The Effect of Asymmetrical Occlusion on Surface Electromyographic Activity in Subjects with a Chewing Side Preference: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. sEMG Measurement
- Masseter muscle: the subject was required to clench their teeth with force when cotton rolls were placed unilaterally or bilaterally in the posterior teeth;
- Sternocleidomastoid: the subject was asked to flex the neck with force;
- Lateral and medial gastrocnemius: the subject was required to plantar flex with force and maintain body balance.
2.3. Outcome Measures
2.4. Repeatability Testing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nowak, M.; Golec, J.; Wieczorek, A.; Golec, P. Is There a Correlation between Dental Occlusion, Postural Stability and Selected Gait Parameters in Adults? Int. J. Environ. Res. Public Health 2023, 20, 1652. [Google Scholar] [CrossRef] [PubMed]
- Perinetti, G.; Contardo, L.; Silvestrini-Biavati, A.; Perdoni, L.; Castaldo, A. Dental Malocclusion and Body Posture in Young Subjects: A Multiple Regression Study. Clinics 2010, 65, 689–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manfredini, D.; Castroflorio, T.; Perinetti, G.; Guarda-Nardini, L. Dental Occlusion, Body Posture and Temporomandibular Disorders: Where We Are Now and Where We Are Heading For. J. Oral. Rehabil. 2012, 39, 463–471. [Google Scholar] [CrossRef]
- Julià-Sánchez, S.; Álvarez-Herms, J.; Cirer-Sastre, R.; Corbi, F.; Burtscher, M. The Influence of Dental Occlusion on Dynamic Balance and Muscular Tone. Front. Physiol. 2019, 10, 1626. [Google Scholar] [CrossRef]
- Álvarez Solano, C.; González Camacho, L.A.; Castaño Duque, S.P.; Cortés Velosa, T.; Vanoy Martin, J.A.; Chambrone, L. To Evaluate Whether There Is a Relationship between Occlusion and Body Posture as Delineated by a Stabilometric Platform: A Systematic Review. Cranio 2020. [Google Scholar] [CrossRef] [PubMed]
- Solovykh, E.A.; Bugrovetskaya, O.G.; Maksimovskaya, L.N. Information Value of Functional Status of the Stomatognathic System for Postural Balance Regulation. Bull. Exp. Biol. Med. 2012, 153, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Trovato, F.; Orlando, B.; Bosco, M. Occlusal Features and Masticatory Muscles Activity. A Review of Electromyographic Studies. Stomatologija 2009, 11, 26–31. [Google Scholar]
- Kohno, S.; Yoshida, K.; Kobayashi, H. Pain in the Sternocleidomastoid Muscle and Occlusal Interferences. J. Oral. Rehabil. 1988, 15, 385–392. [Google Scholar] [CrossRef]
- Sforza, C.; Tartaglia, G.M.; Solimene, U.; Morgun, V.; Kaspranskiy, R.R.; Ferrario, V.F. Occlusion, Sternocleidomastoid Muscle Activity, and Body Sway: A Pilot Study in Male Astronauts. Cranio 2006, 24, 43–49. [Google Scholar] [CrossRef]
- Ferrario, V.F.; Sforza, C.; Dellavia, C.; Tartaglia, G.M. Evidence of an Influence of Asymmetrical Occlusal Interferences on the Activity of the Sternocleidomastoid Muscle. J. Oral. Rehabil. 2003, 30, 34–40. [Google Scholar] [CrossRef]
- Valentino, B.; Melito, F. Functional Relationships between the Muscles of Mastication and the Muscles of the Leg. An Electromyographic Study. Surg. Radiol. Anat. 1991, 13, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Bergamini, M.; Pierleoni, F.; Gizdulich, A.; Bergamini, C. Dental Occlusion and Body Posture: A Surface EMG Study. Cranio 2008, 26, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Pietropaoli, D.; Ortu, E.; Giannoni, M.; Cattaneo, R.; Mummolo, A.; Monaco, A. Alterations in Surface Electromyography Are Associated with Subjective Masticatory Muscle Pain. Pain Res. Manag. 2019, 2019, 6256179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, K.-W.; Jiang, L.-L.; Yan, Y. Comparative Study of Surface Electromyography of Masticatory Muscles in Patients with Different Types of Bruxism. World J. Clin. Cases 2022, 10, 6876–6889. [Google Scholar] [CrossRef]
- Pallegama, R.W.; Ranasinghe, A.W.; Weerasinghe, V.S.; Sitheeque, M.A.M. Influence of Masticatory Muscle Pain on Electromyographic Activities of Cervical Muscles in Patients with Myogenous Temporomandibular Disorders. J. Oral. Rehabil. 2004, 31, 423–429. [Google Scholar] [CrossRef]
- Ehrlich, R.; Garlick, D.; Ninio, M. The Effect of Jaw Clenching on the Electromyographic Activities of 2 Neck and 2 Trunk Muscles. J. Orofac. Pain 1999, 13, 115–120. [Google Scholar]
- Ferrario, V.F.; Sforza, C.; Colombo, A.; Ciusa, V. An Electromyographic Investigation of Masticatory Muscles Symmetry in Normo-Occlusion Subjects. J. Oral. Rehabil. 2000, 27, 33–40. [Google Scholar] [CrossRef]
- Zurita-Hernandez, J.; Ayuso-Montero, R.; Cuartero-Balana, M.; Willaert, E.; Martinez-Gomis, J. Relationship between Unilateral Posterior Crossbite and Human Static Body Posture. Int. J. Environ. Res. Public Health 2020, 17, 5303. [Google Scholar] [CrossRef]
- Nota, A.; Tecco, S.; Ehsani, S.; Padulo, J.; Baldini, A. Postural Stability in Subjects with Temporomandibular Disorders and Healthy Controls: A Comparative Assessment. J. Electromyogr. Kinesiol. 2017, 37, 21–24. [Google Scholar] [CrossRef]
- Nayak, U.A.; Sharma, R.; Kashyap, N.; Prajapati, D.; Kappadi, D.; Wadhwa, S.; Gandotra, S.; Yadav, P. Association between Chewing Side Preference and Dental Caries among Deciduous, Mixed and Permanent Dentition. J. Clin. Diagn. Res. 2016, 10, ZC05–ZC08. [Google Scholar] [CrossRef]
- Varela, J.M.F.; Castro, N.B.; Biedma, B.M.; Da Silva Domínguez, J.L.; Quintanilla, J.S.; Muñoz, F.M.; Penín, U.S.; Bahillo, J.G. A Comparison of the Methods Used to Determine Chewing Preference. J. Oral. Rehabil. 2003, 30, 990–994. [Google Scholar] [CrossRef] [PubMed]
- Ugolini, A.; Mapelli, A.; Segù, M.; Zago, M.; Codari, M.; Sforza, C. Three-Dimensional Mandibular Motion in Skeletal Class III Patients. Cranio 2018, 36, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Ugolini, A.; Mapelli, A.; Segù, M.; Galante, D.; Sidequersky, F.V.; Sforza, C. Kinematic Analysis of Mandibular Motion before and after Orthognathic Surgery for Skeletal Class III Malocclusion: A Pilot Study. Cranio 2017, 35, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, L.; Lu, J.; Fan, S.; Cai, B.; Dai, K. Head and Neck Posture Influences Masticatory Muscle Electromyographic Amplitude in Healthy Subjects and Patients with Temporomandibular Disorder: A Preliminary Study. Ann. Palliat. Med. 2021, 10, 2880–2888. [Google Scholar] [CrossRef]
- Slater, L.V.; Hart, J.M. Muscle Activation Patterns During Different Squat Techniques. J. Strength Cond. Res. 2017, 31, 667–676. [Google Scholar] [CrossRef]
- Lê, T.-T.; Kapoula, Z. Role of Ocular Convergence in the Romberg Quotient. Gait Posture 2008, 27, 493–500. [Google Scholar] [CrossRef]
- Choi, K.-H.; Kwon, O.S.; Kim, L.; Lee, S.M.; Jerng, U.M.; Jung, J. Electromyographic Changes in Masseter and Sternocleidomastoid Muscles Can Be Applied to Diagnose of Temporomandibular Disorders: An Observational Study. Integr. Med. Res. 2021, 10, 100732. [Google Scholar] [CrossRef]
- Giannasi, L.C.; Politti, F.; Dutra, M.T.S.; Tenguan, V.L.S.; Silva, G.R.C.; Mancilha, G.P.; Silva, D.B.d.; Oliveira, L.V.F.; Oliveira, C.S.; Amorim, J.B.O.; et al. Intra-Day and Inter-Day Reliability of Measurements of the Electromyographic Signal on Masseter and Temporal Muscles in Patients with Down Syndrome. Sci. Rep. 2020, 10, 7477. [Google Scholar] [CrossRef]
- Cicchetti, D.V.; Sparrow, S.A. Developing Criteria for Establishing Interrater Reliability of Specific Items: Applications to Assessment of Adaptive Behavior. Am. J. Ment. Defic. 1981, 86, 127–137. [Google Scholar]
- Nalamliang, N.; Sumonsiri, P.; Thongudomporn, U. Are Occlusal Contact Area Asymmetry and Masticatory Muscle Activity Asymmetry Related in Adults with Normal Dentition? Cranio 2022, 40, 409–417. [Google Scholar] [CrossRef]
- Bakke, M.; Møller, E. Distortion of Maximal Elevator Activity by Unilateral Premature Tooth Contact. Scand J. Dent. Res. 1980, 88, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Kohan, E.J.; Wirth, G.A. Anatomy of the Neck. Clin. Plast. Surg. 2014, 41, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, B.; Varacallo, M. Anatomy, Head and Neck, Scalenus Muscle. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Cuccia, A.M. Interrelationships between Dental Occlusion and Plantar Arch. J. Bodyw. Mov. Ther. 2011, 15, 242–250. [Google Scholar] [CrossRef]
- Bordoni, B.; Myers, T. A Review of the Theoretical Fascial Models: Biotensegrity, Fascintegrity, and Myofascial Chains. Cureus 2020, 12, e7092. [Google Scholar] [CrossRef] [Green Version]
- Tecco, S.; Salini, V.; Calvisi, V.; Colucci, C.; Orso, C.A.; Festa, F.; D’Attilio, M. Effects of Anterior Cruciate Ligament (ACL) Injury on Postural Control and Muscle Activity of Head, Neck and Trunk Muscles. J. Oral. Rehabil. 2006, 33, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Cuccia, A.; Caradonna, C. The Relationship between the Stomatognathic System and Body Posture. Clinics 2009, 64, 61–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gangloff, P.; Perrin, P.P. Unilateral Trigeminal Anaesthesia Modifies Postural Control in Human Subjects. Neurosci. Lett. 2002, 330, 179–182. [Google Scholar] [CrossRef]
Control Group | CSP Group | |
---|---|---|
Number | Male = 8 | Male = 6 |
Female = 10 | Female = 8 | |
Age | 26.6 ± 2.7 | 25.9 ± 2.4 |
Height (cm) | 169.7 ± 9.8 | 167.9 ± 10.1 |
Weight (kg) | 64.5 ± 11.2 | 60.1 ± 13.8 |
BMI (kg/m2) | 22.2 ± 1.9 | 21.1 ± 2.7 |
Control | Male (POC%) | Female (POC%) | p Value | |
BCR | SCM | 114.13 ± 27.41 | 97.44 ± 5.90 | 0.15 |
MM | 103.49 ± 19.61 | 93.50 ± 13.86 | 0.22 | |
LGA | 103.21 ± 11.49 | 97.83 ± 14.49 | 0.40 | |
MGA | 89.79 ± 25.7 | 99.84 ± 11.18 | 0.28 | |
LCR | SCM | 103.35 ± 32.61 | 103.21 ± 17.46 | 0.99 |
MM | 108.58 ± 33.51 | 106.81 ± 12.34 | 0.83 | |
LGA | 98.36 ± 20.16 | 99.86 ± 5.40 | 0.87 | |
MGA | 93.03 ± 27.41 | 100.02 ± 12.59 | 0.48 | |
RCR | SCM | 101.61 ± 34.05 | 96.36 ± 15.08 | 0.97 |
MM | 101.47 ± 15.98 | 88.14 ± 5.68 | 0.12 | |
LGA | 96.17 ± 17.29 | 102.32 ± 15.54 | 0.44 | |
MGA | 98.35 ± 17.43 | 93.99 ± 11.13 | 0.53 | |
CSP | Male | Female | p Value | |
BCR | SCM | 87.58 ± 15.20 | 107.52 ± 22.91 | 0.09 |
MM | 96.32 ± 3.43 | 120.96 ± 4.82 | 0.00 * | |
LGA | 113.16 ± 25.71 | 111.65 ± 15.82 | 0.89 | |
MGA | 98.19 ± 7.76 | 89.26 ± 17.57 | 0.27 | |
LCR | SCM | 105.19 ± 21.61 | 119.68 ± 6.81 | 0.23 |
MM | 114.73 ± 10.54 | 125.09 ± 19.27 | 0.26 | |
LGA | 110.29 ± 25.57 | 107.71 ± 18.82 | 0.83 | |
MGA | 103.38 ± 8.49 | 88.53 ± 14.37 | 0.05 | |
RCR | SCM | 85.32 ± 23.91 | 111.50 ± 20.96 | 0.05 |
MM | 77.94 ± 21.75 | 107.29 ± 20.77 | 0.03 * | |
LGA | 108.02 ± 27.97 | 109.79 ± 21.29 | 0.90 | |
MGA | 103.21 ± 9.033 | 91.03 ± 14.84 | 0.10 |
BCR (POC%) | LCR (POC%) | RCR (POC%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Control | CSP | p Value | Control | CSP | p Value | Control | CSP | p Value | |
SCM | 104.30 ± 17.90 | 96.11 ± 16.65 | 0.196 | 103.27 ± 24.48 | 113.47 ± 20.86 | 0.223 | 98.70 ± 24.60 | 100.99 ± 17.80 | 0.771 |
MM | 97.94 ± 16.91 | 110.40 ± 16.97 | 0.048 * | 109.79 ± 4.36 | 120.65 ± 16.46 | 0.095 | 94.06 ± 17.96 | 94.71 ± 25.32 | 0.933 |
LGA | 100.22 ± 13.14 | 112.30 ± 19.74 | 0.047 * | 101.42 ± 13.35 | 108.82 ± 21.07 | 0.235 | 99.58 ± 16.15 | 109.03 ± 23.36 | 0.186 |
MGA | 97.60 ± 13.57 | 93.08 ± 14.50 | 0.372 | 98.02 ± 18.02 | 94.89 ± 14.04 | 0.596 | 95.93 ± 13.99 | 96.25 ± 13.75 | 0.949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, K.; Shao, Z.; Lyu, C.; Zou, D. The Effect of Asymmetrical Occlusion on Surface Electromyographic Activity in Subjects with a Chewing Side Preference: A Preliminary Study. Healthcare 2023, 11, 1718. https://doi.org/10.3390/healthcare11121718
Zhang Y, Liu K, Shao Z, Lyu C, Zou D. The Effect of Asymmetrical Occlusion on Surface Electromyographic Activity in Subjects with a Chewing Side Preference: A Preliminary Study. Healthcare. 2023; 11(12):1718. https://doi.org/10.3390/healthcare11121718
Chicago/Turabian StyleZhang, Yubing, Kun Liu, Zhengwei Shao, Chengqi Lyu, and Derong Zou. 2023. "The Effect of Asymmetrical Occlusion on Surface Electromyographic Activity in Subjects with a Chewing Side Preference: A Preliminary Study" Healthcare 11, no. 12: 1718. https://doi.org/10.3390/healthcare11121718
APA StyleZhang, Y., Liu, K., Shao, Z., Lyu, C., & Zou, D. (2023). The Effect of Asymmetrical Occlusion on Surface Electromyographic Activity in Subjects with a Chewing Side Preference: A Preliminary Study. Healthcare, 11(12), 1718. https://doi.org/10.3390/healthcare11121718