An Automated Algorithm for Determining Sleep Using Single-Channel Electroencephalography to Detect Delirium: A Prospective Observational Study in Intensive Care Units
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting and Sample
2.2. Data Collection
2.3. SleepScope Analysis
2.4. Nemuri SCAN Measurement
2.5. Sleep Questionnaire
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ely, E.W.; Gautam, S.; Margolin, R.; Francis, J.; May, L.; Speroff, T.; Truman, B.; Dittus, R.; Bernard, R.; Inouye, S.K. The impact of delirium in the intensive care unit on hospital length of stay. Intensive Care Med. 2001, 27, 1892–1900. [Google Scholar] [CrossRef] [PubMed]
- Ely, E.W.; Shintani, A.; Truman, B.; Speroff, T.; Gordon, S.M.; Harrell, F.E., Jr.; Inouye, S.K.; Bernard, G.R.; Dittus, R.S. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 2004, 291, 1753–1762. [Google Scholar] [CrossRef] [PubMed]
- van den Boogaard, M.; Schoonhoven, L.; Evers, A.W.; van der Hoeven, J.G.; van Achterberg, T.; Pickkers, P. Delirium in critically ill patients: Impact on long-term health-related quality of life and cognitive functioning. Crit. Care Med. 2012, 40, 112–118. [Google Scholar] [CrossRef]
- Zaal, I.J.; Devlin, J.W.; Peelen, L.M.; Slooter, A.J. A systematic review of risk factors for delirium in the ICU. Crit. Care Med. 2015, 43, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Helton, M.C.; Gordon, S.H.; Nunnery, S.L. The correlation between sleep deprivation and the intensive care unit syndrome. Heart Lung J. Crit. Care 1980, 9, 464–468. [Google Scholar]
- Weinhouse, G.L.; Schwab, R.J.; Watson, P.L.; Patil, N.; Vaccaro, B.; Pandharipande, P.; Ely, E.W. Bench-to-bedside review: Delirium in ICU patients—Importance of sleep deprivation. Crit. Care 2009, 13, 234. [Google Scholar] [CrossRef]
- Roche Campo, F.; Drouot, X.; Thille, A.W.; Galia, F.; Cabello, B.; d’Ortho, M.P.; Brochard, L. Poor sleep quality is associated with late noninvasive ventilation failure in patients with acute hypercapnic respiratory failure. Crit. Care Med. 2010, 38, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Trompeo, A.C.; Vidi, Y.; Locane, M.D.; Braghiroli, A.; Mascia, L.; Bosma, K.; Ranieri, V.M. Sleep disturbances in the critically ill patients: Role of delirium and sedative agents. Minerva Anestesiol. 2011, 77, 604–612. [Google Scholar]
- Devlin, J.W.; Skrobik, Y.; Gélinas, C.; Needham, D.M.; Slooter, A.J.C.; Pandharipande, P.P.; Watson, P.L.; Weinhouse, G.L.; Nunnally, M.E.; Rochwerg, B.; et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit. Care Med. 2018, 46, e825–e873. [Google Scholar] [CrossRef]
- Mistraletti, G.; Carloni, E.; Cigada, M.; Zambrelli, E.; Taverna, M.; Sabbatini, G.; Umbrello, M.; Elia, G.; Destrebecq, A.L.L.; Iapichino, G. Sleep and delirium in the intensive care unit. Minerva Anestesiol. 2008, 74, 329–333. [Google Scholar]
- Scott, B.K. Disruption of circadian rhythms and sleep in critical illness and its impact on the development of delirium. Curr. Pharm. Des. 2015, 21, 3443–3452. [Google Scholar] [CrossRef] [PubMed]
- Daou, M.; Telias, I.; Younes, M.; Brochard, L.; Wilcox, M.E. Abnormal sleep, circadian rhythm disruption, and delirium in the ICU: Are they related? Front. Neurol. 2020, 11, 549908. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Sun, Y.; Huang, X.; Liu, J.; Yang, J.; Zhang, K.; Kong, G.; Han, F.; Hao, D.; Wang, X. Sleep and circadian rhythm disturbances in intensive care unit (ICU)-acquired delirium: A case-control study. J. Int. Med. Res. 2021, 49, 300060521990502. [Google Scholar] [CrossRef] [PubMed]
- Koster, S.; Hensens, A.G.; van der Palen, J. The long-term cognitive and functional outcomes of postoperative delirium after cardiac surgery. Ann. Thorac. Surg. 2009, 87, 1469–1474. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Wu, W.L.; Gu, J.J.; Sun, Y.; Ye, X.F.; Qiu, W.J.; Su, C.Q.; Zhang, S.Q.; Ye, W.Q. Risk factors for postoperative delirium in patients after coronary artery bypass grafting: A prospective cohort study. J. Crit. Care 2015, 30, 606–612. [Google Scholar] [CrossRef]
- Skrobik, Y.; Duprey, M.S.; Hill, N.S.; Devlin, J.W. Low-dose nocturnal dexmedetomidine prevents ICU delirium. A randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 2018, 197, 1147–1156. [Google Scholar] [CrossRef]
- He, Z.; Cheng, H.; Wu, H.; Sun, G.; Yuan, J. Risk factors for postoperative delirium in patients undergoing microvascular decompression. PLoS ONE 2019, 14, e0215374. [Google Scholar] [CrossRef]
- Gandolfi, J.V.; Di Bernardo, A.P.A.; Chanes, D.A.V.; Martin, D.F.; Joles, V.B.; Amendola, C.P.; Sanches, L.C.; Ciorlia, G.L.; Lobo, S.M. The effects of melatonin supplementation on sleep quality and assessment of the serum melatonin in ICU patients: A randomized controlled trial. Crit. Care Med. 2020, 48, e1286–e1293. [Google Scholar] [CrossRef]
- Tonna, J.E.; Dalton, A.; Presson, A.P.; Zhang, C.; Colantuoni, E.; Lander, K.; Howard, S.; Beynon, J.; Kamdar, B.B. The effect of a quality improvement intervention on sleep and delirium in critically ill patients in a surgical ICU. Chest 2021, 160, 899–908. [Google Scholar] [CrossRef]
- Fontaine, D.K. Measurement of nocturnal sleep patterns in trauma patients. Heart Lung J. Crit. Care 1989, 18, 402–410. [Google Scholar]
- Beecroft, J.M.; Ward, M.; Younes, M.; Crombach, S.; Smith, O.; Hanly, P.J. Sleep monitoring in the intensive care unit: Comparison of nurse assessment, actigraphy and polysomnography. Intensive Care Med. 2008, 34, 2076–2083. [Google Scholar] [CrossRef] [PubMed]
- Waye, K.P.; Elmenhorst, E.M.; Croy, I.; Pedersen, E. Improvement of intensive care unit sound environment and analyses of consequences on sleep: An experimental study. Sleep Med. 2013, 14, 1334–1340. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.B.; Thornley, K.S.; Young, G.B.; Slutsky, A.S.; Stewart, T.E.; Hanly, P.J. Sleep in critically ill patients requiring mechanical ventilation. Chest 2000, 117, 809–818. [Google Scholar] [CrossRef]
- Freedman, N.S.; Gazendam, J.; Levan, L.; Pack, A.I.; Schwab, R.J. Abnormal sleep/wake cycles and the effect of environmental noise on sleep disruption in the intensive care unit. Am. J. Respir. Crit. Care Med. 2001, 163, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Friese, R.S.; Diaz-Arrastia, R.; McBride, D.; Frankel, H.; Gentilello, L.M. Quantity and quality of sleep in the surgical intensive care unit: Are our patients sleeping? J. Trauma Acute Care Surg. 2007, 63, 1210–1214. [Google Scholar] [CrossRef]
- Drouot, X.; Roche-Campo, F.; Thille, A.W.; Cabello, B.; Galia, F.; Margarit, L.; d’Ortho, M.P.; Brochard, L. A new classification for sleep analysis in critically ill patients. Sleep Med. 2012, 13, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Elliott, R.; McKinley, S.; Cistulli, P.; Fien, M. Characterisation of sleep in intensive care using 24-h polysomnography: An observational study. Crit. Care 2013, 17, R46. [Google Scholar] [CrossRef]
- Boesen, H.C.; Andersen, J.H.; Bendtsen, A.O.; Jennum, P.J. Sleep and delirium in unsedated patients in the intensive care unit. Acta Anaesthesiol. Scand. 2016, 60, 59–68. [Google Scholar] [CrossRef]
- Wilcox, M.E.; Lim, A.S.; Pinto, R.; Black, S.E.; McAndrews, M.P.; Rubenfeld, G.D. Sleep on the ward in intensive care unit survivors: A case series of polysomnography. Intern. Med. J. 2018, 48, 795–802. [Google Scholar] [CrossRef]
- Chen, Q.; Peng, Y.; Lin, Y.; Li, S.; Huang, X.; Chen, L.W. Atypical sleep and postoperative delirium in the cardiothoracic Surgical Intensive Care Unit: A pilot prospective study. Nat. Sci. Sleep 2020, 12, 1137–1144. [Google Scholar] [CrossRef]
- Yoshida, M.; Kashiwagi, K.; Kadotani, H.; Yamamoto, K.; Koike, S.; Matsuo, M.; Yamada, N.; Okawa, M.; Urade, Y. Validation of a portable single-channel EEG monitoring system. J. Oral Sleep Med. 2015, 1, 140–147. [Google Scholar] [CrossRef]
- Wang, Y.; Loparo, K.A.; Kelly, M.R.; Kaplan, R.F. Evaluation of an automated single-channel sleep staging algorithm. Nat. Sci. Sleep 2015, 7, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Lucey, B.P.; McLeland, J.S.; Toedebusch, C.D.; Boyd, J.; Morris, J.C.; Landsness, E.C.; Yamada, K.; Holtzman, D.M. Comparison of a single-channel EEG sleep study to polysomnography. J. Sleep Res. 2016, 25, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Kogure, T.; Shirakawa, S.; Shimokawa, M.; Hosokawa, Y. Automatic sleep/wake scoring from body motion in bed: Validation of a newly developed sensor placed under a mattress. J. Physiol. Anthropol. 2011, 30, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Nagatomo, K.; Masuyama, T.; Iizuka, Y.; Makino, J.; Shiotsuka, J.; Sanui, M. Validity of an under-mattress sensor for objective sleep measurement in critically ill patients: A prospective observational study. J. Intensive Care 2020, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Anthony, J.C.; LeResche, L.; Niaz, U.; von Korff, M.R.; Folstein, M.F. Limits of the “Mini-Mental State” as a screening test for dementia and delirium among hospital patients. Psychol. Med. 1982, 12, 397–408. [Google Scholar] [CrossRef]
- Bergeron, N.; Dubois, M.J.; Dumont, M.; Dial, S.; Skrobik, Y. Intensive Care Delirium Screening Checklist: Evaluation of a new screening tool. Intensive Care Med. 2001, 27, 859–864. [Google Scholar] [CrossRef]
- Nishimura, K.; Yokoyama, K.; Yamauchi, N.; Koizumi, M.; Harasawa, N.; Yasuda, T.; Mimura, C.; Igita, H.; Suzuki, E.; Uchiide, Y.; et al. Sensitivity and specificity of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) and the Intensive Care Delirium Screening Checklist (ICDSC) for detecting post-cardiac surgery delirium: A single-center study in Japan. Heart Lung 2016, 45, 15–20. [Google Scholar] [CrossRef]
- Trzepacz, P.T.; Mittal, D.; Torres, R.; Kanary, K.; Norton, J.; Jimerson, N. Validation of the Delirium Rating Scale-revised-98: Comparison with the delirium rating scale and the cognitive test for delirium. J. Neuropsychiatry Clin. Neurosci. 2001, 13, 229–242. [Google Scholar] [CrossRef]
- Kato, M.; Kishi, Y.; Okuyama, T.; Trzepacz, P.T.; Hosaka, T. Japanese version of the Delirium Rating Scale, Revised-98 (DRS-R98-J): Reliability and validity. Psychosomatics 2010, 51, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Bastien, C.H.; Vallières, A.; Morin, C.M. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med. 2001, 2, 297–307. [Google Scholar] [CrossRef]
- Munezawa, T.; Morin, C.M.; Inoue, Y.; Nedate, K. Development of the Japanese version of the Insomnia Severity Index (ISI-J). Jpn. J. Psychiatr. Treat. 2009, 24, 219–225. [Google Scholar]
- Morin, C.M.; Belleville, G.; Bélanger, L.; Ivers, H. The Insomnia Severity Index: Psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep 2011, 34, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Quan, S.F.; Howard, B.V.; Iber, C.; Kiley, J.P.; Nieto, F.J.; O’Connor, G.T.; Rapoport, D.M.; Redline, S.; Robbins, J.; Samet, J.M.; et al. The Sleep Heart Health Study: Design, rationale, and methods. Sleep 1997, 20, 1077–1085. [Google Scholar]
- Kaplan, K.A.; Hirshman, J.; Hernandez, B.; Stefanick, M.L.; Hoffman, A.R.; Redline, S.; Ancoli-Israel, S.; Stone, K.; Friedman, L.; Zeitzer, J.M.; et al. When a gold standard isn’t so golden: Lack of prediction of subjective sleep quality from sleep polysomnography. Biol. Psychol. 2017, 123, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, K.A.; Hardas, P.P.; Redline, S.; Zeitzer, J.M.; Sleep Heart Health Study Research Group. Correlates of sleep quality in midlife and beyond: A machine learning analysis. Sleep Med. 2017, 34, 162–167. [Google Scholar] [CrossRef]
- Vacas, S.; McInrue, E.; Gropper, M.A.; Maze, M.; Zak, R.; Lim, E.; Leung, J.M. The feasibility and utility of continuous sleep monitoring in critically ill patients using a portable electroencephalography monitor. Anesth. Analg. 2016, 123, 206–212. [Google Scholar] [CrossRef]
- Collop, N.A. Scoring variability between polysomnography technologists in different sleep laboratories. Sleep Med. 2002, 3, 43–47. [Google Scholar] [CrossRef]
- Magalang, U.J.; Chen, N.H.; Cistulli, P.A.; Fedson, A.C.; Gíslason, T.; Hillman, D.; Penzel, T.; Tamisier, R.; Tufik, S.; Phillips, G.; et al. Agreement in the scoring of respiratory events and sleep among international sleep centers. Sleep 2013, 36, 591–596. [Google Scholar] [CrossRef]
- Sadeh, A.; Hauri, P.J.; Kripke, D.F.; Lavie, P. The role of actigraphy in the evaluation of sleep disorders. Sleep 1995, 18, 288–302. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, S.A.; Dwyer, P.C.; Machan, J.T.; Carskadon, M.A. Quantitative analysis of rest-activity patterns in elderly postoperative patients with delirium: Support for a theory of pathologic wakefulness. J. Clin. Sleep Med. 2008, 4, 137–142. [Google Scholar] [CrossRef]
- Osse, R.J.; Tulen, J.H.; Hengeveld, M.W.; Bogers, A.J. Screening methods for delirium: Early diagnosis by means of objective quantification of motor activity patterns using wrist-actigraphy. Interact. Cardiovasc. Thorac. Surg. 2009, 8, 344–348; discussion 348. [Google Scholar] [CrossRef]
- Ono, H.; Taguchi, T.; Kido, Y.; Fujino, Y.; Doki, Y. The usefulness of bright light therapy for patients after oesophagectomy. Intensive Crit. Care Nurs. 2011, 27, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Maas, M.B.; Lizza, B.D.; Kim, M.; Abbott, S.M.; Gendy, M.; Reid, K.J.; Zee, P.C. Stress-induced behavioral quiescence and abnormal rest-activity rhythms during critical illness. Crit. Care Med. 2020, 48, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Freedman, N.S.; Kotzer, N.; Schwab, R.J. Patient perception of sleep quality and etiology of sleep disruption in the intensive care unit. Am. J. Respir. Crit. Care Med. 1999, 159, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Van der Kooi, A.W.; Tulen, J.H.; van Eijk, M.M.; de Weerd, A.W.; van Uitert, M.J.; van Munster, B.C.; Slooter, A.J. Sleep monitoring by actigraphy in short-stay ICU patients. Crit. Care Nurs. Q. 2013, 36, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Ode, K.L.; Shi, S.; Katori, M.; Mitsui, K.; Takanashi, S.; Oguchi, R.; Aoki, D.; Ueda, H.R. A jerk-based algorithm ACCEL for the accurate classification of sleep-wake states from arm acceleration. iScience 2022, 25, 103727. [Google Scholar] [CrossRef]
- Roberts, D.M.; Schade, M.M.; Mathew, G.M.; Gartenberg, D.; Buxton, O.M. Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography. Sleep 2020, 43, zsaa045. [Google Scholar] [CrossRef]
- Perez-Pozuelo, I.; Posa, M.; Spathis, D.; Westgate, K.; Wareham, N.; Mascolo, C.; Brage, S.; Palotti, J. Detecting sleep outside the clinic using wearable heart rate devices. Sci. Rep. 2022, 12, 7956. [Google Scholar] [CrossRef]
- Richards, K.C.; O’Sullivan, P.S.; Phillips, R.L. Measurement of sleep in critically ill patients. J. Nurs. Meas. 2000, 8, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Richards, K.C.; Wang, Y.Y.; Jun, J.; Ye, L. A systematic review of sleep measurement in critically ill patients. Front. Neurol. 2020, 11, 542529. [Google Scholar] [CrossRef] [PubMed]
- Ritmala-Castren, M.; Axelin, A.; Kiljunen, K.; Sainio, C.; Leino-Kilpi, H. Sleep in the intensive care unit—Nurses’ documentation and patients’ perspectives. Nurs. Crit. Care 2017, 22, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Locihová, H.; Axmann, K.; Žiaková, K.; Šerková, D.; Černochová, S. Sleep quality assessment in intensive care: Actigraphy vs. Richards-Campbell sleep questionnaire. Sleep Sci. 2020, 13, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Potharajaroen, S.; Tangwongchai, S.; Tayjasanant, T.; Thawitsri, T.; Anderson, G.; Maes, M. Bright light and oxygen therapies decrease delirium risk in critically ill surgical patients by targeting sleep and acid-base disturbances. Psychiatry Res. 2018, 261, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Webb, W.B.; Agnew, H.W., Jr. The effects on subsequent sleep of an acute restriction of sleep length. Psychophysiology 1975, 12, 367–370. [Google Scholar] [CrossRef]
- Arnal, P.J.; Sauvet, F.; Leger, D.; van Beers, P.; Bayon, V.; Bougard, C.; Rabat, A.; Millet, G.Y.; Chennaoui, M. Benefits of sleep extension on sustained attention and sleep pressure before and during total sleep deprivation and recovery. Sleep 2015, 38, 1935–1943. [Google Scholar] [CrossRef]
- Khaing, K.; Nair, B.R. Melatonin for delirium prevention in hospitalized patients: A systematic review and meta-analysis. J. Psychiatr. Res. 2021, 133, 181–190. [Google Scholar] [CrossRef]
- Xu, S.; Cui, Y.; Shen, J.; Wang, P. Suvorexant for the prevention of delirium: A meta-analysis. Medicine 2020, 99, e21043. [Google Scholar] [CrossRef]
- Wu, Y.C.; Tseng, P.T.; Tu, Y.K.; Hsu, C.Y.; Liang, C.S.; Yeh, T.C.; Chen, T.Y.; Chu, C.S.; Matsuoka, Y.J.; Stubbs, B.; et al. Association of delirium response and safety of pharmacological interventions for the management and prevention of delirium: A network meta-analysis. JAMA Psychiatry 2019, 76, 526–535. [Google Scholar] [CrossRef]
- Shinozaki, G.; Chan, A.C.; Sparr, N.A.; Zarei, K.; Gaul, L.N.; Heinzman, J.T.; Robles, J.; Yuki, K.; Chronis, T.J.; Ando, T.; et al. Delirium detection by a novel bispectral electroencephalography device in general hospital. Psychiatry Clin. Neurosci. 2018, 72, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Numan, T.; van den Boogaard, M.; Kamper, A.M.; Rood, P.J.T.; Peelen, L.M.; Slooter, A.J.C.; Dutch Delirium Detection Study Group. Delirium detection using relative delta power based on 1-min single-channel EEG: A multicentre study. Br. J. Anaesth. 2019, 122, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All Patients (n = 18) | Delirium (n = 3) | Non-Delirium (n = 15) | |
---|---|---|---|
Age, median [range], year | 68 [32–81] | 67 [57–76] | 68 [32–81] |
Male, n (%) | 11 (61.1%) | 3 (100%) | 8 (53.3%) |
BMI, median [range], kg/m2 | 21.4 [17–26.7] | 19 [18.7–21.3] | 21.5 [17–26.7] |
MMSE, median [range], point | 29 [24–30] | 28 [24–30] | 30 [25–30] |
ISI, median [range], point | 7.5 [1–17] | 6 [5–7] | 9 [1–17] |
Surgery | |||
Coronary artery bypass grafting, n (%) | 7 (38.9%) | 1 (33.3%) | 6 (40.0%) |
Valvular surgery, n (%) | 11 (61.1%) | 2 (66.7%) | 9 (60.0%) |
Anesthesia time, median [range], h: min | 7:05 [4:15–9:34] | 6:59 [4:22–8:42] | 7:11 [4:15–9:34] |
Operation time, median [range], h: min | 5:57 [3:11–8:13] | 5:46 [5:41–7:02] | 6:05 [3:11–8:13] |
APACHE II, median [range], min | 18 [6–26] | 25 [14–26] | 18 [6–22] |
Artificial respiration period, median [range], day | 1 [0–2] | 1 [1–1] | 1 [0–2] |
Length of ICU stay, median [range], day | 4 [3–14] | 4 [4–14] | 4 [3–10] |
Length of hospitalization, median [range], day | 29.5 [17–71] | 34 [22–43] | 28 [17–71] |
Daytime | Nighttime | |||
---|---|---|---|---|
95% CI | 95% CI | |||
Agreement | 0.563 | 0.559–0.568 | 0.713 | 0.705–0.720 |
Sensitivity | 0.929 | 0.921–0.936 | 0.944 | 0.937–0.949 |
Specificity | 0.403 | 0.400–0.406 | 0.388 | 0.379–0.396 |
PPV | 0.405 | 0.402–0.408 | 0.685 | 0.680–0.689 |
NPV | 0.928 | 0.921–0.936 | 0.830 | 0.811–0.847 |
PLR | 1.556 | 1.535–1.577 | 1.541 | 1.509–1.572 |
NLR | 0.176 | 0.157–0.197 | 0.145 | 0.128–0.165 |
Delirium (n = 3) | Non-Delirium(n = 14) 1 | |||
---|---|---|---|---|
Patient 1 | Patient 2 | Patient 3 | ||
SS at night | ||||
TST-SS at night, min (%TIB) | 10.5 (2.2) | 19.5 (4.1) | 420 (87.5) | 310.3 [59–397.5] |
N1 + N2 at night, min (%TST-SS) | 10.5 (100) | 19.5 (100) | 420 (100) | 310.3 [59–379.5] |
N3 at night, min (%TST-SS) | 0 (0) | 0 (0) | 0 (0) | 0 [0–7.5] |
REM at night, min (%TST-SS) | 0 (0) | 0 (0) | 0 (0) | 5.3 [0–54] |
NSCAN at night | ||||
TST-N at night, min | — | 31 | 436 | 412 [294–472] |
Subjective sleep assessments at night | ||||
Quality of sleep: light/deep | 1 | 1 | 1 | 2 [1–5] |
Quality of sleep: restless/restful | 1 | 1 | 1 | 2 [1–4] |
Sleep duration, min | 0 | Not sure | 210 | 180 [60–390] |
Subjective Sleep Assessments | |||
---|---|---|---|
Quality of Sleep: Light/Deep | Quality of Sleep: Restless/Restful | Sleep Duration | |
SS at night | |||
TST-SS | 0.519 * | 0.535 * | 0.638 * |
N1 + N2 | 0.540 * | 0.533 * | 0.638 * |
SWS | −0.218 | 0.265 | 0.050 |
REM | 0.559 * | 0.400 | 0.355 |
NSCAN at night | |||
TST-N | 0.286 | 0.026 | 0.585 |
Delirium (n = 3) | Non-Delirium (n = 14) 1 | |||
---|---|---|---|---|
Patient 1 | Patient 2 | Patient 3 | ||
Delirium scores | ||||
ICDSC score (day at the test, AM) | 5 2 | 7 2 | 6 2 | 0 [0–2] |
ICDSC score (day at the test, PM) | 5 2 | 8 2 | 3 | 0 [0–2] |
ICDSC score (next day, AM) | 2 | 7 2 | NA | 1 [0–1] |
DRS-R-98 score (next day, AM) | NA | NA | 6 | 0 [0–0] |
SS variables | ||||
Total measurement time, min | 1409 | 1440 | 1440 | 1440 [931–1440] |
Total error time, min | 31 | 0 | 0 | 0 [0–509] |
TST-SS, min | 48 | 125 | 1050 | 548 [136.5–872.5] |
Daytime sleep duration, min | 37.5 | 105.5 | 630 | 225 [51.5–475] |
Ratio of daytime sleep, % | 80.7 | 84.4 | 60.0 | 45.5 [0–70.8] |
NSCAN variables | ||||
Total measurement time, min | — | 1440 | 1440 | 1429 [1249–1440] |
Total error time, min | — | 0 | 0 | 11 [0–191] |
TST-N, min | — | 462 | 1257 | 1036 [614–1249] |
Daytime sleep duration, min | — | 431 | 821 | 592.3 [320–805] |
Ratio of daytime sleep, % | — | 93.3 | 65.3 | 58.7 [51.6–72.8] |
Medications | ||||
Dexmedetomidine | Y | Y | Y | 6 (40%) |
Opioids | N | Y | N | 5 (33.3%) |
Catecholamine | Y | Y | Y | 12 (80%) |
Antipsychotics | Y | N | N | 0 (0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsui, K.; Sato, N.; Idei, M.; Arakida, M.; Seino, Y.; Ishikawa, J.-y.; Nakagawa, M.; Akaho, R.; Nishimura, K.; Nomura, T. An Automated Algorithm for Determining Sleep Using Single-Channel Electroencephalography to Detect Delirium: A Prospective Observational Study in Intensive Care Units. Healthcare 2022, 10, 1776. https://doi.org/10.3390/healthcare10091776
Matsui K, Sato N, Idei M, Arakida M, Seino Y, Ishikawa J-y, Nakagawa M, Akaho R, Nishimura K, Nomura T. An Automated Algorithm for Determining Sleep Using Single-Channel Electroencephalography to Detect Delirium: A Prospective Observational Study in Intensive Care Units. Healthcare. 2022; 10(9):1776. https://doi.org/10.3390/healthcare10091776
Chicago/Turabian StyleMatsui, Kentaro, Nobuo Sato, Masafumi Idei, Masako Arakida, Yusuke Seino, Jun-ya Ishikawa, Masashi Nakagawa, Rie Akaho, Katsuji Nishimura, and Takeshi Nomura. 2022. "An Automated Algorithm for Determining Sleep Using Single-Channel Electroencephalography to Detect Delirium: A Prospective Observational Study in Intensive Care Units" Healthcare 10, no. 9: 1776. https://doi.org/10.3390/healthcare10091776
APA StyleMatsui, K., Sato, N., Idei, M., Arakida, M., Seino, Y., Ishikawa, J.-y., Nakagawa, M., Akaho, R., Nishimura, K., & Nomura, T. (2022). An Automated Algorithm for Determining Sleep Using Single-Channel Electroencephalography to Detect Delirium: A Prospective Observational Study in Intensive Care Units. Healthcare, 10(9), 1776. https://doi.org/10.3390/healthcare10091776