The Impact of Transoral Robotic Surgery on Erectile Dysfunction and Lower Urinary Tract Symptoms in Male Patients with Moderate-to-Severe Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Methods
2.2. Polysomnography
2.3. Transoral Robotic Surgery (TORS)
2.4. Questionnaires
2.4.1. International Index of Erectile Function (IIEF)
2.4.2. International Prostate Symptom Score (IPSS)
2.4.3. Epworth Sleepiness Scale (ESS)
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Postoperative Changes in the Parameters
3.3. Correlation between BW, IPSS, IIEF, and AHI
3.4. Postoperative Adverse Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dewan, N.A.; Nieto, F.J.; Somers, V.K. Intermittent hypoxemia and OSA: Implications for comorbidities. Chest 2015, 147, 266–274. [Google Scholar] [CrossRef]
- Chung, S.D.; Hung, S.H.; Lin, H.C.; Tsai, M.C.; Kao, L.T. Obstructive sleep apnea and urological comorbidities in males: A population-based study. Sleep Breath 2016, 20, 1203–1208. [Google Scholar] [CrossRef]
- Salonia, A.; Bettocchi, C.; Boeri, L.; Capogrosso, P.; Carvalho, J.; Cilesiz, N.C.; Cocci, A.; Corona, G.; Dimitropoulos, K.; Gul, M.; et al. European Association of Urology Guidelines on Sexual and Reproductive Health-2021 Update: Male Sexual Dysfunction. Eur. Urol. 2021, 80, 333–357. [Google Scholar] [CrossRef]
- Guilleminault, C.; Simmons, F.B.; Motta, J.; Cummiskey, J.; Rosekind, M.; Schroeder, J.S.; Dement, W.C. Obstructive Sleep Apnea Syndrome and Tracheostomy: Long-term Follow-up Experience. Arch. Intern. Med. 1981, 141, 985–988. [Google Scholar] [CrossRef]
- Tsou, Y.A.; Chou, E.C.; Shie, D.Y.; Lee, M.J.; Chang, W.D. Polysomnography and Nocturia Evaluations after Uvulopalatopharyngoplasty for Obstructive Sleep Apnea Syndrome. J. Clin. Med. 2020, 9, 3089. [Google Scholar] [CrossRef]
- McVary, K.T.; Rademaker, A.; Lloyd, G.L.; Gann, P. Autonomic nervous system overactivity in men with lower urinary tract symptoms secondary to benign prostatic hyperplasia. J. Urol. 2005, 174, 1327–1433. [Google Scholar] [CrossRef]
- McVary, K. Lower urinary tract symptoms and sexual dysfunction: Epidemiology and pathophysiology. BJU Int. 2006, 97 (Suppl. 2), 23–28, discussion 44–45. [Google Scholar] [CrossRef]
- Kalejaiye, O.; Raheem, A.A.; Moubasher, A.; Capece, M.; McNeillis, S.; Muneer, A.; Christopher, A.N.; Garaffa, G.; Ralph, D.J. Sleep disorders in patients with erectile dysfunction. BJU Int. 2017, 120, 855–860. [Google Scholar] [CrossRef]
- Irer, B.; Celikhisar, A.; Celikhisar, H.; Bozkurt, O.; Demir, O. Evaluation of Sexual Dysfunction, Lower Urinary Tract Symptoms and Quality of Life in Men with Obstructive Sleep Apnea Syndrome and the Efficacy of Continuous Positive Airway Pressure Therapy. Urology 2018, 121, 86–92. [Google Scholar] [CrossRef]
- Vrooman, O.P.J.; van Balken, M.R.; van Koeveringe, G.A.; van Kerrebroeck, P.V.A.; Driessen, L.; Schouten, L.J.; Rahnama’i, M.S. The effect of continuous positive airway pressure on nocturia in patients with obstructive sleep apnea syndrome. Neurourol. Urodyn. 2020, 39, 1124–1128. [Google Scholar] [CrossRef]
- Schulz, R.; Bischof, F.; Galetke, W.; Gall, H.; Heitmann, J.; Hetzenecker, A.; Laudenburg, M.; Magnus, T.J.; Nilius, G.; Priegnitz, C.; et al. CPAP therapy improves erectile function in patients with severe obstructive sleep apnea. Sleep Med. 2019, 53, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Park, H.K.; Paick, S.H.; Kim, H.G.; Park, D.H.; Cho, J.H.; Hong, S.C.; Choi, W.S. Nocturia Improvement with Surgical Correction of Sleep Apnea. Int. Neurourol. J. 2016, 20, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.P.; Vicini, C.; Montevecchi, F.; Piccin, O.; Chandra, S.; Yang, H.C.; Agrawal, V.; Chung, J.C.K.; Chan, Y.H.; Pang, S.B.; et al. Long-term Complications of Palate Surgery: A Multicenter Study of 217 Patients. Laryngoscope 2020, 130, 2281–2284. [Google Scholar] [CrossRef] [PubMed]
- Campos-Juanatey, F.; Fernandez-Barriales, M.; Gonzalez, M.; Portillo-Martin, J. Effects of obstructive sleep apnea and its treatment over the erectile function: A systematic review. Asian J. Androl. 2017, 19, 303. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, B.W., Jr.; Weinstein, G.S.; Snyder, W.; Hockstein, N.G. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 2006, 116, 1465–1472. [Google Scholar] [CrossRef] [PubMed]
- Vicini, C.; Dallan, I.; Canzi, P.; Frassineti, S.; La Pietra, M.G.; Montevecchi, F. Transoral robotic tongue base resection in obstructive sleep apnoea-hypopnoea syndrome: A preliminary report. ORL J. Otorhinolaryngol. Relat. Spec. 2010, 72, 22–27. [Google Scholar] [CrossRef]
- Vauterin, T.; Garas, G.; Arora, A. Transoral Robotic Surgery for Obstructive Sleep Apnoea-Hypopnoea Syndrome. ORL J. Otorhinolaryngol. Relat. Spec. 2018, 80, 134–147. [Google Scholar] [CrossRef]
- Huang, H.H.; Tsao, C.H.; Wei, J.C. Voice Assessment in Patients with Obstructive Sleep Apnea Syndrome After Transoral Robotic Surgery. Front. Surg. 2021, 8, 647792. [Google Scholar] [CrossRef]
- Liao, C.-H.; Kuo, H.-C. Use of the International Prostate Symptom Score voiding-to-storage subscore ratio in assessing lower urinary tract symptoms. Tzu Chi Med. J. 2014, 26, 61–63. [Google Scholar] [CrossRef]
- Shin, H.W.; Park, J.H.; Park, J.W.; Rhee, C.S.; Lee, C.H.; Min, Y.G.; Kim, D.Y. Effects of surgical vs. nonsurgical therapy on erectile dysfunction and quality of life in obstructive sleep apnea syndrome: A pilot study. J. Sex. Med. 2013, 10, 2053–2059. [Google Scholar] [CrossRef]
- Li, K.K. Surgical management of obstructive sleep apnea. Clin. Chest Med. 2003, 24, 365–370. [Google Scholar] [CrossRef]
- Gacci, M.; Eardley, I.; Giuliano, F.; Hatzichristou, D.; Kaplan, S.A.; Maggi, M.; McVary, K.T.; Mirone, V.; Porst, H.; Roehrborn, C.G. Critical analysis of the relationship between sexual dysfunctions and lower urinary tract symptoms due to benign prostatic hyperplasia. Eur. Urol. 2011, 60, 809–825. [Google Scholar] [CrossRef] [PubMed]
- Mirone, V.; Sessa, A.; Giuliano, F.; Berges, R.; Kirby, M.; Moncada, I. Current benign prostatic hyperplasia treatment: Impact on sexual function and management of related sexual adverse events. Int. J. Clin. Pract. 2011, 65, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.; McNicholas, W.T. Intermittent hypoxia and activation of inflammatory molecular pathways in OSAS. Arch. Physiol. Biochem. 2008, 114, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.W.; Rha, Y.C.; Han, D.H.; Chung, S.; Yoon, I.Y.; Rhee, C.S.; Lee, C.H.; Min, Y.G.; Kim, D.Y. Erectile dysfunction and disease-specific quality of life in patients with obstructive sleep apnea. Int. J. Impot. Res. 2008, 20, 549–553. [Google Scholar] [CrossRef]
- Hajduk, I.A.; Strollo, P.J., Jr.; Jasani, R.R.; Atwood, C.W., Jr.; Houck, P.R.; Sanders, M.H. Prevalence and Predictors of Nocturia in Obstructive Sleep Apnea-Hypopnea Syndrome—A Retrospective Study. Sleep 2003, 26, 61–64. [Google Scholar] [CrossRef]
- Liu, L.; Kang, R.; Zhao, S.; Zhang, T.; Zhu, W.; Li, E.; Li, F.; Wan, S.; Zhao, Z. Sexual Dysfunction in Patients with Obstructive Sleep Apnea: A Systematic Review and Meta-Analysis. J. Sex. Med. 2015, 12, 1992–2003. [Google Scholar] [CrossRef]
- Lin, H.-C.; Friedman, M. Transoral robotic OSA surgery. Auris Nasus Larynx 2021, 48, 339–346. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Lin, P.W.; Lin, H.C.; Chang, C.T.; Friedman, M.; Salapatas, A.M.; Lin, C.Y. Effects of TORS-OSA Surgery on Lower Urinary Tract Symptoms, Overactive Bladder Symptoms, and Nocturia in Male Patients with Obstructive Sleep Apnea/Hypopnea Syndrome. Nat. Sci. Sleep 2022, 14, 547–556. [Google Scholar] [CrossRef]
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef]
- Gandaglia, G.; Briganti, A.; Jackson, G.; Kloner, R.A.; Montorsi, F.; Montorsi, P.; Vlachopoulos, C. A systematic review of the association between erectile dysfunction and cardiovascular disease. Eur. Urol. 2014, 65, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Margel, D.; Tal, R.; Livne, P.M.; Pillar, G. Predictors of erectile function improvement in obstructive sleep apnea patients with long-term CPAP treatment. Int. J. Impot. Res. 2004, 17, 186–190. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, X.; Huang, J.; Zhang, S.; Chen, T.; Zhang, L.; Li, X.; Li, Q.; Dai, J. Blood Oxygen Accumulation Distribution Area Index Is Associated with Erectile Dysfunction in Patients with Sleep Apnea-Results from a Cross-sectional Study. Sex. Med. 2020, 8, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Lee, J.Y.; Cha, J.; Kim, K.; Hong, S.N.; Lee, S.H. Predictive models of objective oropharyngeal OSA surgery outcomes: Success rate and AHI reduction ratio. PLoS ONE 2017, 12, e0185201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wu, X.; Duan, W.; Wang, F.; Huang, T.; Xiang, M. Influencing Factors of Daytime Sleepiness in Patients with Obstructive Sleep Apnea Hypopnea Syndrome and Its Correlation with Pulse Oxygen Decline Rate. Evid. Based Complement. Altern. Med. 2021, 2021, 6345734. [Google Scholar] [CrossRef] [PubMed]
- DeLay, K.J.; Haney, N.; Hellstrom, W.J. Modifying Risk Factors in the Management of Erectile Dysfunction: A Review. World J. Mens. Health 2016, 34, 89–100. [Google Scholar] [CrossRef]
- Goncalves, M.A.; Guilleminault, C.; Ramos, E.; Palha, A.; Paiva, T. Erectile dysfunction, obstructive sleep apnea syndrome and nasal CPAP treatment. Sleep Med. 2005, 6, 333–339. [Google Scholar] [CrossRef]
- Lin, H.C.; Lee, C.Y.; Friedman, M.; Wang, P.C.; Salapatas, A.M.; Lin, M.C.; Chen, Y.C. Effects of Minimally Invasive Surgery for Patients with OSA on Quality of Life. Ann. Otol. Rhinol. Laryngol. 2018, 127, 118–123. [Google Scholar] [CrossRef]
- Lim, K.G.; Morgenthaler, T.I.; Katzka, D.A. Sleep and Nocturnal Gastroesophageal Reflux: An Update. Chest 2018, 154, 963–971. [Google Scholar] [CrossRef]
- Shibli, F.; Skeans, J.; Yamasaki, T.; Fass, R. Nocturnal Gastroesophageal Reflux Disease (GERD) and Sleep: An Important Relationship That Is Commonly Overlooked. J. Clin. Gastroenterol. 2020, 54, 663–674. [Google Scholar] [CrossRef]
- Shepherd, K.; Orr, W. Mechanism of Gastroesophageal Reflux in Obstructive Sleep Apnea: Airway Obstruction or Obesity? J. Clin. Sleep Med. 2016, 12, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, Z.H.; Pan, X.L.; Yuan, K. Effect of continuous positive airway pressure on gastroesophageal reflux in patients with obstructive sleep apnea: A meta-analysis. Sleep Breath 2021, 25, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
Pre-Surgery | Post-Surgery | p Value | |
---|---|---|---|
Age | 40.6 ± 8.1 (21–55) | ||
Severity of OSA | |||
Moderate (15 ≤ AHI < 30) | 11 (22.9%) | ||
Severe (AHI ≥ 30) | 37 (77.1%) | ||
Past history | |||
Hypertension | 10 (20.8%) | ||
Hepatitis B | 2 (4.1%) | ||
Hyperlipidemia | 3 (6.2%) | ||
Gout | 4 (8.3%) | ||
GERD | 26 (54.2%) | ||
CAD | 1 (2.1%) | ||
Smoking | 12 (25.0%) | ||
Prior treatment for OSA | |||
CPAP | 24 (50%) | ||
Oral appliance | 6 (12.5%) | ||
Unknown | 4 (8.3%) | ||
Refuse prior treatment | 14 (29.2%) | ||
BW | 85.16 ± 17.36 (63.0–172.0) | 82.28 ± 15.73 (63.0–154.0) | <0.001 |
BMI | 28.24 ± 5.38 (20.20–53.09) | 27.28 ± 4.90 (19.88–47.53) | <0.001 |
ESS | 8.15 ± 4.73 (0–19) | 6.19 ± 3.42 (0–15) | 0.005 |
Neck circumference | 39.65 ± 2.36 (36.0–47.2) | 38.88 ± 2.65 (33.0–45.5) | 0.001 |
Lowest SpO2 (%) | 73.88 ± 9.51 (47–92) | 80.23 ± 9.45 (51–95) | <0.001 |
AHI | 53.10 ± 25.77 (15.1–110.2) | 31.66 ± 20.34 (0.90–73.3) | <0.001 |
Pre-Surgery | Post-Surgery | p Value | |
---|---|---|---|
IPSS questions | |||
Incomplete Emptying | 0.90 ± 1.35 | 0.50 ± 0.98 | 0.021 |
Frequency | 1.00 ± 1.28 | 0.69 ± 0.68 | 0.034 |
Intermittency | 0.52 ± 1.09 | 0.21 ± 0.41 | 0.046 |
Urgency | 0.75 ± 1.17 | 0.38 ± 0.70 | 0.030 |
Weak stream | 0.54 ± 1.09 | 0.23 ± 0.42 | 0.024 |
Straining | 0.29 ± 0.71 | 0.15 ± 0.35 | 0.197 |
Nocturia | 1.06 ± 0.95 | 0.83 ± 0.63 | 0.047 |
Storage | 2.81 ± 2.49 | 1.90 ± 1.51 | 0.002 |
Voiding | 2.25 ± 3.52 | 1.08 ± 1.52 | 0.011 |
IPSS | 5.06 ± 5.42 | 2.98 ± 2.71 | 0.001 |
QoL-IPSS | 1.60 ± 1.42 | 1.08 ± 1.06 | 0.005 |
IIEF | 20.98 ± 3.32 | 22.17 ± 3.60 | 0.007 |
Younger (N = 22, Age < 40) | Older (N = 26, Age ≥ 40) | p Value | |
---|---|---|---|
Age | 33.0 ± 4.7 (21–39) | 47.0 ± 3.7 (40–55) | <0.001 |
BW | |||
Pre-Surgery | 88.68 ± 23.11 (64.0–172.0) | 82.18 ± 9.88 (63.0–101.0) | 0.200 |
Post-Surgery | 86.04 ± 20.32 (63.0–154) | 79.10 ± 9.77 (63.0–100.0) | 0.154 |
Body weight loss | 2.63 ± 5.08 (p = 0.024) | 3.08 ± 3.46 (p < 0.001) | 0.722 |
ESS | |||
Pre-Surgery | 8.50 ± 5.09 (1–19) | 7.85 ± 4.47 (0–18) | 0.638 |
Post-Surgery | 6.55 ± 3.06 (2–15) | 5.88 ± 3.73 (0–14) | 0.511 |
Reduced ESS | 1.95 ± 5.18 (p = 0.092) | 1.96 ± 4.17 (p = 0.024) | 0.996 |
Neck circumference | |||
Pre-Surgery | 39.33 ± 2.39 (36.0–47.2) | 39.91 ± 2.34 (36.0–45.5) | 0.403 |
Post-Surgery | 38.72 ± 2.80 (33.0–45.5) | 39.01 ± 2.57 (34.0–45.0) | 0.704 |
Reduced circumference | 0.61 ± 1.36 (p = 0.047) | 0.89 ± 1.54 (p = 0.007) | 0.510 |
Lowest SpO2 (%) | |||
Pre-Surgery | 71.59 ± 10.48 (47–90) | 75.81 ± 8.32 (54–92) | 0.127 |
Post-Surgery | 79.91 ± 9.74 (57–92) | 80.50 ± 9.39 (51–95) | 0.832 |
Increased Lowest SpO2 | 8.31 ± 9.27 (p < 0.001) | 4.69 ± 7.99 (p = 0.006) | 0.152 |
AHI | |||
Pre-Surgery | 56.15 ± 27.94 (15.1–109.7) | 50.51 ± 24.02 (15.1–110.2) | 0.456 |
Post-Surgery | 32.10 ± 21.75 (0.9–73.3) | 31.30 ±19.49 (4.0–66.3) | 0.894 |
Reduced AHI | 24.05 ± 30.46 (p = 0.001) | 19.21 ± 18.71 (p < 0.001) | 0.521 |
QoL-IPSS | |||
Pre-Surgery | 1.36 ± 1.39 (0–5) | 1.81 ± 1.44 (0–4) | 0.287 |
Post-Surgery | 0.95 ± 1.13 (0–4) | 1.19 ± 1.02 (0–3) | 0.448 |
Reduced QoL-IPSS | 0.40 ± 1.00 (p = 0.071) | 0.61 ± 1.38 (p = 0.033) | 0.565 |
IPSS | |||
Pre-Surgery | 4.14 ± 4.33 (0–18) | 5.85 ± 6.16 (0–24) | 0.267 |
Post-Surgery | 2.59 ± 2.75 (0–10) | 3.31 ± 2.69 (0–9) | 0.368 |
Reduced IPSS | 1.54 ± 2.48 (p = 0.008) | 2.53 ± 5.35 (p = 0.023) | 0.404 |
IIEF | |||
Pre-Surgery | 22.68 ± 2.41 (17–25) | 19.54 ± 3.33 (12–25) | 0.001 |
Post-Surgery | 23.45 ± 2.73 (15–25) | 21.08 ± 3.92 (10–25) | 0.021 |
Increased IIEF | 0.77 ± 2.36 (p = 0.141) | 1.53 ± 3.30 (p = 0.025) | 0.369 |
Successful Group (N = 22) | Unsuccessful Group (N = 26) | p Value | |
---|---|---|---|
Age | 39.3 ± 7.2 (25–48) | 41.6 ± 8.8 (21–55) | 0.322 |
BW | |||
Pre-Surgery | 87.90 ± 23.19 (64.0–172.0) | 82.84 ± 10.13 (63.0–102.0) | 0.319 |
Post-Surgery | 83.99 ± 20.32 (63.0–154.0) | 80.84 ± 10.67 (63.0–105.0) | 0.496 |
Body weight loss | 3.91 ± 3.81 (p < 0.001) | 1.99 ± 4.45 (p = 0.031) | 0.119 |
ESS | |||
Pre-Surgery | 7.95 ± 4.98 (1–19) | 8.31 ± 4.60 (0–18) | 0.800 |
Post-Surgery | 5.50 ± 3.14 (1–15) | 6.77 ± 3.60 (0–14) | 0.204 |
Reduced ESS | 2.45 ± 4.60 (p = 0.021) | 1.53 ± 4.66 (p = 0.105) | 0.499 |
Neck circumference | |||
Pre-Surgery | 39.30 ± 2.44 (36.0–47.2) | 39.93 ± 2.30 (36.0–45.5) | 0.363 |
Post-Surgery | 38.60 ± 2.86 (33.0–45.5) | 39.12 ± 2.49 (34.5–45.0) | 0.503 |
Reduced circumference | 0.70 ± 1.26 (p = 0.016) | 0.81 ± 1.63 (p = 0.017) | 0.805 |
Lowest SpO2 (%) | |||
Pre-Surgery | 77.14 ± 9.95 (57–92) | 71.12 ± 8.33 (47–84) | 0.027 |
Post-Surgery | 86.14 ± 5.11 (73–95) | 75.23 ± 9.45 (51–88) | 0.001 |
Increased Lowest SpO2 | 9.00 ± 9.16 (p < 0.001) | 4.11 ± 7.78 (p = 0.012) | 0.052 |
AHI | |||
Pre-Surgery | 53.53 ± 30.17 (15.1–109.7) | 52.74 ± 21.99 (15.1–110.2) | 0.917 |
Post-Surgery | 16.87 ±10.87 (0.9–42.1) | 44.18 ± 17.97 (20.3–73.3) | <0.001 |
Reduced AHI | 36.65 ± 24.93 (p < 0.001) | 8.55 ± 15.56 (p = 0.010) | <0.001 |
QoL-IPSS | |||
Pre-Surgery | 1.64 ± 1.59 (0–5) | 1.58 ± 1.30 (0–4) | 0.887 |
Post-Surgery | 0.82 ± 1.09 (0–4) | 1.31 ± 1.01 (0–3) | 0.115 |
Reduced QoL-IPSS | 0.81 ± 1.29 (p = 0.007) | 0.26 ± 1.11 (p = 0.230) | 0.122 |
IPSS | |||
Pre-Surgery | 4.41 ± 4.15 (0–16) | 5.62 ± 6.32 (0–24) | 0.448 |
Post-Surgery | 2.23 ± 2.11 (0–10) | 3.62 ± 3.03 (0–9) | 0.070 |
Reduced IPSS | 2.18 ± 3.43 (p = 0.007) | 2.00 ± 4.94 (p = 0.049) | 0.885 |
Baseline IPSS ≥ 8 (LUTS) | n = 4 (4/22, 18.1%) | n = 7 (7/26, 26.9%) | 0.473 * |
Pre-Surgery | 11.75 ± 3.50 (8–16) | 14.71 ± 4.88 (10–24) | 0.318 |
Post-Surgery | 4.00 ± 4.08 (1–10) | 6.14 ± 1.95 (4–9) | 0.260 |
Reduced IPSS | 7.75 ± 4.27 (p = 0.036) | 8.57 ± 4.79 (p = 0.003) | 0.783 |
IIEF | |||
Pre-Surgery | 21.82 ± 2.98 (16–25) | 20.27 ± 3.48 (12–25) | 0.108 |
Post-Surgery | 22.64 ± 3.47 (11–25) | 21.77 ± 3.73 (10–25) | 0.412 |
Increased IIEF | 0.81 ± 2.38 (p = 0.122) | 1.50 ± 3.30 (p = 0.029) | 0.424 |
Baseline IIEF ≤ 21 (ED) | n = 8 (8/22, 36.3%) | n = 17 (17/26, 65.3%) | 0.045 * |
Pre-Surgery | 18.38 ± 1.76 (16–21) | 18.24 ± 2.38 (12–21) | 0.884 |
Post-Surgery | 19.88.38 ± 4.42 (11–24) | 20.65 ± 4.03 (10–25) | 0.669 |
Increased IIEF | 1.50 ± 3.70 (p = 0.290) | 2.41 ± 3.69 (p = 0.016) | 0.571 |
ED (N = 25) | No ED (N = 23) | p Value | |
---|---|---|---|
Age | 43.0 ± 7.4 (27–55) | 37.9 ± 8.2 (21–50) | 0.027 |
BW | |||
Pre-Surgery | 84.99 ± 20.76 (63.0–172.0) | 85.34 ± 13.17 (64.0–113.0) | 0.945 |
Post-Surgery | 82.92 ± 17.76 (63.0–154) | 81.60 ± 13.56 (63.0–110.0) | 0.775 |
Body weight loss | 2.07 ± 4.16 (p = 0.020) | 3.74 ± 4.24 (p < 0.001) | 0.175 |
Neck circumference | |||
Pre-Surgery | 39.88 ± 2.61 (36.0–47.2) | 39.40 ± 2.08 (36.0–45.5) | 0.488 |
Post-Surgery | 39.00 ± 2.81 (34.0–45.5) | 38.74 ± 2.53 (33.0–43.3) | 0.739 |
Reduced circumference | 0.87 ± 1.41 (p = 0.005) | 0.65 ± 1.53 (p = 0.053) | 0.608 |
Lowest SpO2 (%) | |||
Pre-Surgery | 74.60 ± 8.47 (54–88) | 73.09 ± 10.66 (47–92) | 0.587 |
Post-Surgery | 79.96 ± 8.51 (51–91) | 80.52 ± 10.57 (57–95) | 0.840 |
Increased Lowest SpO2 | 5.36 ± 8.40 (p = 0.004) | 7.43 ± 9.08 (p = 0.001) | 0.415 |
AHI | |||
Pre-Surgery | 51.06 ± 24.97 (15.1–110.2) | 55.32 ± 26.99 (15.1–109.7) | 0.573 |
Post-Surgery | 32.17 ± 19.30 (4.8–68.8) | 31.12 ± 21.83 (0.9–73.3) | 0.860 |
Reduced AHI | 18.89 ± 22.72 (p < 0.001) | 24.20 ± 26.78 (p < 0.001) | 0.462 |
IPSS | |||
Pre-Surgery | 6.04 ± 5.89 (1–24) | 4.00 ± 4.74 (0–16) | 0.196 |
Post-Surgery | 4.16 ± 2.99 (0–10) | 1.70 ± 1.63 (0–5) | 0.001 |
Reduced IPSS | 1.88 ± 4.54 (p = 0.049) | 2.30 ± 4.05 (p = 0.012) | 0.735 |
IIEF | |||
Pre-Surgery | 18.28 ± 2.17 (12–21) | 23.91 ± 1.08 (22–25) | <0.001 |
Post-Surgery | 20.40 ± 4.08 (10–25) | 24.09 ± 1.47 (20–25) | <0.001 |
Increased IIEF | 2.12 ± 3.64 (p = 0.008) | 0.17 ± 1.23 (p = 0.505) | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.-K.; Tsao, C.-H.; Sung, W.-W.; Wang, S.-C.; Chen, W.-J.; Hsieh, T.-Y.; Yang, M.-H.; Lee, T.-H.; Chen, S.-L. The Impact of Transoral Robotic Surgery on Erectile Dysfunction and Lower Urinary Tract Symptoms in Male Patients with Moderate-to-Severe Obstructive Sleep Apnea. Healthcare 2022, 10, 1633. https://doi.org/10.3390/healthcare10091633
Peng C-K, Tsao C-H, Sung W-W, Wang S-C, Chen W-J, Hsieh T-Y, Yang M-H, Lee T-H, Chen S-L. The Impact of Transoral Robotic Surgery on Erectile Dysfunction and Lower Urinary Tract Symptoms in Male Patients with Moderate-to-Severe Obstructive Sleep Apnea. Healthcare. 2022; 10(9):1633. https://doi.org/10.3390/healthcare10091633
Chicago/Turabian StylePeng, Chih-Kai, Chien-Han Tsao, Wen-Wei Sung, Shao-Chuan Wang, Wen-Jung Chen, Tzuo-Yi Hsieh, Min-Hsin Yang, Tsung-Hsien Lee, and Sung-Lang Chen. 2022. "The Impact of Transoral Robotic Surgery on Erectile Dysfunction and Lower Urinary Tract Symptoms in Male Patients with Moderate-to-Severe Obstructive Sleep Apnea" Healthcare 10, no. 9: 1633. https://doi.org/10.3390/healthcare10091633
APA StylePeng, C.-K., Tsao, C.-H., Sung, W.-W., Wang, S.-C., Chen, W.-J., Hsieh, T.-Y., Yang, M.-H., Lee, T.-H., & Chen, S.-L. (2022). The Impact of Transoral Robotic Surgery on Erectile Dysfunction and Lower Urinary Tract Symptoms in Male Patients with Moderate-to-Severe Obstructive Sleep Apnea. Healthcare, 10(9), 1633. https://doi.org/10.3390/healthcare10091633