Internet-Related Instruments (Bergen Social Media Addiction Scale, Smartphone Application-Based Addiction Scale, Internet Gaming Disorder Scale-Short Form, and Nomophobia Questionnaire) and Their Associations with Distress among Malaysian University Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Data Collection
2.2. Measures
2.3. Socio-Demographic Information
2.4. Bergen Social Media Addiction Scale (BSMAS)
2.5. Smartphone Application-Based Addiction Scale (SABAS)
2.6. Internet Gaming Disorder Scale-Short Form (IGDS9-SF)
2.7. Nomophobia Questionnaire (NMPQ)
2.8. Depression, Anxiety, Stress Scale (DASS-21)
2.9. Data Analysis
3. Results
4. Discussion
4.1. BSMAS
4.2. SABAS
4.3. IGDS9-SF
4.4. NMPQ
4.5. Associations between Psychological Distress and the Four Instruments
4.6. Implications
4.7. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yam, C.W.; Pakpour, A.H.; Griffiths, M.D.; Yau, W.Y.; Lo, C.M.; Ng, J.; Lin, C.Y.; Leung, H. Psychometric testing of three Chinese online-related addictive behavior instruments among Hong Kong university students. Psychiatr. Q. 2019, 90, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Chen, I.H.; Hou, W.L.; Potenza, M.N.; O’Brien, K.S.; Lin, C.Y.; Latner, J.D. The relationship between children’s problematic internet-related behaviors and psychological distress during the onset of the COVID-19 pandemic: A longitudinal study. J. Addict. Med. 2022, 16, e73–e80. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, B.; Uzun, B.; Aydin, C.; Tan-Mansukhani, R.; Vallejo, A.; Saldaña-Gutierrez, A.; Biswas, U.N.; Essau, C.A. Internet use during COVID-19 lockdown among young people in low- and middle-income countries: Role of psychological wellbeing. Addict. Behav. Rep. 2021, 14, 100379. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J. Internet Usage Worldwide—Statistics & Facts. Available online: https://www.statista.com/topics/1145/internet-usage-worldwide/#topicHeader__wrapper (accessed on 30 March 2022).
- Department of Statistics Malaysia. ICT Use and Access by Individuals and Household Survey Report, Malaysia. Available online: https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=395&bul_id=OWUvVnV5SHI2WFU2VFhnQ2ZjTm1Bdz09&menu_id=amVoWU54UTl0a21NWmdhMjFMMWcyZz09 (accessed on 30 March 2022).
- Van Velthoven, M.H.; Powell, J.; Powell, G. Problematic smartphone use: Digital approaches to an emerging public health problem. Digit. Health 2018, 4, 2055207618759167. [Google Scholar] [CrossRef] [PubMed]
- Van Deursen, A.J.; Helsper, E.J. Collateral benefits of Internet use: Explaining the diverse outcomes of engaging with the Internet. New Media Soc. 2018, 20, 2333–2351. [Google Scholar] [CrossRef]
- Yang, G.; Cao, J.; Li, Y.; Cheng, P.; Liu, B.; Hao, Z.; Yao, H.; Shi, D.; Peng, L.; Guo, L.; et al. Association between internet addiction and the risk of musculoskeletal pain in Chinese college freshmen—A cross-sectional study. Front. Psychol. 2019, 10, 1959. [Google Scholar] [CrossRef]
- Boer, M.; van den Eijnden, R.; Boniel-Nissim, M.; Wong, S.L.; Inchley, J.C.; Badura, P.; Craig, W.M.; Gobina, I.; Kleszczewska, D.; Klanšček, H.J.; et al. Adolescents’ intense and problematic social media use and their well-being in 29 countries. J. Adolesc. Health 2020, 66, S89–S99. [Google Scholar] [CrossRef]
- Huang, C. A meta-analysis of the problematic social media use and mental health. Int. J. Soc. Psychiatry 2022, 68, 12–33. [Google Scholar] [CrossRef] [PubMed]
- Männikkö, N.; Ruotsalainen, H.; Miettunen, J.; Pontes, H.M.; Kääriäinen, M. Problematic gaming behaviour and health-related outcomes: A systematic review and meta-analysis. J. Health Psychol. 2020, 25, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Fu, X.; Liao, X.; Li, Y. Association of problematic smartphone use with poor sleep quality, depression, and anxiety: A systematic review and meta-analysis. Psychiatry Res. 2020, 284, 112686. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-García, A.M.; Moreno-Guerrero, A.J.; López Belmonte, J. Nomophobia: An individual’s growing fear of being without a smartphone-A systematic literature review. Int. J. Environ. Res. Public Health 2020, 17, 580. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Lim, P.K.; Amer Nordin, A.S.; Yee, A.; Tan, S.B. Prevalence of smartphone addiction in patients with depression and its association with depression severity: A cross-sectional study. Int. J. Ment. Health Addict. 2021, 19, 919–933. [Google Scholar] [CrossRef]
- Nik Jaafar, N.R.; Bahar, N.; Ibrahim, N.; Baharudin, A.; Wan Ismail, W.S.; Sim, S.T.; Abdul Aziz, M.; Tan, K.A. Are Malaysian youths overdependent on the Internet? A narrative review. Front. Psychiatry 2021, 12, 710790. [Google Scholar] [CrossRef]
- Baghaei, P. The Rasch model as a construct validation tool. Rasch Meas. Trans. 2008, 22, 1145–1146. [Google Scholar]
- Beaton, D.E.; Bombardier, C.; Guillemin, F.; Ferraz, M.B. Guidelines for the process of cross-cultural adaptation of self-report measures. Spine 2000, 25, 3186–3191. [Google Scholar] [CrossRef] [PubMed]
- Wild, D.; Grove, A.; Martin, M.; Eremenco, S.; McElroy, S.; Verjee-Lorenz, A.; Erikson, P.; ISPOR Task Force for Translation and Cultural Adaptation. Principles of good practice for the translation and cultural adaptation process for Patient-Reported Outcomes (PRO) measures: Report of the ISPOR Task Force for Translation and Cultural Adaptation. Value Health 2005, 8, 94–104. [Google Scholar] [CrossRef]
- Schou Andreassen, C.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol. Addict. Behav. 2016, 30, 252–262. [Google Scholar] [CrossRef]
- Csibi, S.; Griffiths, M.D.; Cook, B.; Demetrovics, Z.; Szabo, A. The psychometric properties of the Smartphone Application-Based Addiction Scale (SABAS). Int. J. Ment. Health Addict. 2018, 16, 393–403. [Google Scholar] [CrossRef]
- Pontes, H.M.; Griffiths, M.D. Measuring DSM-5 internet gaming disorder: Development and validation of a short psychometric scale. Comput. Hum. Behav. 2015, 45, 137–143. [Google Scholar] [CrossRef]
- Wu, T.Y.; Lin, C.Y.; Årestedt, K.; Griffiths, M.D.; Broström, A.; Pakpour, A.H. Psychometric validation of the Persian nine-item Internet Gaming Disorder Scale—Short Form: Does gender and hours spent online gaming affect the interpretations of item descriptions? J. Behav. Addict. 2017, 6, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, C.; Correia, A.P. Exploring the dimensions of nomophobia: Development and validation of a self-reported questionnaire. Comput. Hum. Behav. 2015, 49, 130–137. [Google Scholar] [CrossRef]
- Lin, C.Y.; Griffiths, M.D.; Pakpour, A.H. Psychometric evaluation of Persian Nomophobia Questionnaire: Differential item functioning and measurement invariance across gender. J. Behav. Addict. 2018, 7, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Lovibond, S.H.; Lovibond, P.F. Manual for the Depression Anxiety & Stress Scales, 2nd ed.; Psychology Foundation: Sydney, Australia, 1995. [Google Scholar]
- Ahmad, N.; Roslan, S.; Othman, S.; Shukor, S.F.A.; Bakar, A.Y.A. The validity and reliability of psychometric profile for Depression, Anxiety and Stress scale (DASS21) instrument among Malaysian undergraduate students. Int. J. Acad. Res. Bus. Soc. Sci. 2018, 8, 812–827. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory, 2nd ed.; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Hayes, A.F.; Coutts, J.J. Use omega rather than Cronbach’s alpha for estimating reliability. But…. Commun. Methods Meas. 2020, 14, 1–24. [Google Scholar] [CrossRef]
- Nejati, B.; Fan, C.W.; Boone, W.J.; Griffiths, M.D.; Lin, C.Y.; Pakpour, A.H. Validating the Persian Intuitive Eating Scale-2 among breast cancer survivors who are overweight/obese. Eval. Health Prof. 2021, 44, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Broström, A.; Griffiths, M.D.; Pakpour, A.H. Psychometric evaluation of the Persian eHealth Literacy Scale (eHEALS) among elder Iranians with heart failure. Eval. Health Prof. 2020, 43, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F.; Babin, B.J.; Anderson, R.E.; Black, W.C. Multivariate Data Analysis, 8th ed.; Cengage: Boston, MA, USA, 2018. [Google Scholar]
- Fan, C.W.; Chen, J.S.; Addo, F.M.; Adjaottor, E.S.; Amankwaah, G.B.; Yen, C.F.; Ahorsu, D.K.; Lin, C.Y. Examining the validity of the drivers of COVID-19 Vaccination Acceptance Scale using Rasch analysis. Expert Rev. Vaccines 2022, 21, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Poorebrahim, A.; Lin, C.Y.; Imani, V.; Kolvani, S.S.; Alaviyoun, S.A.; Ehsani, N.; Pakpour, A.H. Using Mindful Attention Awareness Scale on male prisoners: Confirmatory factor analysis and Rasch models. PLoS ONE 2021, 16, e0254333. [Google Scholar] [CrossRef] [PubMed]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research. R Package Version 2.2.3. Available online: https://CRAN.R-project.org/package=psych (accessed on 30 March 2022).
- Rosseel, Y. Lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Mair, P.; Hatzinger, R.; Maier, M.J. eRm: Extended Rasch Modeling. 1.0-2. Available online: https://cran.r-project.org/package=eRm (accessed on 30 March 2022).
- Shin, N.Y. Psychometric properties of the Bergen Social Media Addiction Scale in Korean young adults. Psychiatry Investig. 2022, 19, 356–361. [Google Scholar] [CrossRef]
- Ali, A.M.; Hendawy, A.O.; Abd Elhay, E.S.; Ali, E.M.; Alkhamees, A.A.; Kunugi, H.; Hassan, N.I. The Bergen Facebook Addiction Scale: Its psychometric properties and invariance among women with eating disorders. BMC Womens Health 2022, 22, 99. [Google Scholar] [CrossRef]
- Vally, Z.; Alowais, A. Assessing risk for smartphone addiction: Validation of an Arabic Version of the Smartphone Application-Based Addiction Scale. Int. J. Ment. Health Addict. 2022, 20, 691–703. [Google Scholar] [CrossRef]
- Ali, A.M.; Al-Amer, R.; Atout, M.; Ali, T.S.; Mansour, A.M.H.; Khatatbeh, H.; Alkhamees, A.A.; Hendawy, A.O. The nine-item Internet Gaming Disorder Scale (IGDS9-SF): Its psychometric properties among Sri Lankan students and measurement invariance across Sri Lanka, Turkey, Australia, and the USA. Healthcare 2022, 10, 490. [Google Scholar] [CrossRef]
- Chen, I.-H.; Strong, C.; Lin, Y.-C.; Tsai, M.-C.; Leung, H.; Lin, C.-Y.; Pakpour, A.H.; Griffiths, M.D. Time invariance of three ultra-brief internet-related instruments: Smartphone Application-Based Addiction Scale (SABAS), Bergen Social Media Addiction Scale (BSMAS), and the nine-item Internet Gaming Disorder Scale- Short Form (IGDS-SF9) (Study Part B). Addict. Behav. 2020, 101, 105960. [Google Scholar] [CrossRef]
- Chen, I.H.; Ahorsu, D.K.; Pakpour, A.H.; Griffiths, M.D.; Lin, C.Y.; Chen, C.Y. Psychometric properties of three simplified Chinese online-related addictive behavior instruments among mainland Chinese primary school students. Front. Psychiatry 2020, 11, 875. [Google Scholar] [CrossRef] [PubMed]
- Whiting, A.; Williams, D. Why people use social media: A uses and gratifications approach. Qual. Mark. Res. 2013, 16, 362–369. [Google Scholar] [CrossRef]
- Lin, C.Y.; Broström, A.; Nilsen, P.; Griffiths, M.D.; Pakpour, A.H. Psychometric validation of the Persian Bergen Social Media Addiction Scale using classic test theory and Rasch models. J. Behav. Addict. 2017, 6, 620–629. [Google Scholar] [CrossRef]
- Lin, C.Y.; Imani, V.; Broström, A.; Nilsen, P.; Fung, X.C.; Griffiths, M.D.; Pakpour, A.H. Smartphone application-based addiction among Iranian adolescents: A psychometric study. Int. J. Ment. Health Addict. 2019, 17, 765–780. [Google Scholar] [CrossRef]
- Ataş, A.H.; Çelik, B. Smartphone use of university students: Patterns, purposes, and situations. Malays. Online J. Educ. Sci. 2019, 7, 54–70. [Google Scholar] [CrossRef]
- Ching, S.M.; Yee, A.; Ramachandran, V.; Lim, S.M.S.; Sulaiman, W.A.W.; Foo, Y.L.; Hoo, F.K. Validation of a Malay Version of the Smartphone Addiction Scale among medical students in Malaysia. PLoS ONE 2015, 10, e0139337. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.Y.J.; Tsang, H.W.H.; Chan, T.Y.J.; Man, S.W.T.; Ng, L.Y.; Wong, Y.L.E.; Lin, C.Y.; Chien, C.W.; Griffiths, M.D.; Pontes, H.M.; et al. Psychometric properties of the Internet Gaming Disorder Scale-Short-Form (IGDS9-SF): Systematic review. J. Med. Internet Res. 2021, 23, e26821. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.L.; Nik Jaafar, N.R.; Tan, K.A.; Bahar, N.; Baharudin, A.; Ahmad Tajjudin, A.I. Psychometric properties of the Malay version of the Internet Gaming Disorder Scale-Short Form (IGDS9-SF-M): Evidence from a sample of Malaysian undergraduates. Int. J. Environ. Res. Public Health 2021, 18, 2592. [Google Scholar] [CrossRef]
- Kardefelt-Winther, D. A critical account of DSM-5 criteria for internet gaming disorder. Addict. Res. Theory 2015, 23, 93–98. [Google Scholar] [CrossRef]
- Kardefelt-Winther, D. A conceptual and methodological critique of internet addiction research: Towards a model of compensatory internet use. Comput. Hum. Behav. 2014, 31, 351–354. [Google Scholar] [CrossRef]
- Ko, C.H.; Yen, J.Y.; Chen, S.H.; Wang, P.W.; Chen, C.S.; Yen, C.F. Evaluation of the diagnostic criteria of internet gaming disorder in the DSM-5 among young adults in Taiwan. J. Psychiatr. Res. 2014, 53, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Charalambos, G.; Venetia, N.; Elissavet, V.; Vasilis, G.; Areti, L. Validity of the Greek NMP-Q and sociodemographic determinants of nomophobia among university students. Int. J. Hum.–Comput. Interact. 2022, 1–9. [Google Scholar] [CrossRef]
- Galhardo, A.; Loureiro, D.; Raimundo, E.; Massano-Cardoso, I.; Cunha, M. Assessing nomophobia: Validation study of the European Portuguese version of the Nomophobia Questionnaire. Community Ment. Health J. 2020, 56, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Rangka, I.B.; Prasetyaningtyas, W.E.; Ifdil, I.; Ardi, Z.; Suranata, K.; Winigsih, E.; Sofyan, A.; Irawan, M.; Arjanto, P.; Muslifar, R.; et al. Measuring psychometric properties of the Indonesian version of the NoMoPhobia Questionnaire (NMPQ): Insight from Rasch measurement tool. J. Phys. Conf. Ser. 2018, 1114, 012127. [Google Scholar] [CrossRef]
- Hussain, Z.; Griffiths, M.D. Problematic social networking site use and comorbid psychiatric disorders: A systematic review of recent large-scale studies. Front. Psychiatry 2018, 9, 686. [Google Scholar] [CrossRef] [PubMed]
- Stavropoulos, V.; Vassallo, J.; Burleigh, T.L.; Gomez, R.; Colder, C.M. The role of internet gaming in the association between anxiety and depression: A preliminary cross-sectional study. Asia-Pac. Psychiatry 2022, 14, e12474. [Google Scholar] [CrossRef]
- Lee, Z.H.; Chen, I.H. The association between problematic internet use, psychological distress, and sleep problems during COVID-19. Sleep Epidemiol. 2021, 1, 100005. [Google Scholar] [CrossRef] [PubMed]
- Hirschmann, R. Number of Students Enrolled in Public Higher Education Institutions in Malaysia from 2012 to 2020, by Gender. 2022. Available online: https://www.statista.com/statistics/794845/students-in-public-higher-education-institutions-by-gender-malaysia/#:~:text=Premium%20statistics-,Students%20in%20public%20higher%20education,Malaysia%202012%2D2020%2C%20by%20gender&text=In%202020%2C%20around%20234.08%20thousand,enrolled%20in%20public%20higher%20institutions (accessed on 28 July 2022).
- Galea, S.; Tracy, M. Participation rates in epidemiologic studies. Ann. Epidemiol. 2007, 17, 643–653. [Google Scholar] [CrossRef] [PubMed]
n (%) or M (SD) | |
---|---|
Age in year | 24.04 (5.07) |
Gender | |
Male | 108 (28.4) |
Female | 272 (71.6) |
Ethnicity group | |
Malay | 117 (30.8) |
Chinese | 200 (52.6) |
Indian | 39 (10.3) |
Others | 24 (6.3) |
Study program | |
Undergraduate | 277 (72.9) |
Postgraduate | 103 (27.1) |
Marital status | |
Single | 350 (92.1) |
Married | 28 (7.4) |
Other | 2 (0.5) |
Daily hours on social media | 4.50 (3.21) |
Daily hours on gaming | 1.36 (2.01) |
Mean | SD | Skewness | Kurtosis | Range | |
---|---|---|---|---|---|
BSMAS | 16.80 | 5.40 | 0.17 | −0.45 | 6–30 |
Item B1 | 2.93 | 1.10 | −0.03 | −0.62 | 1–5 |
Item B2 | 3.03 | 1.14 | 0.01 | −0.72 | 1–5 |
Item B3 | 2.93 | 1.25 | −0.01 | −0.95 | 1–5 |
Item B4 | 2.87 | 1.13 | 0.09 | −0.67 | 1–5 |
Item B5 | 2.52 | 1.16 | 0.34 | −0.75 | 1–5 |
Item B6 | 2.51 | 1.21 | 0.41 | −0.75 | 1–5 |
SABAS | 21.44 | 6.71 | −0.06 | −0.53 | 6–36 |
Item S1 | 3.96 | 1.41 | −0.43 | −0.73 | 1–6 |
Item S2 | 3.19 | 1.38 | 0.14 | −0.76 | 1–6 |
Item S3 | 3.89 | 1.41 | −0.46 | −0.58 | 1–6 |
Item S4 | 4.00 | 1.34 | −0.47 | −0.38 | 1–6 |
Item S5 | 3.16 | 1.43 | 0.17 | −0.85 | 1–6 |
Item S6 | 3.24 | 1.48 | 0.27 | −0.90 | 1–6 |
IGDS9-SF | 16.87 | 8.26 | 0.94 | 0.09 | 9–43 |
Item I1 | 2.05 | 1.12 | 0.76 | −0.43 | 1–5 |
Item I2 | 1.77 | 1.04 | 1.27 | 0.86 | 1–5 |
Item I3 | 1.93 | 1.15 | 1.03 | −0.01 | 1–5 |
Item I4 | 1.86 | 1.06 | 1.03 | 0.10 | 1–5 |
Item I5 | 1.74 | 1.06 | 1.33 | 0.88 | 1–5 |
Item I6 | 1.81 | 1.09 | 1.24 | 0.55 | 1–5 |
Item I7 | 1.68 | 1.04 | 1.46 | 1.23 | 1–5 |
Item I8 | 2.48 | 1.35 | 0.40 | −1.07 | 1–5 |
Item I9 | 1.56 | 0.95 | 1.61 | 1.59 | 1–5 |
NMPQ | 78.71 | 28.67 | −0.003 | −0.80 | 20–140 |
NMPQ_F1 | 17.05 | 6.28 | −0.25 | −0.82 | 4–28 |
Item N1 | 4.23 | 1.79 | −0.19 | −0.95 | 1–7 |
Item N2 | 4.53 | 1.74 | −0.29 | −0.89 | 1–7 |
Item N3 | 3.87 | 1.85 | −0.08 | −1.12 | 1–7 |
Item N4 | 4.42 | 1.75 | −0.30 | −0.85 | 1–7 |
NMPQ_F2 | 19.42 | 7.79 | −0.04 | −0.83 | 5–35 |
Item N5 | 3.88 | 1.94 | 0.07 | −1.18 | 1–7 |
Item N6 | 3.47 | 1.88 | 0.26 | −1.03 | 1–7 |
Item N7 | 4.29 | 1.93 | −0.21 | −1.12 | 1–7 |
Item N8 | 3.89 | 1.91 | 0.01 | −1.13 | 1–7 |
Item N9 | 3.89 | 1.86 | 0.00 | −1.09 | 1–7 |
NMPQ_F3 | 24.63 | 9.97 | −0.12 | −1.00 | 6–42 |
Item N10 | 3.81 | 1.93 | 0.08 | −1.18 | 1–7 |
Item N11 | 4.47 | 1.87 | −0.33 | −1.00 | 1–7 |
Item N12 | 4.11 | 1.87 | −0.14 | −1.09 | 1–7 |
Item N13 | 4.29 | 1.85 | −0.21 | −1.05 | 1–7 |
Item N14 | 4.17 | 1.82 | −0.18 | −1.00 | 1–7 |
Item N15 | 3.79 | 1.86 | 0.05 | −1.16 | 1–7 |
NMPQ_F4 | 17.60 | 8.11 | 0.21 | −0.91 | 5–35 |
Item N16 | 3.22 | 1.88 | 0.43 | −0.99 | 1–7 |
Item N17 | 3.43 | 1.83 | 0.26 | −1.05 | 1–7 |
Item N18 | 3.58 | 1.89 | 0.15 | −1.13 | 1–7 |
Item N19 | 3.62 | 1.87 | 0.13 | −1.12 | 1–7 |
Item N20 | 3.75 | 1.97 | 0.09 | −1.24 | 1–7 |
BSMAS | SABAS | IGDS9-SF | NMPQ | ||||
---|---|---|---|---|---|---|---|
Factor loading | NMPQ_F1 a | NMPQ_F2 a | NMPQ_F3 a | NMPQ_F4 a | |||
Item 1 | 0.71 | 0.64 | 0.84 | 0.81 | 0.72 | 0.87 | 0.83 |
Item 2 | 0.76 | 0.75 | 0.87 | 0.82 | 0.73 | 0.84 | 0.86 |
Item 3 | 0.73 | 0.80 | 0.86 | 0.87 | 0.77 | 0.89 | 0.83 |
Item 4 | 0.70 | 0.81 | 0.88 | 0.84 | 0.83 | 0.86 | 0.77 |
Item 5 | 0.74 | 0.74 | 0.81 | -- | 0.78 | 0.89 | 0.83 |
Item 6 | 0.68 | 0.74 | 0.89 | -- | -- | 0.85 | -- |
Item 7 | -- | -- | 0.80 | -- | -- | -- | -- |
Item 8 | -- | -- | 0.66 | -- | -- | -- | -- |
Item 9 | -- | -- | 0.76 | -- | -- | -- | -- |
Fit indices | |||||||
χ2 (df) | 14.23 (9) | 9.92 (9) | 13.17 (27) | 107.92 (164) | |||
p-value | 0.11 | 0.36 | 0.99 | 1.00 | |||
CFI | 0.996 | 0.999 | 1.000 | 1.000 | |||
TLI | 0.994 | 0.999 | 1.005 | 1.003 | |||
RMSEA | 0.039 | 0.016 | 0.000 | 0.000 | |||
SRMR | 0.045 | 0.038 | 0.037 | 0.037 |
χ2 (df) | p-Value | Outfit MnSq | Infit MnSq | |
---|---|---|---|---|
BSMAS | ||||
Item B1 | 318.94 (362) | 0.95 | 0.88 | 0.88 |
Item B2 | 284.03 (362) | 1.00 | 0.78 | 0.79 |
Item B3 | 315.25 (362) | 0.96 | 0.87 | 0.83 |
Item B4 | 328.67 (362) | 0.90 | 0.91 | 0.90 |
Item B5 | 299.58 (362) | 0.99 | 0.83 | 0.81 |
Item B6 | 348.39 (362) | 0.69 | 0.96 | 0.96 |
SABAS | ||||
Item S1 | 412.55 (369) | 0.06 | 1.12 | 1.13 |
Item S2 | 308.79 (369) | 0.99 | 0.84 | 0.83 |
Item S3 | 269.52 (369) | 1.00 | 0.73 | 0.73 |
Item S4 | 246.98 (369) | 1.00 | 0.67 | 0.68 |
Item S5 | 331.30 (369) | 0.92 | 0.90 | 0.88 |
Item S6 | 329.14 (369) | 0.93 | 0.89 | 0.90 |
IGDS9-SF | ||||
Item I1 | 260.66 (272) | 0.68 | 0.96 | 0.91 |
Item I2 | 160.46 (272) | 1.00 | 0.59 | 0.68 |
Item I3 | 201.62 (272) | 1.00 | 0.74 | 0.80 |
Item I4 | 181.27 (272) | 1.00 | 0.66 | 0.70 |
Item I5 | 233.58 (272) | 0.96 | 0.86 | 0.90 |
Item I6 | 143.75 (272) | 1.00 | 0.53 | 0.61 |
Item I7 | 209.63 (272) | 1.00 | 0.77 | 0.84 |
Item I8 | 511.56 (272) | <0.001 | 1.87 | 1.86 |
Item I9 | 195.90 (272) | 1.00 | 0.72 | 0.88 |
NMPQ | ||||
NMPQ_F1 | ||||
Item N1 | 300.34 (358) | 0.99 | 0.84 | 0.84 |
Item N2 | 226.97 (358) | 1.00 | 0.63 | 0.62 |
Item N3 | 319.70 (358) | 0.93 | 0.89 | 0.86 |
Item N4 | 264.56 (358) | 1.00 | 0.74 | 0.76 |
NMPQ_F2 | ||||
Item N5 | 309.39 (355) | 0.96 | 0.87 | 0.92 |
Item N6 | 273.10 (355) | 1.00 | 0.77 | 0.81 |
Item N7 | 286.26 (355) | 1.00 | 0.80 | 0.81 |
Item N8 | 262.99 (355) | 1.00 | 0.74 | 0.75 |
Item N9 | 320.29 (355) | 0.91 | 0.90 | 0.91 |
NMPQ_F3 | ||||
Item N10 | 372.04 (347) | 0.17 | 1.07 | 1.05 |
Item N11 | 267.68 (347) | 1.00 | 0.77 | 0.81 |
Item N12 | 275.19 (347) | 1.00 | 0.79 | 0.79 |
Item N13 | 209.69 (347) | 1.00 | 0.60 | 0.63 |
Item N14 | 296.00 (347) | 0.98 | 0.85 | 0.83 |
Item N15 | 360.07 (347) | 0.30 | 1.04 | 1.00 |
NMPQ_F4 | ||||
Item N16 | 294.66 (340) | 0.96 | 0.86 | 0.87 |
Item N17 | 222.45 (340) | 1.00 | 0.65 | 0.65 |
Item N18 | 201.80 (340) | 1.00 | 0.59 | 0.62 |
Item N19 | 384.68 (340) | 0.048 | 1.13 | 1.05 |
Item N20 | 329.46 (340) | 0.65 | 0.97 | 0.95 |
r | |||
---|---|---|---|
Depression | Anxiety | Stress | |
BSMAS | 0.428 | 0.393 | 0.421 |
SABAS | 0.368 | 0.359 | 0.373 |
IGDS9-SF | 0.392 | 0.331 | 0.357 |
NMPQ | 0.304 | 0.295 | 0.339 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tung, S.E.H.; Gan, W.Y.; Chen, J.-S.; Ruckwongpatr, K.; Pramukti, I.; Nadhiroh, S.R.; Chang, Y.-L.; Lin, C.-C.; Pakpour, A.H.; Lin, C.-Y.; et al. Internet-Related Instruments (Bergen Social Media Addiction Scale, Smartphone Application-Based Addiction Scale, Internet Gaming Disorder Scale-Short Form, and Nomophobia Questionnaire) and Their Associations with Distress among Malaysian University Students. Healthcare 2022, 10, 1448. https://doi.org/10.3390/healthcare10081448
Tung SEH, Gan WY, Chen J-S, Ruckwongpatr K, Pramukti I, Nadhiroh SR, Chang Y-L, Lin C-C, Pakpour AH, Lin C-Y, et al. Internet-Related Instruments (Bergen Social Media Addiction Scale, Smartphone Application-Based Addiction Scale, Internet Gaming Disorder Scale-Short Form, and Nomophobia Questionnaire) and Their Associations with Distress among Malaysian University Students. Healthcare. 2022; 10(8):1448. https://doi.org/10.3390/healthcare10081448
Chicago/Turabian StyleTung, Serene En Hui, Wan Ying Gan, Jung-Sheng Chen, Kamolthip Ruckwongpatr, Iqbal Pramukti, Siti R. Nadhiroh, Yen-Ling Chang, Chien-Chin Lin, Amir H. Pakpour, Chung-Ying Lin, and et al. 2022. "Internet-Related Instruments (Bergen Social Media Addiction Scale, Smartphone Application-Based Addiction Scale, Internet Gaming Disorder Scale-Short Form, and Nomophobia Questionnaire) and Their Associations with Distress among Malaysian University Students" Healthcare 10, no. 8: 1448. https://doi.org/10.3390/healthcare10081448