Ontological Model in the Identification of Emotional Aspects in Alzheimer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Taxonomy
2.2. Alzheimer’S Hierarchical Taxonomy
2.3. Semantic
2.4. Protegé
2.5. Ontological Structure
2.6. Apache Netbeans-Java
2.7. Evaluation
3. Results
3.1. Pellet Reasoner
3.2. The OWLThing: From Which the Whole Scheme Descends
3.2.1. The Patient Class
- Habit: are the habits of the patient.
- Livelihoods: are the means of your daily subsistence.
- Town: the location of your home.
- Culture: ethnicity or race of the patient.
3.2.2. The Scene Class
- corridor.
- courtyard.
- dining room.
- bathroom.
- rooms.
- physical therapy room.
- electrotherapy room.
- street, bedroom.
- crafts room.
- garden.
- recreation room.
3.3. The Pattern Class
- walking: patient walking action.
- sitting: patient sitting action.
- standing: action of the patient standing.
3.4. The State Class
- Bored.
- disorientated.
- depressed.
- wandered.
- highly strung.
- bored with sitting and standing.
- disoriented with sitting and standing.
- depressed with sitting.
- wandered with walking and must be repeated at least 4 times.
- nervous with sitting and standing.
4. Discussion
5. Conclusions
- 1.
- The study develops an ontology-based model for detecting the mood of patients with Alzheimer’s disease, promoting standardized, consistent, comprehensive, and highly accurate means for mood representation of patients with the previously exposed disease [47].The development of ontology in the field of health sciences and specifically in psychiatry, provides artificial knowledge-based diagnosis to reduce the time and specify the diagnosis of the mood of patients with Alzheimer’s disease, where the stages of taxonomy and semantics are the pillars for the construction of patterns in the identification of movements and their subsequent analysis to evaluate and diagnose the mental state of the elderly.
- 2.
- The interoperability of semantics in the development of the mapping of the patient’s mental information takes the artificial knowledge and is represented by means of a computational format by machines using the ontology. The approach of estimating the computational pose, as detailed in this research, can represent and become an essential tool in translational computational processes, which may lead to various applications in the future to support the decision making of psychiatrists treating people with AD.
- 3.
- The ontological architecture of the model for recognising the mood of Alzheimer’s patients begins with the reality of the world in which older people with this disease live. The taxonomy emerges from the context of the words describing the coexisting habitats of the patients, which leads to the establishment of semantics, the stage at which classes and subclasses are formed.The axiom adaptations constitute the motor organ of ontology for the study of Alzheimer’s patients’ mood, such that the established logical-mathematical links lead to the adaptation of algorithms for the detection of movements. of patients in the development of their everyday activities.
- 4.
- Accordingly, Alzheimer’s patients represent the original class and subclasses (Disoriented, Anxious, Bored, Wandering, Sad) in this context. According to the study, the class patterns (Walking, Standing, and Sitting) are associated with the subclass State, which supports the ontological modelling.
- 5.
- At the level of software, computational ontology has identified the relationship between pattern class and mood under an object attribute that at least generalises whether or not the patient is moving.
- 6.
- The results for diagnosis related to the mood of patients with Alzheimer’s disease are obtained with a high degree of efficiency through the application of technologies using the Protege, Pellet tools, and the PCA analysis, allowing the processes recorded from the environment of social development vision developed by machine learning, which accurately determines the actions of older adults.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garay-Vitoria, N.; Cearreta, I.; Larraza-Mendiluze, E. Application of an ontology-based platform for developing affective interaction systems. IEEE Access 2019, 7, 40503–40515. [Google Scholar] [CrossRef]
- Du, Y.; Yang, L. A sentiment measurement model for online reviews of complex products. In Proceedings of the 2019 International Conference on Communications, Information System and Computer Engineering (CISCE), Haikou, China, 5–7 July 2019; pp. 199–202. [Google Scholar]
- Zawadzka, T.; Waloszek, W.; Karpus, A.; Zapałowska, S.; Wróbel, M.R. Ontological Model for Contextual Data Defining Time Series for Emotion Recognition and Analysis. IEEE Access 2021, 9, 166674–166694. [Google Scholar] [CrossRef]
- Lin, R.; Amith, M.T.; Liang, C.; Tao, C. Designing an ontology for emotion-driven visual representations. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, USA, 13–16 November 2017; pp. 1280–1283. [Google Scholar]
- Adel, E.; El-Sappagh, S.; Barakat, S.; Hu, J.W.; Elmogy, M. An extended semantic interoperability model for distributed electronic health record based on fuzzy ontology semantics. Electronics 2021, 10, 1733. [Google Scholar] [CrossRef]
- El Bolock, A.; Nagy, R.; Herbert, C.; Abdennadher, S. Visualizing Complex Ontologies Through Sub-Ontology Extraction. In Proceedings of the 2020 24th International Conference Information Visualisation (IV), Melbourne, Australia, 7–11 September 2020; pp. 509–514. [Google Scholar]
- Lozano Tello, A. Ontologías en la Web semántica. UDG Virtual. 2020, 1, 1–4. [Google Scholar]
- Sierra, J.E.; Medina, B.; Rodríguez, L.; Pachón, C.; Barrios, M. Desarrollo e implementación de tecnologías biomédicas para la telerehabilitación funcional. Rev. Colomb. Tecnol. Av. RCTA 2019, 2, 137–143. [Google Scholar] [CrossRef]
- Jiang, M.; Song, X.; Zhang, J.; Han, J. TaxoEnrich: Self-Supervised Taxonomy Completion via Structure-Semantic Representations. Proc. ACM Web Conf. 2022, 2022, 925–934. [Google Scholar]
- Jain, S.; Patel, A. Semantic Contextual Reasoning to Provide Human Behavior. arXiv 2021, arXiv:2103.10694. [Google Scholar]
- Carbonnelle, P.; Van der Hallen, M.; Denecker, M. Quantification and aggregation over concepts of the ontology. arXiv 2022, arXiv:2202.00898. [Google Scholar]
- Kang, S.-J.; Lee, J.-H. Semi-automatic practical ontology construction by using a thesaurus, computational dictionaries, and large corpora. ACL 2001, 2001, 1–8. [Google Scholar]
- Aquino, V.A.; Carrión-Ojeda, D.; Murguía, M.I.C.; Delgado, R.F.; Gómez, E.I.; Gil, P.G.; Arenas, A.G.; López, H.H.; Vega, J.H.; Ibargüengoitya, P.; et al. El reconocimiento de patrones y su aplicación a las señales digitales. Acad. Mex. Comput. 2018, 2, 212. [Google Scholar]
- Malik, S.; Jain, S. Ontology based context aware model. In Proceedings of the 2017 International Conference on Computational Intelligence in Data Science(ICCIDS), Chennai, India, 2–3 June 2017; pp. 1–6. [Google Scholar]
- Sherimon, P.C.; Sherimon, V.; Preethii, S.P.; Nair, R.V.; Mathew, R. A Systematic Review of Clinical Decision Support Systems in Alzheimer’s Disease Domain. Biomed. Eng. 2021, 17, 74–90. [Google Scholar]
- Mhadhbi, L.; Akaichi, J. DS-ontology: A disease-symptom ontology for general diagnosis enhancement. In Proceedings of the 2017 International Conference on Information System and Data Mining, Charleston, SC, USA, 1–3 April 2017; pp. 99–102. [Google Scholar]
- Liu, L.; Sun, K.; Fu, Y. Ontological modelling of content management and provision. SD 2008, 50, 1155–1164. [Google Scholar] [CrossRef]
- El Asikri, M.; Krit, S.; Chaib, H. A brief survey of Creating Semantic Web content with Protégé. In Proceedings of the Fourth International Conference on Engineering & MIS, New York, NY, USA, 19–20 June 2018; pp. 1–8. [Google Scholar]
- Marciszack, M.M.; Pérez, C.M.; Antonelli, L.; Cárdenas, M.E. Construcción de una ontología utilizando Protégé para la elicitación de requerimientos. Cent. Ing. 2018, 11, 978-950-605-570-7. [Google Scholar]
- Aleixandre Soriano, I. Algoritmo de detección temprana para la enfermedad de Alzheimer utilizando aprendizaje autónomo. Ing. Sist. 2020, 318, 1–76. [Google Scholar]
- Shoaip, N.; Barakat, S.; Elmogy, M. Alzheimer’s Disease Integrated Ontology. In Proceedings of the 2019 14th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 17 December 2019; pp. 374–379. [Google Scholar]
- Aleixandre, S. Diseño e Implementación de un Clasificador Para la Detección de la Enfermedad de Alzheimer Mediante el Uso téCnicas de Inteligencia Artificial en imáGenes de Resonancia Magnética. Doctoral Dissertation, Universitat Politècnica de València, Valencia, Spain, 2019; pp. 1–103. [Google Scholar]
- Guachamin, S.; Francisco, L. Detección automáTica de síNtomas Motores Asociados a la Enfermedad de Parkinson Mediante Relojes y teléFonos Móviles Inteligentes Aplicando téCnicas de Inteligencia Artificial. Doctoral Dissertation, Higher Technical School of Industrial Engineering UPM, Madrid, Spain, 2021; pp. 1–288. [Google Scholar]
- Guerrero Flores, M.H.; Galván Tejada, C.E.; Chávez Lamas, N.M.; Galván Tejada, J.; Gamboa Rosales, H.; Celaya Padilla, J.; García Hernández, A.; Valladares Salgado, A.; Cruz, M. Implementación de algoritmos de inteligencia artificial para la identificación de pacientes diabéticos utilizando los niveles de lípidos en sangre. Caxan 2019, 9, 1–15. [Google Scholar]
- Clerc, X. OCaml-Java: An ML implementation for the Java ecosystem. Virtual Mach. 2019, 13, 45–56. [Google Scholar]
- Rubin, D.L.; Talos, I.F.; Halle, M.; Musen, M.A.; Kikinis, R. Survey on ontologies for affective states and their influences. Semant. Web. 2018, 9, 441–458. [Google Scholar]
- Choksi, A.T.; Jinwala, D.C. A novel way to relate ontology classes. Sci. World J. 2015, 2015, 724196. [Google Scholar] [CrossRef]
- Malhotra, A.; Younesi, E.; Gündel, M.; Müller, B.; Heneka, M.T.; Hofmann-Apitius, M. A disease ontology representing the domain knowledge specific to Alzheimer’s disease. Alzheimer Dement. 2014, 10, 238–246. [Google Scholar] [CrossRef]
- Shoaip, N.; Rezk, A.; El-Sappagh, S.; Alarabi, L.; Barakat, S.; Elmogy, M.M.Y. Un sistema integral de apoyo a la toma de decisiones basado en ontologías difusas para el diagnóstico de la enfermedad de Alzheimer. Acceso IEEE 2020, 9, 31350–31372. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, P.; Chang, H.C.; Lau, S.K.; Tao, C.; Wang, N.; Yin, M.; Deng, C. Developing an ontology for representing the domain knowledge specific to non-pharmacological treatment for agitation in dementia. Alzheimer Dementia Transl. Res. Clin. Interv. 2020, 6, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Henry, V.; Moszer, I.; Dameron, O.; Vila Xicota, L.; Dubois, B.; Potier, M.C.; Hofmann-Apitius, M.; Colliot, O. Converting disease maps into heavyweight ontologies: General methodology and application to Alzheimer’s disease. Database 2021, 6, 1–11. [Google Scholar]
- Bangyal, W.H.; Rehman, N.U.; Nawaz, A.; Nisar, K.; Ibrahim, A.A.A.; Shakir, R.; Rawat, D.B. Constructing Domain Ontology for Alzheimer Disease Using Deep Learning Based Approach. Electronics 2021, 11, 1890. [Google Scholar] [CrossRef]
- Pal, S.; Sengupta, P.; Ghosal, M.; Pal, A.; Acharya, R.; Biswas, D. Storage, degradation, and new connectivity of face-related semantic memory in Alzheimer’s disease. Ann. Indian Acad. Neurol. 2019, 22, 170. [Google Scholar]
- Taglino, F.; Cumbo, F.; Antognoli, G.; Arisi, I.; D’Onofrio, M.; Perazzoni, F.; Voyat, R.; Fiscon, G.; Conte, F.; Canevelli, M.; et al. An Ontology-based approach for Modelling and Querying Alzheimer’s Disease Data. Res. Sq. 2022, 1. [Google Scholar] [CrossRef]
- Henry, V.; Moszer, I.; Dameron, O.; Potier, M.C.; Hofmann-Apitius, M.; Colliot, O. Converting alzheimer’s disease map into a heavyweight ontology: A formal network to integrate data. Comput. Sci. 2019, 11371, 207–215. [Google Scholar]
- Gomez-Valades, A.; Martinez-Tomas, R.; Rincon, M. Integrative Base Ontology for the Research Analysis of Alzheimer’s Disease-Related Mild Cognitive Impairment. Front. Neuroinformatics 2021, 15, 561691. [Google Scholar] [CrossRef]
- Li, J.; Hendawi, R.; Pandey, V.; Alenezi, R.; Wang, X.; Xie, B.; Tao, C. Development and evaluation of ADCareOnto-An ontology for personalized home care for persons with alzheimer’s disease. In Proceedings of the 2020 IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM), Shenzhen, China, 1–2 March 2021; pp. 1–6. [Google Scholar]
- Peraita, H.; Díaz, C.; Anllo-Vento, L. Processing of semantic relations in normal aging and Alzheimer’s disease. Arch. Clin. Neuropsychol. 2008, 23, 33–46. [Google Scholar] [CrossRef]
- Kramarz, B.; Lovering, R.C. Gene Ontology: A Resource for Analysis and Interpretation of Alzheimer’s Disease Data. Alzheimer Dis. 2019, 2, 23–36. [Google Scholar]
- Degachi, H.; Ameni, Y.; Mahmoud, N. Desde el desarrollo hasta la evaluación de la ontología MOTunAr. Rev. Int. Ing. InformáTica Cienc. Datos IJCEDS 2021, 2, 1–16. [Google Scholar]
- Principal Component Analysis (2022) Principal Component Analysis–High Dimensional Statistics with R. Available online: https://carpentries-incubator.github.io/high-dimensional-stats-r/04-principal-component-analysis/index.html (accessed on 28 December 2022).
- Arisi, I.; Bertolazzi, P.; Cappelli, E.; Conte, F.; Cumbo, F.; Fiscon, G.; Sonnessa, M.; Taglino, F. An ontology-based approach to improve data querying and organization of Alzheimer’s Disease data. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 2732–2734. [Google Scholar]
- Kim, G.; Jeon, H.; Park, S.; Choi, Y.S.; Lim, Y. Care Guide System for Caregivers of People with Dementia. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Montreal, QC, Canada, 20–24 July 2020; pp. 5753–5756. [Google Scholar]
- Ali, A.; Gravino, C.; Ii, P.; Sa, F. An Ontology-based A pproach to S emi-automate S ystematic L iterature Reviews. In Proceedings of the 2018 12th International Conference on Open Source Systems and Technologies, Lahore, Pakistan, 19–21 December 2018; pp. 9–16. [Google Scholar]
- Cherian, S.P.; Agith, A.E.; Thomas, A.A. Design and Development of Alzheimer Disease Ontology. In Proceedings of the 2022 6th International Conference on Cloud and Big Data Computing, New York, NY, USA, 18–20 August 2022; pp. 19–23. [Google Scholar]
- Li, X.; Zhao, Z.; Song, D.; Zhang, Y.; Pan, J.; Wu, L.; Huom, J.; Niu, C.; Wang, D. Latent factor decoding of multi-channel EEG for emotion recognition through autoencoder-like neural networks. Front. Neurosci. 2020, 14, 87. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lu, D.; Zhu, M.; Muzammal, M.; Samuel, O.W.; Huang, G.; Li, W.; Wu, H. OMDP: An ontology-based model for diagnosis and treatment of diabetes patients in remote healthcare systems. Int. J. Distrib. Sens. Netw. 2019, 5, 15. [Google Scholar] [CrossRef]
Class | SubClass |
---|---|
Patient | Man |
Woman | |
Ethnographic Data | |
State of mind | Disoriented |
Nervous | |
Boring | |
Wander | |
Depressed | |
Patron | Walking |
Stopped | |
Sitting | |
Gerontological Centers | Dining Area |
Sleeping Area | |
Waiting room Area | |
Bathroom Area | |
Patio Area | |
Garden Area | |
Physical Therapy Area | |
Manualidades Area | |
Recreation Area | |
Electrotherapy Area | |
Street Area | |
Corridor Area | |
Reception/Cognition-Attention | Orientation |
Sensation/Perception | |
Cognition | |
Communication | |
Activity/Rest-Rest/Sleep | Activity/Exercise |
Energy balance | |
Cardiovascular/Pulmonary Response | |
Self-care | |
Nutrition | Ingestion |
Digestion | |
Absorption | |
Metabolism | |
Hydration |
Pattern | Large Class Status | |
---|---|---|
Walking | Relation | Disoriented |
Standing | Nervous | |
Sitting | Bored | |
Wanders | ||
Depressed |
Mood | Concept |
---|---|
Disoriented | Disorientation is conceptualized in the context of the study and based on the researcher’s real observations as the process through which an individual loses their capacity to recognise places, familiar faces, or is confused with their position. |
Nervous | In research, anxiousness is conceptualized as the patient’s repetitive acts, such as the formulation of queries, dialogues on the same topic, and tasks already completed, such as eating breakfast. When these actions are not completed, patients experience worry, which leads to anxiousness. |
Bored | Boredom is associated with social leisure and demotivation activities, as well as a lack of interest in carrying out activities in recreational spaces, according to the study; based on the above, it is understood that boredom consists of a reluctance to do the things that an individual has traditionally done. The following actions are seen and signify boredom in this context: impulse to read a book, look at images, growth of physical and creative activity |
Wandering | For the research process, the state of mind regarding wandering was related to a walk without direction, sense, and spatial orientation of the people observed with Alzheimer’s. |
Depressed | Depression is a mental state conceptualized by the investigation as a loss of capacity for the growth of motor activities as well as a deterioration of memory for the execution of voluntary acts. |
Time | Pose | Status |
---|---|---|
0:00:1 | 1 | Wander |
0:00:2 | 2 | Wander |
0:00:3 | 3 | Nervous |
0:00:4 | 1 | Depressed |
0:00:5 | 1 | Depressed |
… | … | D… |
0:00:55 | 2 | Depressed |
0:00:56 | 2 | Depressed |
0:00:57 | 2 | Nervous |
0:00:58 | 1 | Nervous |
0:00:59 | 1 | Depressed |
0:00:60 | 1 | Depressed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo Salazar, D.R.; Lanzarini, L.; Gómez, H.; Thirumuruganandham, S.P.; Castillo Salazar, D.X. Ontological Model in the Identification of Emotional Aspects in Alzheimer Patients. Healthcare 2023, 11, 1392. https://doi.org/10.3390/healthcare11101392
Castillo Salazar DR, Lanzarini L, Gómez H, Thirumuruganandham SP, Castillo Salazar DX. Ontological Model in the Identification of Emotional Aspects in Alzheimer Patients. Healthcare. 2023; 11(10):1392. https://doi.org/10.3390/healthcare11101392
Chicago/Turabian StyleCastillo Salazar, David Ricardo, Laura Lanzarini, Héctor Gómez, Saravana Prakash Thirumuruganandham, and Dario Xavier Castillo Salazar. 2023. "Ontological Model in the Identification of Emotional Aspects in Alzheimer Patients" Healthcare 11, no. 10: 1392. https://doi.org/10.3390/healthcare11101392
APA StyleCastillo Salazar, D. R., Lanzarini, L., Gómez, H., Thirumuruganandham, S. P., & Castillo Salazar, D. X. (2023). Ontological Model in the Identification of Emotional Aspects in Alzheimer Patients. Healthcare, 11(10), 1392. https://doi.org/10.3390/healthcare11101392