Optical Coherence Tomography and Optical Coherence Tomography with Angiography in Multiple Sclerosis
Abstract
:1. Introduction
2. Optical Coherence Tomography in Multiple Sclerosis
3. Optical Coherence Tomography with Angiography in Multiple Sclerosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
BRAO | Branch retinal artery occlusion |
CNS | Central nervous system |
DVP | Deep vascular plexus |
EBV | Epstein-Barr virus |
EDSS | Expanded disability status scale |
FAZ | Foveal avascular zone |
GC-IPL | Ganglion cell inner plexiform layer complex |
mGC-IPL | Macular ganglion cell inner plexiform layer |
FNβ-1b | Interferon beta |
IPL | Inner plexiform layer |
MRI | Magnetic resonance imaging |
MS | Multiple sclerosis |
pwMS | People with multiple sclerosis |
NMOSD | Neuromyelitis optica spectrum disorders |
OCT | Optical coherence tomography |
OCT-A | Optical coherence tomography with angiography |
ON | Optic neuritis |
PHOMS | Peripapillary hyper-reflective ovoid mass-like structures |
RNFL | Retinal nerve fibre layer |
RPC | Radial peripapillary capillary |
pRPC | Peripapillary radial peripapillary capillary |
SVP | Superficial vascular plexus |
UVB | Ultraviolet B light |
VD | Vessel density |
VEP | Visual evoked potential |
mVEP | multifocal visual evoked potential |
VVD | Volumetric vessel density |
References
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- Ascherio, A. Environmental factors in multiple sclerosis. Expert Rev. Neurother. 2013, 13, 3–9. [Google Scholar] [CrossRef]
- Cennamo, G.; Romano, M.R.; Vecchio, E.C.; Minervino, C.; Della Guardia, C.; Velotti, N.; Carotenuto, A.; Montella, S.; Orefice, G. Anatomical and functional retinal changes in multiple sclerosis. Eye 2016, 30, 456–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikuta, F.; Zimmerman, H.M. Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology 1976, 26, 26–28. [Google Scholar] [CrossRef] [PubMed]
- Toussaint, D.; Périer, O.; Verstappen, A.; Bervoets, S. Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis. J. Clin. Neuroophthalmol. 1983, 3, 211–220. [Google Scholar]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Wang, L.; Murphy, O.; Caldito, N.G.; Calabresi, P.A.; Saidha, S. Emerging Applications of Optical Coherence Tomography Angiography (OCTA) in neurological research. Eye Vis. 2018, 5, 11. [Google Scholar] [CrossRef]
- Saidha, S.; Syc, S.B.; Durbin, M.K.; Eckstein, C.; Oakley, J.D.; Meyer, S.A.; Conger, A.; Frohman, T.C.; Newsome, S.; Ratchford, J.N.; et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult. Scler. J. 2011, 17, 1449–1463. [Google Scholar] [CrossRef]
- González-López, J.J.; Rebolleda, G.; Leal, M.; Oblanca, N.; Muñoz-Negrete, F.J.; Costa-Frossard, L.; Álvarez-Cermeño, J.C. Comparative Diagnostic Accuracy of Ganglion Cell-Inner Plexiform and Retinal Nerve Fiber Layer Thickness Measures by Cirrus and Spectralis Optical Coherence Tomography in Relapsing-Remitting Multiple Sclerosis. BioMed Res. Int. 2014, 2014, 128517. [Google Scholar] [CrossRef]
- Ratchford, J.N.; Saidha, S.; Sotirchos, E.S.; Oh, J.A.; Seigo, M.A.; Eckstein, C.; Durbin, M.K.; Oakley, J.D.; Meyer, S.A.; Conger, A.; et al. Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology 2013, 80, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Petzold, A.; Balcer, L.J.; Calabresi, P.A.; Costello, F.; Frohman, T.C.; Frohman, E.M.; Martinez-Lapiscina, E.H.; Green, A.J.; Kardon, R.; Outteryck, O.; et al. Retinal layer segmentation in multiple sclerosis: A systematic review and meta-analysis. Lancet Neurol. 2017, 16, 797–812. [Google Scholar] [CrossRef] [Green Version]
- Kale, N. Optic neuritis as an early sign of multiple sclerosis. Eye Brain 2016, 8, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Britze, J.; Pihl-Jensen, G.; Frederiksen, J.L. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: A systematic review and meta-analysis. J. Neurol. 2017, 264, 1837–1853. [Google Scholar] [CrossRef]
- Saidha, S.; Al-Louzi, O.; Ratchford, J.N.; Bhargava, P.; Oh, J.; Newsome, S.D.; Prince, J.L.; Pham, D.; Roy, S.; van Zijl, P.; et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: A four-year study: Retinal Atrophy Reflects Brain Atrophy in MS. Ann. Neurol. 2015, 78, 801–813. [Google Scholar] [CrossRef] [PubMed]
- Dörr, J.; Wernecke, K.D.; Bock, M.; Gaede, G.; Wuerfel, J.T.; Pfueller, C.F.; Bellmann-Strobl, J.; Freing, A.; Brandt, A.U.; Friedemann, P. Association of Retinal and Macular Damage with Brain Atrophy in Multiple Sclerosis. PLoS ONE 2011, 6, e18132. [Google Scholar] [CrossRef] [Green Version]
- Cilingir, V.; Batur, M.; Bulut, M.D.; Milanlioglu, A.; Yılgor, A.; Yasar, T.; Tombul, T. The association between retinal nerve fibre layer thickness and corpus callosum index in different clinical subtypes of multiple sclerosis. Neurol. Sci. 2017, 38, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Glasner, P.; Sabisz, A.; Chylińska, M.; Komendziński, J.; Wyszomirski, A.; Karaszewski, B. Retinal nerve fiber and ganglion cell complex layer thicknesses mirror brain atrophy in patients with relapsing-remitting multiple sclerosis. Restor. Neurol. Neurosci. 2022, 40, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Balk, L.; Steenwijk, M.; Tewarie, P.; Daams, M.; Killestein, J.; Wattjes, M.; Vrenken, H.; Barkhof, F.; Polman, C.; Uitdehaag, B.; et al. Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2015, 86, 419–424. [Google Scholar] [CrossRef]
- Klistorner, A.; Graham, E.C.; Yiannikas, C.; Barnett, M.; Parratt, J.; Garrick, R.; Wang, C.; You, Y.; Graham, S. Progression of retinal ganglion cell loss in multiple sclerosis is associated with new lesions in the optic radiations. Eur. J. Neurol. 2017, 24, 1392–1398. [Google Scholar] [CrossRef]
- Knier, B.; Leppenetier, G.; Wetzlmair, C.; Aly, L.; Hoshi, M.-M.; Pernpeintner, V.; Biberacher, V.; Berthele, A.; Mühlau, M.; Zimmer, C.; et al. Association of Retinal Architecture, Intrathecal Immunity, and Clinical Course in Multiple Sclerosis. JAMA Neurol. 2017, 74, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Lapiscina, E.H.; Arnow, S.; Wilson, J.A.; Saidha, S.; Preiningerova, J.L.; Oberwahrenbrock, T.; Brandt, A.U.; Pablo, L.E.; Guerrieri, S.; Gonzalez, I.; et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: A cohort study. Lancet Neurol. 2016, 15, 574–584. [Google Scholar] [CrossRef] [Green Version]
- Lambe, J.; Fitzgerald, K.C.; Murphy, O.C.; Filippatou, A.G.; Sotirchos, E.S.; Kalaitzidis, G.; Vasileiou, E.; Pellegrini, N.; Ogbuokiri, E.; Toliver, B.; et al. Association of Spectral-Domain OCT with Long-term Disability Worsening in Multiple Sclerosis. Neurology 2021, 96, e2058–e2069. [Google Scholar] [CrossRef]
- Skirková, M.; Mikula, P.; Maretta, M.; Fedičová, M.; Vitková, M.; Frigová, L.; Szilasi, J.; Moravská, M.; Horňák, M.; Szilasiová, J. Associations of optical coherence tomography with disability and brain MRI volumetry in patients with multiple sclerosis. Neurol. Neurochir. Polska, 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Bsteh, G.; Hegen, H.; Teuchner, B.; Amprosi, M.; Berek, K.; Ladstätter, F.; Wurth, S.; Auer, M.; Di Pauli, F.; Deisenhammer, F.; et al. Peripapillary retinal nerve fibre layer as measured by optical coherence tomography is a prognostic biomarker not only for physical but also for cognitive disability progression in multiple sclerosis. Mult. Scler. J. 2019, 25, 196–203. [Google Scholar] [CrossRef]
- Walter, S.D.; Ishikawa, H.; Galetta, K.M.; Sakai, R.E.; Feller, D.J.; Henderson, S.B.; Wilson, J.A.; Maguire, M.G.; Galetta, S.L.; Frohman, E.; et al. Ganglion Cell Loss in Relation to Visual Disability in Multiple Sclerosis. Ophthalmology 2012, 119, 1250–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotirchos, E.; Seigo, M.A.; Calabresi, P.; Saidha, S. Comparison of Point Estimates and Average Thicknesses of Retinal Layers Measured Using Manual Optical Coherence Tomography Segmentation for Quantification of Retinal Neurodegeneration in Multiple Sclerosis. Curr. Eye Res. 2013, 38, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Lampert, E.J.; Andorra, M.; Torres-Torres, R.; Ortiz-Pérez, S.; Llufriu, S.; Sepúlveda, M.; Sola, N.; Saiz, A.; Sánchez-Dalmau, B.; Villoslada, P.; et al. Color vision impairment in multiple sclerosis points to retinal ganglion cell damage. J. Neurol. 2015, 262, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Chien, C.; Lu, A.; Paul, F.; Zimmermann, H.G. Retinal optical coherence tomography and magnetic resonance imaging in neuromyelitis optica spectrum disorders and MOG-antibody associated disorders: An updated review. Expert Rev. Neurother. 2021, 21, 1101–1123. [Google Scholar] [CrossRef] [PubMed]
- Brandt, A.U.; Zimmermann, H.; Kaufhold, F.; Promesberger, J.; Schippling, S.; Finis, D.; Aktas, O.; Geis, C.; Ringelstein, M.; Ringelstein, E.B.; et al. Patterns of Retinal Damage Facilitate Differential Diagnosis between Susac Syndrome and MS. PLoS ONE 2012, 11, e38741. [Google Scholar] [CrossRef]
- Ringelstein, M.; Albrecht, P.; Kleffner, I.; Bühn, B.; Harmel, J.; Müller, A.-K.; Finis, D.; Guthoff, R.; Bergholz, R.; Duning, T.; et al. Retinal pathology in Susac syndrome detected by spectral-domain optical coherence tomography. Neurology 2015, 85, 610–618. [Google Scholar] [CrossRef]
- Toledo, J.; Sepulcre, J.; Salinas-Alaman, A.; García-Layana, A.; Murie-Fernandez, M.; Bejarano, B.; Villoslada, P. Retinal nerve fiber layer atrophy is associated with physical and cognitive disability in multiple sclerosis. Mult. Scler. J. 2008, 14, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Sedighi, B.; Shafa, M.A.; Abna, Z.; Ghaseminejad, A.K.; Farahat, R.; Nakhaee, N.; Hassani, B. Association of Cognitive deficits with Optical Coherence Tomography changes in Multiple Sclerosis Patients. J. Mult. Scler. 2014, 1, 117. [Google Scholar] [CrossRef] [Green Version]
- Coric, D.; Balk, L.J.; Verrijp, M.; Eijlers, A.; Schoonheim, M.M.; Killestein, J.; Uitdehaag, B.M.; Petzold, A. Cognitive impairment in patients with multiple sclerosis is associated with atrophy of the inner retinal layers. Mult. Scler. J. 2018, 24, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pul, R.; Saadat, M.; Morbiducci, F.; Skripuletz, T.; Pul, U.; Brockmann, D.; Sühs, K.-W.; Schwenkenbecher, P.; Kahl, K.G.; Pars, K.; et al. Longitudinal time-domain optic coherence study of retinal nerve fiber layer in IFNβ-treated and untreated multiple sclerosis patients. Exp. Ther. Med. 2016, 12, 190–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Button, J.; Al-Louzi, O.; Lang, A.; Bhargava, P.; Newsome, S.D.; Frohman, T.; Balcer, L.J.; Frohman, E.M.; Prince, J.; Calabresi, P.A.; et al. Disease-modifying therapies modulate retinal atrophy in multiple sclerosis: A retrospective study. Neurology 2017, 88, 525–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klistorner, A.; Arvind, H.; Nguyen, T.; Garrick, R.; Paine, M.; Graham, S.; O’Day, J.; Yiannikas, C. Multifocal VEP and OCT in optic neuritis: A topographical study of the structure–function relationship. Doc. Ophthalmol. 2009, 118, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Trip, S.A.; Schlottmann, P.G.; Jones, S.J.; Altmann, D.R.; Garway-Heath, D.F.; Thompson, A.J.; Plant, G.T.; Miller, D.H. Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann. Neurol. 2005, 58, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, E.; Sguigna, P.V.; Subei, A.; Beh, S.; Kildebeck, E.; Conger, D.; Conger, A.; Lucero, M.; Frohman, B.S.; Frohman, A.N.; et al. Retinal Architecture and Melanopsin-Mediated Pupillary Response Characteristics: A Putative Pathophysiologic Signature for the Retino-Hypothalamic Tract in Multiple Sclerosis. JAMA Neurol. 2017, 74, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Wicklein, R.; Wauschkuhn, J.; Giglhuber, K.; Kümpfel, T.; Hemmer, B.; Havla, J.; Knier, B. Association of peripapillary hyper-reflective ovoid masslike structures and disease duration in primary progressive multiple sclerosis. Eur. J. Neurol. 2021, 28, 15056. [Google Scholar] [CrossRef] [PubMed]
- López-Dorado, A.; Ortiz, M.; Satue, M.; Rodrigo, M.J.; Barea, R.; Sánchez-Morla, E.M.; Cavaliere, C.; Rodríguez-Ascariz, J.M.; Orduna-Hospital, E.; Boquete, L.; et al. Early Diagnosis of Multiple Sclerosis Using Swept-Source Optical Coherence Tomography and Convolutional Neural Networks Trained with Data Augmentation. Sensors 2021, 22, 167. [Google Scholar] [CrossRef] [PubMed]
- Montolío, A.; Cegoñino, J.; Garcia-Martin, E.; del Palomar, A.P. Comparison of Machine Learning Methods Using Spectralis OCT for Diagnosis and Disability Progression Prognosis in Multiple Sclerosis. Ann. Biomed. Eng. 2022, 50, 507–528. [Google Scholar] [CrossRef] [PubMed]
- Martinez Sosa, S.; Smith, K.J. Understanding a role for hypoxia in lesion formation and location in the deep and periventricular white matter in small vessel disease and multiple sclerosis. Clin. Sci. 2017, 131, 2503–2524. [Google Scholar] [CrossRef]
- Kleerekooper, I.; Petzold, A.; Trip, S.A. Anterior visual system imaging to investigate energy failure in multiple sclerosis. Brain 2020, 143, 1999–2008. [Google Scholar] [CrossRef]
- Jiang, H.; Delgado, S.; Tan, J.; Liu, C.; Rammohan, K.W.; DeBuc, D.C.; Lam, B.L.; Feuer, W.J.; Wang, J. Impaired retinal microcirculation in multiple sclerosis. Mult. Scler. J. 2016, 22, 1812–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modrzejewska, M.; Karczewicz, D.; Wilk, G. Assessment of blood flow velocity in eyeball arteries in multiple sclerosis patients with past retrobulbar optic neuritis in color Doppler ultrasonography. Klin. Ocz. 2007, 109, 183–186. [Google Scholar]
- Murphy, O.C.; Kwakyi, O.; Iftikhar, M.; Zafar, S.; Lambe, J.; Pellegrini, N.; Sotirchos, E.S.; Gonzalez-Caldito, N.; Ogbuokiri, E.; Filippatou, A.; et al. Alterations in the retinal vasculature occur in multiple sclerosis and exhibit novel correlations with disability and visual function measures. Mult. Scler. J. 2020, 26, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, H.; Ersoy, A.; Icel, E. Assessments of vessel density and foveal avascular zone metrics in multiple sclerosis: An optical coherence tomography angiography study. Eye 2020, 34, 771–778. [Google Scholar] [CrossRef]
- Feucht, N.; Maier, M.; Lepennetier, G.; Pettenkofer, M.; Wetzlmair, C.; Daltrozzo, T.; Scherm, P.; Zimmer, C.; Hoshi, M.-M.; Hemmer, B.; et al. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis. Mult. Scler. J. 2019, 25, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Ulusoy, M.O.; Horasanlı, B.; Işık-Ulusoy, S. Optical coherence tomography angiography findings of multiple sclerosis with or without optic neuritis. Neurol. Res. 2020, 42, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Gameiro, G.R.; Liu, Y.; Lin, Y.; Hernandez, J.; Deng, Y.; Gregori, G.; Delgado, S.; Wang, J. Visual Function and Disability Are Associated with Increased Retinal Volumetric Vessel Density in Patients with Multiple Sclerosis. Am. J. Ophthalmol. 2020, 213, 34–45. [Google Scholar] [CrossRef]
- Balıkçı, A.; Yener, N.P.; Seferoğlu, M. Optical Coherence Tomography and Optical Coherence Tomography Angiography Findings in Multiple Sclerosis Patients. Neuro-Ophthalmology 2022, 46, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Aly, L.; Noll, C.; Wicklein, R.; Wolf, E.; Romahn, E.F.; Wauschkuhn, J.; Hosari, S.; Mardin, C.; Berthele, A.; Hemmer, B.; et al. Dynamics of Retinal Vessel Loss After Acute Optic Neuritis in Patients with Relapsing Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1159. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jia, Y.; Spain, R.; Potsaid, B.M.; Liu, J.J.; Baumann, B.; Hornegger, J.; Fujimoto, J.G.; Wu, Q.; Huang, D. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br. J. Ophthalmol. 2014, 98, 1368–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spain, R.I.; Liu, L.; Zhang, X.; Jia, Y.; Tan, O.; Bourdette, D.; Huang, D. Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis. Br. J. Ophthalmol. 2018, 102, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Lanzillo, R.; Cennamo, G.; Criscuolo, C.; Carotenuto, A.; Velotti, N.; Sparnelli, F.; Cianflone, A.; Moccia, M.; Morra, V.B. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult. Scler. J. 2018, 24, 1706–1714. [Google Scholar] [CrossRef] [PubMed]
- Tiftikcioglu, B.I.; Emre, S.; Idiman, F.; Idiman, E. Optical coherence tomography angiography (OCTA) in differential diagnosis of aquaporin-4 antibody seronegative NMOSD and multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 58, 103503. [Google Scholar] [CrossRef] [PubMed]
- Rogaczewska, M.; Michalak, S.; Stopa, M. Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorder using optical coherence tomography angiography. Sci. Rep. 2021, 11, 10697. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, H.; Zhang, X.; Zhao, Y.; Li, R.; Zhong, X.; Wang, Y.; Shu, Y.; Chang, Y.; Wang, J.; et al. Optical coherence tomography angiography helps distinguish multiple sclerosis from AQP4-IgG-seropositive neuromyelitis optica spectrum disorder. Brain Behav. 2021, 11, e02125. [Google Scholar] [CrossRef]
- Montorio, D.; Lanzillo, R.; Carotenuto, A.; Petracca, M.; Moccia, M.; Criscuolo, C.; Spiezia, A.L.; Lamberti, A.; Perrotta, F.; Pontillo, G.; et al. Retinal and Choriocapillary Vascular Changes in Early Stages of Multiple Sclerosis: A Prospective Study. J. Clin. Med. 2021, 10, 5756. [Google Scholar] [CrossRef] [PubMed]
- Hazar, L.; Ava, S.; Tamam, Y.; Karahan, M.; Erdem, S.; Dursun, M.; Keklikçi, U. Relationship between optical coherence tomography angiography and visual evoked potential in patients with multiple sclerosis. Indian J. Ophthalmol. 2022, 70, 873. [Google Scholar] [CrossRef]
OCT | OCT-A |
---|---|
• RNFL and GC-IPL thinning inversely related to disease duration. | • Earlier detection of the disease and disease-progression compared to OCT |
• Lower RNFL values suggest increased disability risk | • Reduced VD in both the macular and peripapillary area |
• Significantly lower RNFL and GC-IPL values in NMOSD patients compared to MS | • Reduced peripapillary, macular VD and FAZ size in NMOSD-ON patients compared to MS |
• Natalizumab may cause lower rates of GC-IPL thinning | • High disability rates relate to reduced macular SVP VD |
• FAZ enlargement in ON MS patients |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalkias, I.-N.; Bakirtzis, C.; Pirounides, D.; Boziki, M.K.; Grigoriadis, N. Optical Coherence Tomography and Optical Coherence Tomography with Angiography in Multiple Sclerosis. Healthcare 2022, 10, 1386. https://doi.org/10.3390/healthcare10081386
Chalkias I-N, Bakirtzis C, Pirounides D, Boziki MK, Grigoriadis N. Optical Coherence Tomography and Optical Coherence Tomography with Angiography in Multiple Sclerosis. Healthcare. 2022; 10(8):1386. https://doi.org/10.3390/healthcare10081386
Chicago/Turabian StyleChalkias, Ioannis-Nikolaos, Christos Bakirtzis, Demetrios Pirounides, Marina Kleopatra Boziki, and Nikolaos Grigoriadis. 2022. "Optical Coherence Tomography and Optical Coherence Tomography with Angiography in Multiple Sclerosis" Healthcare 10, no. 8: 1386. https://doi.org/10.3390/healthcare10081386
APA StyleChalkias, I.-N., Bakirtzis, C., Pirounides, D., Boziki, M. K., & Grigoriadis, N. (2022). Optical Coherence Tomography and Optical Coherence Tomography with Angiography in Multiple Sclerosis. Healthcare, 10(8), 1386. https://doi.org/10.3390/healthcare10081386