Factors Associated with Reported COVID-like Symptoms and Seroprevalence Data Matched with COVID-like Symptoms in Slums and Non-Slums of Two Major Cities in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Study Design
2.3. Survey Data and Sample Collection
2.4. Outcome Variable
2.5. Independent Variables
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.J.; Shan, J. 2019 Novel coronavirus: Where we are and what we know. Infection 2020, 48, 155–163. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 8 November 2021).
- Mokhtari, T.; Hassani, F.; Ghaffari, N.; Ebrahimi, B.; Yarahmadi, A.; Hassanzadeh, G. COVID-19 and multiorgan failure: A narrative review on potential mechanisms. J. Mol. Histol. 2020, 51, 613–628. [Google Scholar] [CrossRef] [PubMed]
- Guzik, T.J.; Mohiddin, S.A.; Dimarco, A.; Patel, V.; Savvatis, K.; Marelli-Berg, F.M.; Madhur, M.S.; Tomaszewski, M.; Maffia, P.; D’Acquisto, F.; et al. COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc. Res. 2020, 116, 1666–1687. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention Symptoms of COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html (accessed on 28 April 2023).
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef]
- World Health Organization. WHO Health Emergency Dashboard. Available online: https://covid19.who.int/region/searo/country/bd (accessed on 27 June 2022).
- GARDAWORLD. Bangladesh: First Cases of COVID-19 Confirmed March 8. CRISIS24, 2020. Available online: https://crisis24.garda.com/alerts/2020/03/bangladesh-first-cases-of-covid-19-confirmed-march-8 (accessed on 7 August 2022).
- Directorate General of Health Services (DGHS). COVID-19 Dynamic Dashboard for Bangladesh. Available online: https://dghs-dashboard.com/pages/covid19.php (accessed on 19 June 2022).
- Razzaque, A.; Chowdhury, R.; Mustafa, A.H.M.G. The vicious circle of life in urban slums. In Slum Health in Bangladesh; Mahabub Hossain, M.A.H.M., Chin, B., Islam, M.Z., Adams, A.M., Eds.; Health Systems and Population Studies Division: Dhaka, Bangladesh, 2019; pp. 54–81. [Google Scholar]
- World Bank. Population Living in Slums (% of Urban Population). Available online: https://data.worldbank.org/indicator/EN.POP.SLUM.UR.ZS (accessed on 19 June 2022).
- World Health Organization. Coronavirus Disease (COVID-19). Available online: https://www.who.int/health-topics/coronavirus#tab=tab_1 (accessed on 19 June 2022).
- Wasdani, K.P.; Prasad, A. The impossibility of social distancing among the urban poor: The case of an Indian slum in the times of COVID-19. Local Environ. 2020, 25, 414–418. [Google Scholar] [CrossRef]
- Akhter, S.; Bashar, F.; Kamruzzaman, M.; Mahmood, N.; Rahman, A.; Anwar, I.; Hawkes, S. A Rapid Ethnographic Assessment of Cultural and Social Perceptions and Practices about COVID-19 in Bangladesh: What the Policy Makers and Program Planners Should Know. Qual. Health Res. 2022, 32, 1114–1125. [Google Scholar] [CrossRef]
- He, G.; Sun, W.; Fang, P.; Huang, J.; Gamber, M.; Cai, J.; Wu, J. The clinical feature of silent infections of novel coronavirus infection (COVID-19) in Wenzhou. J. Med. Virol. 2020, 92, 1761–1763. [Google Scholar] [CrossRef]
- Centre for Disease Control & Prevention. Similarities and Differences between Flu and COVID-19. Available online: https://www.cdc.gov/flu/symptoms/flu-vs-covid19.htm (accessed on 19 June 2022).
- Bangladesh Bureau of Statistics (BBS). Census of Slum Areas and Floating Population 2014; Bangladesh Bureau of Statistics, Statistics and Informatics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2015. [Google Scholar]
- Shah, J.; Liu, S.; Potula, H.-H.; Bhargava, P.; Cruz, I.; Force, D.; Bazerbashi, A.; Ramasamy, R. IgG and IgM antibody formation to spike and nucleocapsid proteins in COVID-19 characterized by multiplex immunoblot assays. BMC Infect. Dis. 2021, 21, 325. [Google Scholar] [CrossRef]
- Raqib, R.; Sarker, P.; Akhtar, E.; Nurul Huda, T.M.; Haq, M.A.; Roy, A.K.; Hosen, M.B.; Haque, F.; Chowdhury, M.R.; Reidpath, D.D.; et al. Seroprevalence of SARS-CoV-2 infection and associated factors among Bangladeshi slum and non-slum dwellers in pre-COVID-19 vaccination era: October 2020 to February 2021. PLoS ONE 2022, 17, e0268093. [Google Scholar] [CrossRef]
- Struyf, T.; Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Leeflang, M.M.; Spijker, R.; Hooft, L.; Emperador, D.; Domen, J.; et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19. Cochrane Database Syst. Rev. 2022, 5, cd013665. [Google Scholar] [CrossRef]
- Bi, Q.; Lessler, J.; Eckerle, I.; Lauer, S.A.; Kaiser, L.; Vuilleumier, N.; Cummings, D.A.T.; Flahault, A.; Petrovic, D.; Guessous, I.; et al. Insights into household transmission of SARS-CoV-2 from a population-based serological survey. Nat. Commun. 2021, 12, 3643. [Google Scholar] [CrossRef]
- Cevik, M.; Kuppalli, K.; Kindrachuk, J.; Peiris, M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ 2020, 371, m3862. [Google Scholar] [CrossRef]
- Nogardy, B. What the data say about asymptomatic COVID infections. Nature 2020, 587, 534–535. [Google Scholar] [CrossRef]
- Mouliou, D.S.; Kotsiou, O.S.; Gourgoulianis, K.I. Estimates of COVID-19 Risk Factors among Social Strata and Predictors for a Vulnerability to the Infection. Int. J. Environ. Res. Public Health 2021, 18, 8701. [Google Scholar] [CrossRef]
- Mouliou, D.S.; Pantazopoulos, I.; Gourgoulianis, K.I. COVID-19 Smart Diagnosis in the Emergency Department: All-in in Practice. Expert Rev. Respir. Med. 2022, 16, 263–272. [Google Scholar] [CrossRef]
- Nazneen, A.; Sultana, R.; Rahman, M.; Rahman, M.; Qadri, F.; Rimi, N.A.; Hossain, M.K.; Alam, M.R.; Rahman, M.; Chakraborty, N.; et al. Prevalence of COVID-19 in Bangladesh, April to October 2020-a cross-sectional study. IJID Reg. 2021, 1, 92–99. [Google Scholar] [CrossRef]
- Siam, M.H.B.; Hasan, M.M.; Tashrif, S.M.; Rahaman Khan, M.H.; Raheem, E.; Hossain, M.S. Insights into the first seven-months of COVID-19 pandemic in Bangladesh: Lessons learned from a high-risk country. Heliyon 2021, 7, e07385. [Google Scholar] [CrossRef]
- Ahmed, S.; Sobhan, F.; Islam, A.; Barkat, E.K. Neonatal morbidity and care-seeking behaviour in rural Bangladesh. J. Trop. Pediatr. 2001, 47, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Najnin, N.; Bennett, C.M.; Luby, S.P. Inequalities in care-seeking for febrile illness of under-five children in urban Dhaka, Bangladesh. J. Health Popul. Nutr. 2011, 29, 523–531. [Google Scholar] [CrossRef] [PubMed]
Reported COVID-like Symptoms | Seroprevalence Data Matched with COVID-like Symptoms | |||||
---|---|---|---|---|---|---|
Variable | Combined Area | Slum | Non-Slum | Combined Area | Slum | Non-Slum |
(n = 10,050) | (n = 5468) | (n = 4582) | (n = 3205) | (n = 2232) | (n = 973) | |
% | % | % | % | % | % | |
City | ||||||
Dhaka | 53.9 | 60.7 | 45.7 | 81.1 | 85.1 | 72.2 |
Chattogram | 46.1 | 39.3 | 54.3 | 18.8 | 14.9 | 27.8 |
Area | ||||||
Slum | 54.4 | 69.6 | ||||
Non-slum | 45.6 | 30.4 | ||||
Age group (years) | ||||||
10–17 | 18.9 | 19.9 | 17.7 | 24.0 | 25.8 | 19.9 |
18–59 | 73.6 | 73.8 | 73.5 | 69.4 | 68.6 | 71.0 |
60 or more | 7.5 | 6.3 | 8.9 | 6.6 | 5.6 | 9.1 |
Sex | ||||||
Male | 41.3 | 45.0 | 36.8 | 43.2 | 44.9 | 39.3 |
Female | 58.7 | 55.0 | 63.2 | 56.8 | 55.1 | 60.7 |
Education (years of schooling) | ||||||
None | 20.8 | 34.8 | 4.1 | 26.1 | 35.4 | 4.7 |
1–4 | 15.4 | 22.8 | 6.5 | 18.0 | 23.4 | 5.6 |
5–9 | 33.4 | 34.5 | 32.1 | 33.7 | 33.6 | 33.9 |
10 or more | 30.4 | 7.8 | 57.3 | 22.2 | 7.5 | 55.8 |
Occupation | ||||||
Not-working/unemployed | 9.9 | 13.1 | 6.1 | 14.1 | 17.0 | 7.4 |
Service | 15.0 | 16.9 | 12.8 | 14.6 | 14.6 | 14.5 |
Business | 8.4 | 7.2 | 9.9 | 8.1 | 7.4 | 9.8 |
Self-employed | 11.1 | 18.2 | 2.6 | 10.4 | 13.7 | 3.0 |
House-wife | 32.4 | 25.3 | 41.0 | 26.3 | 22.9 | 34.0 |
Student | 21.6 | 17.7 | 26.2 | 25.1 | 23.0 | 29.7 |
Others | 1.6 | 1.7 | 1.5 | 1.4 | 1.3 | 1.6 |
Income (BDT) | ||||||
<15,000 | 28.0 | 48.4 | 3.7 | 33.7 | 46.9 | 3.4 |
15,000–19,000 | 13.3 | 22.1 | 2.7 | 14.6 | 19.5 | 3.3 |
20,000 or more | 58.7 | 29.5 | 93.6 | 51.7 | 33.6 | 93.3 |
Income reduced | ||||||
No | 27.7 | 28.5 | 26.8 | 74.8 | 73.7 | 77.1 |
Yes | 72.3 | 71.5 | 73.2 | 25.2 | 26.3 | 22.9 |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Variable | Reported COVID-like Symptoms (Percent) | Seroprevalence Data Matched with COVID-like Symptoms (Percent) | ||||
---|---|---|---|---|---|---|
Combined Area (n = 10,050) | Slum (n = 5468) | Non-Slum (n = 4582) | Combined Area (3205) | Slum (n = 2232) | Non-Slum (n = 973) | |
City | ||||||
Dhaka | 30.0 | 25.8 | 36.7 | 26.0 | 22.7 | 34.9 |
Chattogram | 34.3 | 34.9 | 33.7 | 25.5 | 24.0 | 27.3 |
Age group (years) | ||||||
10–17 | 27.3 | 24.7 | 30.8 | 19.2 | 16.9 | 26.3 |
18–59 | 33.1 | 30.6 | 36.1 | 28.3 | 25.3 | 35.2 |
60 or more | 33.3 | 30.3 | 36.0 | 25.3 | 22.4 | 29.5 |
Sex | ||||||
Male | 32.8 | 28.4 | 39.1 | 26.3 | 22.7 | 35.9 |
Female | 31.5 | 30.2 | 32.8 | 25.6 | 23.1 | 30.8 |
Education (years of schooling) | ||||||
None | 26.1 | 26.2 | 24.7 | 20.3 | 20.0 | 25.5 |
1–4 | 29.9 | 30.0 | 29.3 | 23.9 | 22.8 | 35.2 |
5–9 | 31.7 | 31.2 | 32.4 | 26.7 | 25.5 | 29.3 |
10 or more | 37.4 | 33.7 | 38.0 | 32.5 | 24.4 | 35.0 |
Occupation | ||||||
Not-working/unemployed | 25.8 | 21.8 | 36.1 | 18.0 | 14.8 | 34.7 |
Service | 36.7 | 32.2 | 43.9 | 32.5 | 28.7 | 41.1 |
Business | 38.8 | 35.0 | 42.0 | 33.8 | 30.3 | 40.0 |
Self-employed | 31.0 | 30.4 | 36.4 | 28.7 | 27.8 | 36.9 |
Housewife | 32.2 | 31.2 | 33.0 | 27.2 | 23.2 | 33.2 |
Student | 28.7 | 25.5 | 31.3 | 21.9 | 19.5 | 26.3 |
Others | 36.6 | 38.3 | 34.3 | 20.0 | 27.6 | 6.2 |
Income (BDT) | ||||||
<15,000 | 30.8 | 30.4 | 36.9 | 24.2 | 23.8 | 36.4 |
15,000–19,000 | 30.1 | 30.0 | 30.6 | 24.1 | 24.3 | 21.9 |
20,000+ | 33.0 | 27.2 | 35.2 | 27.6 | 20.9 | 33.0 |
Income reduced | ||||||
No | 30.2 | 28.0 | 33.0 | 25.9 | 22.7 | 32.8 |
Yes | 32.7 | 29.9 | 35.9 | 26.1 | 23.5 | 32.7 |
Total | 32.0 | 29.4 | 35.1 | 25.9 | 22.9 | 32.8 |
Seroprevalence | Reported COVID-like Symptoms | Chi2 (df) p-Value | |
---|---|---|---|
Yes n (%) | No n (%) | ||
Combined (N = 3205) | |||
Seropositive | 831 (37.77) | 1369 (62.23) | 13.61 (1) |
Seronegative | 312 (31.04) | 693 (68.96) | <0.001 |
Slum (N = 2232) | |||
Seropositive | 512 (31.98) | 1089 (68.02) | 1.49 (1) |
Seronegative | 185 (29.32) | 446 (70.68) | 0.222 |
Non-slum (N = 973) | |||
Seropositive | 319 (53.26) | 280 (46.74) | 34.54 (1) |
Seronegative | 127 (33.96) | 247 (66.04) | <0.001 |
Factors | Reported COVID-like Symptoms | |||||
---|---|---|---|---|---|---|
Combined 1 | Slum Area 2 | Non-Slum Area 2 | ||||
aOR (95% CI) | p-Value | aOR (95% CI) | p-Value | aOR (95% CI) | p-Value | |
City | ||||||
Dhaka | 1.00 | 1.00 | 1.00 | |||
Chattogram city | 1.13 (1.03, 1.23) | 0.007 | 1.44 (1.27, 1.63) | <0.001 | 0.86 (0.76, 0.97) | 0.016 |
Area | ||||||
Slum | 1.00 | - | - | |||
Non-slum | 1.19 (1.05, 1.36) | 0.009 | - | - | ||
Age group (years) | ||||||
10–17 | 1.00 | 1.00 | 1.00 | |||
18–59 | 0.99 (0.84, 1.17) | 0.948 | 1.08 (0.86, 1.35) | 0.490 | 0.91 (0.69, 1.18) | 0.464 |
60 or more | 1.13 (0.90, 1.41) | 0.296 | 1.25 (0.91, 1.71) | 0.174 | 1.01 (0.70, 1.44) | 0.972 |
Sex | ||||||
Female | 1.00 | 1.00 | 1.00 | |||
Male | 0.99 (0.88, 1.10) | 0.820 | 0.89 (0.77, 1.03) | 0.121 | 1.16 (0.97, 1.39) | 0.098 |
Education (years of schooling) | ||||||
None | 1.00 | 1.00 | 1.00 | |||
1–4 | 1.27 (1.09, 1.48) | 0.002 | 1.28 (1.08, 1.52) | 0.005 | 1.34 (0.87, 2.07) | 0.178 |
5–9 | 1.30 (1.14, 1.48) | <0.001 | 1.25 (1.07, 1.45) | 0.004 | 1.54 (1.07, 2.20) | 0.019 |
10 or more | 1.59 (1.36, 1.86) | <0.001 | 1.41 (1.11, 1.80) | 0.005 | 1.91 (1.34, 2.12) | <0.001 |
Occupation | ||||||
Not-working/unemployed | 1.00 | 1.00 | 1.00 | |||
Service | 1.52 (1.26, 1.84) | <0.001 | 1.45 (1.13, 1.85) | 0.003 | 1.41 (1.02, 1.93) | 0.036 |
Business | 1.58 (1.28, 1.96) | <0.001 | 1.77 (1.32, 2.38) | <0.001 | 1.26 (0.90, 1.75) | 0.177 |
Self-employed | 1.34 (1.09, 1.64) | 0.004 | 1.37 (1.08, 1.76) | 0.011 | 1.16 (0.72, 1.86) | 0.532 |
Housewife | 1.19 (0.99, 1.43) | 0.069 | 1.25 (0.97, 1.60) | 0.080 | 1.03 (0.75, 1.41) | 0.839 |
Student | 1.00 (0.84, 1.22) | 0.966 | 1.06 (0.82, 1.37) | 0.649 | 0.86 (0.61, 1.21) | 0.394 |
Others | 1.46 (1.02, 2.09) | 0.040 | 1.85 (1.16, 2.95) | 0.010 | 0.93 (0.53, 1.65) | 0.809 |
Income (BDT) | ||||||
<15,000 | 1.00 | 1.00 | 1.00 | |||
15,000–19,000 | 0.90 (0.78, 1.04) | 0.159 | 0.91 (0.78, 1.06) | 0.221 | 0.71 (0.43, 1.18) | 0.186 |
20,000 or more | 0.84 (0.74, 0.95) | 0.006 | 0.84 (0.73, 0.97) | 0.016 | 0.88 (0.63, 1.21) | 0.432 |
Income reduced | ||||||
Yes | 1.00 | 1.00 | 1.00 | |||
No | 1.14 (1.03, 1.26) | 0.008 | 1.11 (0.97, 1.27) | 0.119 | 1.14 (0.99, 1.32) | 0.062 |
Summary statistics | No. of obs: 10050 LR chi2 (16): 152.37, p < 0.001 −log likelihood: 6223.85 Pseudo R2: 0.0121 | No. of obs: 5468 LR chi2 (16): 106.38, p < 0.001 −log likelihood: 3258.23 Pseudo R2: 0.0161 | No. of obs: 4582 LR chi2 (16): 74.74, p < 0.001 −log likelihood: 2932.50 Pseudo R2: 0.0126 |
Factors | Seroprevalence Data Matched with COVID-like Symptoms | |||||
---|---|---|---|---|---|---|
Combined 1 | Slum Area 2 | Non-Slum Area 2 | ||||
aOR (95% CI) | p-Value | aOR (95% CI) | p-Value | aOR (95% CI) | p-Value | |
City | ||||||
Dhaka | 1.00 | 1.00 | 1.00 | |||
Chattogram | 0.88 (0.72, 1.09) | 0.259 | 1.05 (0.79, 1.40) | 0.724 | 0.75 (0.55, 1.03) | 0.076 |
Area | ||||||
Slum | 1.00 | - | - | |||
Non-slum area | 1.67 (1.31, 2.14) | <0.001 | - | - | ||
Age group (years) | ||||||
10–17 | 1.00 | 1.00 | 1.00 | |||
18–59 | 1.21 (0.90, 1.64) | 0.204 | 1.33 (0.92, 1.92) | 0.130 | 0.96 (0.54, 1.69) | 0.882 |
60 or more | 1.22 (0.80, 1.87) | 0.363 | 1.37 (0.79, 2.37) | 0.261 | 0.87 (0.39, 1.94) | 0.740 |
Sex | ||||||
Female | 1.00 | 1.00 | 1.00 | |||
Male | 0.98 (0.80, 1.20) | 0.849 | 0.86 (0.68, 1.09) | 0.215 | 1.31 (0.90, 1.91) | 0.158 |
Education (years of schooling) | ||||||
None | 1.00 | 1.00 | 1.00 | |||
1–4 | 1.28 (0.98, 1.68) | 0.074 | 1.20 (0.89, 1.60) | 0.233 | 1.75 (0.71, 4.30) | 0.223 |
5–9 | 1.26 (0.99, 1.60) | 0.063 | 1.23 (0.94, 1.60) | 0.129 | 1.24 (0.59, 2.60) | 0.569 |
10 or more | 1.32 (0.98, 1.78) | 0.071 | 1.13 (0.73, 1.72) | 0.584 | 1.52 (0.74, 3.11) | 0.254 |
Occupation | ||||||
Not-working/unemployed | 1.00 | 1.00 | 1.00 | |||
Service | 1.80 (1.28, 2.52) | 0.001 | 1.93 (1.28, 2.91) | 0.002 | 1.29 (0.67, 2.47) | 0.450 |
Business | 1.90 (1.30, 2.78) | 0.001 | 2.29 (1.42, 3.68) | 0.001 | 1.15 (0.58, 2.29) | 0.681 |
Self-employed | 1.76 (1.22, 2.52) | 0.002 | 1.90 (1.26, 2.87) | 0.002 | 1.25 (0.48, 3.22) | 0.647 |
Housewife | 1.32 (0.94, 1.85) | 0.105 | 1.32 (0.88, 1.99) | 0.182 | 1.16 (0.61, 2.22) | 0.654 |
Student | 1.12 (0.81, 1.57) | 0.490 | 1.34 (0.90, 2.01) | 0.154 | 0.70 (0.35, 1.42) | 0.327 |
Others | 0.94 (0.43, 2.06) | 0.873 | 1.85 (0.77, 4.46) | 0.170 | 0.14 (0.02, 1.15) | 0.068 |
Income (BDT) | ||||||
<15,000 | 1.00 | 1.00 | 1.00 | |||
15,000–19,000 | 0.94 (0.72, 1.22) | 0.630 | 0.99 (0.75, 1.30) | 0.927 | 0.51 (0.17, 1.56) | 0.239 |
20,000 or more | 0.85 (0.69, 1.07) | 0.163 | 0.83 (0.65, 1.06) | 0.137 | 0.91 (0.43, 1.91) | 0.808 |
Income reduced | ||||||
Yes | 1.00 | 1.00 | 1.00 | |||
No | 0.97 (0.80, 1.17) | 0.746 | 0.94 (0.74, 1.20) | 0.628 | 1.01 (0.72, 1.40) | 0.966 |
Summary statistics | No. of obs: 3205 LR chi2 (16): 87.48, p < 0.001 −log likelihood: 1790.50 Pseudo R2: 0.0238 | No. of obs: 2232 LR chi2 (16): 44.45, p < 0.001 −log likelihood: 1179.79 Pseudo R2: 0.0185 | No. of obs: 973 LR chi2 (16):30.17, p < 0.05 −log likelihood: 600.58 Pseudo R2: 0.0245 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razzaque, A.; Huda, T.M.N.; Chowdhury, R.; Haq, M.A.; Sarker, P.; Akhtar, E.; Billah, M.A.; Islam, M.Z.; Hoque, D.M.E.; Ahmed, S.; et al. Factors Associated with Reported COVID-like Symptoms and Seroprevalence Data Matched with COVID-like Symptoms in Slums and Non-Slums of Two Major Cities in Bangladesh. Healthcare 2023, 11, 1444. https://doi.org/10.3390/healthcare11101444
Razzaque A, Huda TMN, Chowdhury R, Haq MA, Sarker P, Akhtar E, Billah MA, Islam MZ, Hoque DME, Ahmed S, et al. Factors Associated with Reported COVID-like Symptoms and Seroprevalence Data Matched with COVID-like Symptoms in Slums and Non-Slums of Two Major Cities in Bangladesh. Healthcare. 2023; 11(10):1444. https://doi.org/10.3390/healthcare11101444
Chicago/Turabian StyleRazzaque, Abdur, Tarique Mohammad Nurul Huda, Razib Chowdhury, Md. Ahsanul Haq, Protim Sarker, Evana Akhtar, Md Arif Billah, Mohammad Zahirul Islam, Dewan Md. Emdadul Hoque, Shehlina Ahmed, and et al. 2023. "Factors Associated with Reported COVID-like Symptoms and Seroprevalence Data Matched with COVID-like Symptoms in Slums and Non-Slums of Two Major Cities in Bangladesh" Healthcare 11, no. 10: 1444. https://doi.org/10.3390/healthcare11101444
APA StyleRazzaque, A., Huda, T. M. N., Chowdhury, R., Haq, M. A., Sarker, P., Akhtar, E., Billah, M. A., Islam, M. Z., Hoque, D. M. E., Ahmed, S., Ahmed, Y. H., Tofail, F., & Raqib, R. (2023). Factors Associated with Reported COVID-like Symptoms and Seroprevalence Data Matched with COVID-like Symptoms in Slums and Non-Slums of Two Major Cities in Bangladesh. Healthcare, 11(10), 1444. https://doi.org/10.3390/healthcare11101444