 177.8 (7.3) | 77.2 (18.0) | 24.4 (5.9) |
Normal-weight | 64 | 38.2 (8.5) | 168.5 (9.4) | 61.7 (8.8) | 21.6 (1.8) |
Overweight | 27 | 37.9 (7.4) | 167.0 (8.6) | 86.3 (17.0) | 31.3 (6.2) |
Full Sample | Normal-Weight | Overweight | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | S or t | p | Mean | S or t | p | Mean | S or t | p | |
Anthropometry | |||||||||
Weight (kg) | 1.10 | S = 300 | <0.01 | 0.96 | S = 124 | 0.03 | 1.50 | S = 37.5 | 0.10 |
BMI (kg/m²) | 0.39 | S = 300 | <0.01 | 0.32 | S = 126 | 0.03 | 0.53 | S = 35.0 | 0.13 |
Physical activity | |||||||||
Percent | |||||||||
Immobility | 5.49 | t = 2.71 | 0.01 | 4.95 | t = 1.87 | 0.06 | 6.75 | t = 2.41 | 0.02 |
Light activity | −3.27 | t = −2.28 | 0.02 | −3.78 | t = −1.99 | 0.05 | −2.06 | t = −1.14 | 0.27 |
Moderate activity | −0.07 | t = −0.14 | 0.88 | −0.15 | t = −0.25 | 0.80 | 0.14 | t = 0.21 | 0.83 |
Vigorous activity | −2.13 | S = 13.5 | 0.92 | −1.00 | S = 57 | 0.46 | −4.77 | S = −16 | 0.50 |
Food behavior | |||||||||
Number per day | |||||||||
Meal | −0.06 | t = −1.50 | 0.13 | −0.12 | t = −1.51 | 0.13 | 0.07 | t = 0.50 | 0.61 |
All servings | −0.43 | t = −1.31 | 0.19 | −0.75 | t = −1.31 | 0.19 | 0.23 | t = 0.29 | 0.77 |
Serving per day | |||||||||
Fruit | 0.08 | t = 0.64 | 0.52 | −0.18 | t = −1.29 | 0.20 | 0.63 | t = 3.95 | <0.01 |
Vegetable | −0.13 | t = −1.10 | 0.27 | −0.13 | t = −0.92 | 0.36 | −0.14 | t = −0.60 | 0.55 |
Nut | 0.05 | t=0.55 | 0.58 | −0.02 | t = −0.26 | 0.79 | 0.21 | t = 1.59 | 0.12 |
Legume | −0.03 | S=-40 | 0.64 | −0.05 | S = −24 | 0.62 | 0.01 | S = −3.5 | 0.84 |
Plant product | −0.04 | t = −0.17 | 0.86 | −0.40 | t = −1.38 | 0.17 | 0.71 | t = 1.80 | 0.08 |
Whole starch | −0.14 | t = −0.88 | 0.32 | −0.12 | t = −0.55 | 0.58 | −0.20 | t = −0.85 | 0.41 |
Refined starch | −0.25 | t = −1.20 | 0.23 | −0.28 | t = −1.71 | 0.09 | 0.10 | t = 0.52 | 0.61 |
Starch | −0.30 | t = −1.71 | 0.09 | −0.40 | t = −1.87 | 0.06 | −0.09 | t = −0.30 | 0.76 |
Dairy product | 0.00 | t = 0.01 | 0.98 | 0.15 | t = 0.97 | 0.33 | −0.33 | t = −1.55 | 0.13 |
Meat, fish, eggs | −0.04 | t = −0.41 | 0.68 | −0.08 | t = −0.73 | 0.47 | 0.05 | t = 0.32 | 0.75 |
Animal product | −0.04 | t = −0.21 | 0.83 | 0.07 | t = 0.33 | 0.74 | −0.27 | t = −1.10 | 0.30 |
Fatty, salty, sugary | −0.25 | t = −2.20 | 0.03 | −0.28 | t = −1.89 | 0.06 | −0.17 | t = −1.10 | 0.28 |
Snack | 0.01 | S = 39.5 | 0.67 | −0.01 | S = 14 | 0.79 | 0.05 | S = 3.00 | 0.88 |
Junk food | −0.08 | t = −0.50 | 0.62 | −0.08 | t = −0.44 | 0.66 | −0.08 | t = −0.24 | 0.81 |
Alcohol | 0.15 | S = 142 | 0.09 | 0.20 | S = 102 | 0.05 | 0.04 | S = −0.5 | 0.99 |
Score | |||||||||
Food balance | −0.13 | t = −0.88 | 0.38 | −0.27 | t =−1.40 | 0.16 | 0.17 | t = 0.79 | 0.43 |
Emotion | |||||||||
Number | |||||||||
Positive emotion | 9.50 | t = 6.93 | <0.01 | 10.00 | t = 5.66 | <0.01 | 8.54 | t = 3.93 | <0.01 |
Negative emotion | 2.98 | S = 203 | 0.03 | 4.20 | S = 109 | 0.03 | 0.63 | S = 16.00 | 0.43 |
No emotion | −0.04 | S = −12 | 0.15 | −0.06 | S = −8 | 0.22 | −0.01 | t = −0.50 | 0.99 |
Percent | |||||||||
Relative desire to eat | −3.69 | t = −2.32 | 0.02 | −3.30 | t = −1.56 | 0.12 | −4.42 | t = −1.99 | 0.06 |
Orange | −2.00 | S = −7.5 | 0.88 | −0.90 | S = 10.5 | 0.72 | −4.10 | t = −t = 8.50 | 0.43 |
Yellow | 7.00 | S = 113 | 0.04 | 6.30 | S = 44.5 | 0.06 | 9.20 | S = 9.00 | 0.59 |
White | −8.00 | S = −139 | 0.08 | −11.00 | S = −67.5 | 0.08 | −3.60 | t = −5.50 | 0.79 |
Red | 3.00 | S = 106 | 0.01 | 5.30 | S = 53.5 | 0.02 | −0.80 | S = 10.00 | 0.26 |
Grey | 0.00 | S = 11 | 0.67 | 0.30 | S = 11.5 | 0.39 | −0.60 | t = −1.50 | 0.86 |
Rating | |||||||||
Desire to eat | −11.60 | t = −4.07 | 0.00 | −14.30 | t = −3.96 | 0.00 | −6.25 | t = −1.40 | 0.17 |
Desire to move | −1.50 | t = −0.69 | 0.49 | −2.40 | t = −0.88 | 0.38 | 0.27 | t = 0.07 | 0.94 |
Positive emotion | 0.23 | t = 1.78 | 0.07 | 0.20 | t = 1.22 | 0.23 | 0.28 | t = 1.44 | 0.16 |
Negative emotion | −0.01 | t = −0.06 | 0.94 | 0.01 | t = 0.05 | 0.96 | −0.05 | t = −0.15 | 0.88 |
Silhouette | −0.14 | S = −141 | 0.27 | −0.30 | S = −137 | 0.04 | 0.07 | S = 31.00 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rousset, S.; Level, A.; François, F.; Muller, L. Behavioral and Emotional Changes One Year after the First Lockdown Induced by COVID-19 in a French Adult Population. Healthcare 2022, 10, 1042. https://doi.org/10.3390/healthcare10061042
Rousset S, Level A, François F, Muller L. Behavioral and Emotional Changes One Year after the First Lockdown Induced by COVID-19 in a French Adult Population. Healthcare. 2022; 10(6):1042. https://doi.org/10.3390/healthcare10061042
Chicago/Turabian StyleRousset, Sylvie, Aurélie Level, Florine François, and Laurent Muller. 2022. "Behavioral and Emotional Changes One Year after the First Lockdown Induced by COVID-19 in a French Adult Population" Healthcare 10, no. 6: 1042. https://doi.org/10.3390/healthcare10061042
APA StyleRousset, S., Level, A., François, F., & Muller, L. (2022). Behavioral and Emotional Changes One Year after the First Lockdown Induced by COVID-19 in a French Adult Population. Healthcare, 10(6), 1042. https://doi.org/10.3390/healthcare10061042