A Study on the Relationship between Depression Change Types and Suicide Ideation before and after COVID-19
Abstract
:1. Introduction
2. Materials & Methods
2.1. Data
2.2. Variables
2.2.1. Independent Variable: Depression (2017–2021)
2.2.2. Dependent Variable: Suicidal Ideation (2021)
2.2.3. Control Variable: Sociodemographic Characteristics (2017)
2.3. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Determining Types of Depression Change
3.3. The Relationship between Depression Change Types and Suicidal Ideations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bao, Y.; Sun, Y.; Meng, S.; Shi, J.; Lu, L. 2019-nCoV epidemic: Address mental health care to empower society. Lancet 2020, 395, e37–e38. [Google Scholar] [CrossRef]
- Lee, E.H.; Kim, W. A Study on the Effect of the Infectious Disease Disaster on the Mental Health due to COVID-19; Gyeonggi Research Institute: Suwon, Gyeonggi-do, Korea, 2021; Available online: https://library.gri.re.kr/download.do?gs_gubun=pms&filename=0111111100/20210121/R2021-13.pdf (accessed on 18 August 2022).
- Vieta, E.; Pérez, V.; Arango, C. Psychiatry in the aftermath of COVID-19. Rev. Psiquiatr. Salud Ment. 2020, 13, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Sher, L. The impact of the COVID-19 pandemic on suicide rates. QJM Int. J. Med. 2020, 113, 707–712. [Google Scholar] [CrossRef]
- Ministry of Health and Welfare. The Second Plan for Suicide Prevention (2009–2013); Ministry of Health and Welfare: Seoul, Korea, 2008.
- Lee, S.C. Chungcheongnam-Do Suicide Status Analysis and Prevention Policy Study. 2013. Available online: https://www.cni.re.kr/main/search/down.do?gcd=AC0000010468&seq=1 (accessed on 18 August 2022).
- Kessler, R.C.; Berglund, P.; Borges, G.; Nock, M.; Wang, P.S. Trends in Suicide Ideation, Plans, Gestures, and Attempts in the United States, 1990-1992 to 2001-2003. JAMA 2005, 293, 2487–2495. [Google Scholar] [CrossRef]
- Beck, A.T. Cognitive models of depression. J. Cogn. Psychother. 1987, 5–37. [Google Scholar]
- APA. Diagnostic and Statistical Manual of Mental Disorders: Diagnostic Criteria from DSM-IV; American Psychiatric Association: Washington, DC, USA, 1994. [Google Scholar]
- Hawton, K.; I Comabella, C.C.; Haw, C.; Saunders, K. Risk factors for suicide in individuals with depression: A systematic review. J. Affect. Disord. 2013, 147, 17–28. [Google Scholar] [CrossRef]
- Henriksson, M.M.; Aro, H.M.; Marttunen, M.J.; Heikkinen, M.E.; Isometsa, E.; Kuoppasalmi, K.I.; Lonnqvist, J. Mental disorders and comorbidity in suicide. Am. J. Psychiatry 1993, 150, 935–940. [Google Scholar]
- Killgore, W.D.; Cloonan, S.A.; Taylor, E.C.; Dailey, N.S. Loneliness: A signature mental health concern in the era of COVID-19. Psychiatry Res. 2020, 290, 113117. [Google Scholar] [CrossRef]
- Killgore, W.D.; Cloonan, S.A.; Taylor, E.C.; Miller, M.A.; Dailey, N.S. Three months of loneliness during the COVID-19 lockdown. Psychiatry Res. 2020, 293, 113392. [Google Scholar] [CrossRef]
- Huang, J.-F.; Wong, R.-H.; Chen, C.-C.; Mao, I.-F.; Huang, C.-C.; Chang, W.-H.; Wang, L. Trajectory of depression symptoms and related factors in later life—a population based study. J. Affect. Disord. 2011, 133, 499–508. [Google Scholar] [CrossRef]
- Melchior, M.; Chastang, J.-F.; Head, J.; Goldberg, M.; Zins, M.; Nabi, H.; Younès, N. Socioeconomic position predicts long-term depression trajectory: A 13-year follow-up of the GAZEL cohort study. Mol. Psychiatry 2013, 18, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Huang, S.; Simon, G.E.; Liu, S. Analysis of depression trajectory patterns using collaborative learning. Math. Biosci. 2016, 282, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-M.; Mullan, J.; Griffiths, D.; Kreis, I.A.; Lan, T.-Y.; Chiu, H.-C. Trajectories of depression and their relationship with health status and social service use. Arch. Gerontol. Geriatr. 2011, 53, e118–e124. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Xu, X.; Quiñones, A.R.; Bennett, J.M.; Ye, W. Multiple trajectories of depressive symptoms in middle and late life: Racial/ethnic variations. Psychol. Aging 2011, 26, 761. [Google Scholar] [CrossRef] [PubMed]
- Gunnell, D.; Harbord, R.; Singleton, N.; Jenkins, R.; Lewis, G. Factors influencing the development and amelioration of suicidal thoughts in the general population: Cohort study. Br. J. Psychiatry 2004, 185, 385–393. [Google Scholar] [CrossRef]
- Uddin, R.; Burton, N.W.; Maple, M.; Khan, S.R.; Khan, A. Suicidal ideation, suicide planning, and suicide attempts among adolescents in 59 low-income and middle-income countries: A population-based study. Lancet Child Adolesc. Health 2019, 3, 223–233. [Google Scholar] [CrossRef]
- Kohout, F.J.; Berkman, L.F.; Evans, D.A.; Cornoni-Huntley, J. Two shorter forms of the CES-D depression symptoms index. J. Aging Health 1993, 5, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Radloff, L.S. The CES-D scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- King, G.; Zeng, L. Logistic regression in rare events data. Polit. Anal. 2001, 9, 137–163. [Google Scholar] [CrossRef]
- Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Epanchin-Niell, R.; Lu, J.; Thompson, A.; Tobin, P.C.; Gray, D.R.; Liebhold, A.M. Socio-environmental drivers of establishment of Lymantria dispar, a nonnative forest pest, in the United States. Biol. Invasions 2022, 24, 157–173. [Google Scholar] [CrossRef]
- McPherson, K.E.; McAloney-Kocaman, K.; McGlinchey, E.; Faeth, P.; Armour, C. Longitudinal analysis of the UK COVID-19 Psychological Wellbeing Study: Trajectories of anxiety, depression and COVID-19-related stress symptomology. Psychiatry Res. 2021, 304, 114138. [Google Scholar] [CrossRef] [PubMed]
- Saunders, R.; Buckman, J.E.; Fonagy, P.; Fancourt, D. Understanding different trajectories of mental health across the general population during the COVID-19 pandemic. Psychol. Med. 2021, 1–9. [Google Scholar] [CrossRef]
- Santomauro, D.F.; Mantilla Herrera, A.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef]
- OECD. Tackling the Mental Health Impact of the COVID-19 Crisis: An Integrated, Whole-of-Society Response. Available online: https://www.oecd.org/coronavirus/policy-responses/tackling-the-mental-health-impact-of-the-covid-19-crisis-an-integrated-whole-of-society-response-0ccafa0b/ (accessed on 18 August 2022).
- John, A.; Pirkis, J.; Gunnell, D.; Appleby, L.; Morrissey, J. Trends in suicide during the covid-19 pandemic. BMJ 2020, 371, m4352. [Google Scholar] [CrossRef]
- Kim, J.L.; Kim, J.M.; Choi, Y.; Lee, T.H.; Park, E.C. Effect of socioeconomic status on the linkage between suicidal ideation and suicide attempts. Suicide Life—Threat. Behav. 2016, 46, 588–597. [Google Scholar] [CrossRef]
- Shevlin, M.; Butter, S.; McBride, O.; Murphy, J.; Gibson-Miller, J.; Hartman, T.K.; Levita, L.; Mason, L.; Martinez, A.P.; McKay, R. Refuting the myth of a ‘tsunami’ of mental ill-health in populations affected by COVID-19: Evidence that response to the pandemic is heterogeneous, not homogeneous. Psychol. Med. 2021, 1–9. [Google Scholar] [CrossRef]
- Gambin, M.; Oleksy, T.; Sękowski, M.; Wnuk, A.; Woźniak-Prus, M.; Kmita, G.; Holas, P.; Pisula, E.; Łojek, E.; Hansen, K. Pandemic trajectories of depressive and anxiety symptoms and their predictors: Five-wave study during the COVID-19 pandemic in Poland. Psychol. Med. 2021, 1–3. [Google Scholar] [CrossRef]
Variable | Categories | N | % |
---|---|---|---|
Gender | Male | 3575 | 41.1 |
Female | 5117 | 58.9 | |
Age (M(SD)) | 52.91 (16.63) | ||
$ Equalized Annual Income (M (SD)) | 22,650.76 (17,843.05) | ||
Education level | High school or below | 6154 | 70.8 |
University or above | 2538 | 29.2 | |
Area of living | Urban | 3589 | 41.3 |
Suburban and rural | 5103 | 58.7 | |
Living alone | No | 7158 | 82.4 |
Yes | 1534 | 17.6 | |
Suicidal ideation over past year | No | 8534 | 98.2 |
Yes | 158 | 1.8 |
Variable | Min | Max | M | SD |
---|---|---|---|---|
Depression—2017 | 1.00 | 4.00 | 1.30 | 0.41 |
Depression—2018 | 1.00 | 3.91 | 1.30 | 0.41 |
Depression—2019 | 1.00 | 3.91 | 1.31 | 0.42 |
Depression—2020 | 1.00 | 3.82 | 1.33 | 0.42 |
Depression—2021 | 1.00 | 4.00 | 1.37 | 0.45 |
Model | χ2 | CFI | TLI | RMSEA |
---|---|---|---|---|
No growth model | 823.614 *** | 0.909 | 0.925 | 0.085 |
Linear model | 229.499 *** | 0.961 | 0.961 | 0.050 |
Quadratic model | 37.946 *** | 0.997 | 0.995 | 0.025 |
Class | Model Fit | Groups | ||||
---|---|---|---|---|---|---|
AIC | BIC | SSABIC | Entropy | BLRT p-Value | n (%) | |
1 | 36,575.413 | 36,674.395 | 36,629.905 | - | - | - |
2 | 33,474.931 | 33,602.194 | 33,544.993 | 0.927 | <0.001 | 7809 (89.8), 883 (10.2) |
3 | 32,302.587 | 32,415.710 | 32,364.865 | 0.909 | <0.001 | 7449 (85.7), 845 (9.7), 398 (4.6) |
4 | 31,629.011 | 31,763.344 | 31,702.965 | 0.895 | <0.001 | 7193 (82.8), 715 (8.2), 398 (4.6), 386 (4.4) |
Variables | Coef. | S.E. | OR |
---|---|---|---|
Gender (ref. male) | 0.062 | 0.179 | 1.063 |
Age | −0.008 | 0.007 | 0.992 |
Equalized Annual Income (log) | −0.597 *** | 0.144 | 0.550 |
Education | −0.539 * | 0.267 | 0.583 |
Area (ref. urban) | −0.245 | 0.164 | 0.783 |
Living alone (ref. Living with someone) | −0.260 | 0.210 | 0.771 |
Depression change type (ref. low-level ascending) | 1.511 *** | 0.181 | 4.532 |
constant | 2.116 | 1.591 | 8.296 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Son, H.-G.; Lee, S.; Park, H.; Jeong, K.-H. A Study on the Relationship between Depression Change Types and Suicide Ideation before and after COVID-19. Healthcare 2022, 10, 1610. https://doi.org/10.3390/healthcare10091610
Kim S, Son H-G, Lee S, Park H, Jeong K-H. A Study on the Relationship between Depression Change Types and Suicide Ideation before and after COVID-19. Healthcare. 2022; 10(9):1610. https://doi.org/10.3390/healthcare10091610
Chicago/Turabian StyleKim, Sunghee, Hye-Gyeong Son, Seoyoon Lee, Hayoung Park, and Kyu-Hyoung Jeong. 2022. "A Study on the Relationship between Depression Change Types and Suicide Ideation before and after COVID-19" Healthcare 10, no. 9: 1610. https://doi.org/10.3390/healthcare10091610
APA StyleKim, S., Son, H. -G., Lee, S., Park, H., & Jeong, K. -H. (2022). A Study on the Relationship between Depression Change Types and Suicide Ideation before and after COVID-19. Healthcare, 10(9), 1610. https://doi.org/10.3390/healthcare10091610