Effects of Rearfoot Eversion on Foot Plantar Pressure and Spatiotemporal Gait Parameters in Adolescent Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Body Composition Measurement
2.2.2. Foot Morphological Measurement
2.2.3. Muscle Strength and Joint Mobility Measurement
2.2.4. Gait Functional Assessment
2.2.5. Plantar Pressure Measurement
2.2.6. Spatiotemporal Measurement
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adirim, T.A.; Cheng, T.L. Overview of injuries in the young athlete. Sports Med. 2003, 33, 75–81. [Google Scholar] [CrossRef]
- Conn, J.M.; Annest, J.L.; Bossarte, R.M.; Gilchrist, J. Non-fatal sports and recreational violent injuries among children and teenagers, United States, 2001–2003. J. Sci. Med. Sport 2006, 9, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Gonzalez, P.; Martinez-Castillo, J.L.; Fernandez-Galvan, L.M.; Casado, A.; Soporki, S.; Sanchez-Infante, J. Epidemiology of Sports-Related Injuries and Associated Risk Factors in Adolescent Athletes: An Injury Surveillance. Int. J. Environ. Res. Public Health 2021, 18, 4857. [Google Scholar] [CrossRef] [PubMed]
- Habelt, S.; Hasler, C.C.; Steinbruck, K.; Majewski, M. Sport injuries in adolescents. Orthop. Rev. 2011, 3, e18. [Google Scholar] [CrossRef] [Green Version]
- Emery, C.A. Risk factors for injury in child and adolescent sport: A systematic review of the literature. Clin. J. Sport Med. 2003, 13, 256–268. [Google Scholar] [CrossRef]
- McGuine, T.A.; Greene, J.J.; Best, T.; Leverson, G. Balance as a predictor of ankle injuries in high school basketball players. Clin. J. Sport Med. 2000, 10, 239–244. [Google Scholar] [CrossRef]
- Tsai, L.C.; Yu, B.; Mercer, V.S.; Gross, M.T. Comparison of different structural foot types for measures of standing postural control. J. Orthop. Sports Phys. Ther. 2006, 36, 942–953. [Google Scholar] [CrossRef] [Green Version]
- Tahmasebi, R.; Karimi, M.T.; Satvati, B.; Fatoye, F. Evaluation of standing stability in individuals with flatfeet. Foot Ankle Spec. 2015, 8, 168–174. [Google Scholar] [CrossRef]
- Kim, J.A.; Lim, O.B.; Yi, C.H. Difference in static and dynamic stability between flexible flatfeet and neutral feet. Gait Posture 2015, 41, 546–550. [Google Scholar] [CrossRef]
- Demirbuken, I.; Ozgul, B.; Timurtas, E.; Yurdalan, S.U.; Cekin, M.D.; Polat, M.G. Gender and age impact on plantar pressure distribution in early adolescence. Acta Orthop. Traumatol. Turc. 2019, 53, 215–220. [Google Scholar] [CrossRef]
- Dodelin, D.; Tourny, C.; L’Hermette, M. The biomechanical effects of pronated foot function on gait. An experimental study. Scand. J. Med. Sci. Sports 2020, 30, 2167–2177. [Google Scholar] [CrossRef] [PubMed]
- Onate, J.A.; Everhart, J.S.; Clifton, D.R.; Best, T.M.; Borchers, J.R.; Chaudhari, A.M. Physical Exam Risk Factors for Lower Extremity Injury in High School Athletes: A Systematic Review. Clin. J. Sport Med. 2016, 26, 435–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumala, M.S.; Tinduh, D.; Poerwandari, D. Comparison of Lower Extremities Physical Performance on Male Young Adult Athletes with Normal Foot and Flatfoot. Surabaya Phys. Med. Rehabil. J. 2019, 1, 6–13. [Google Scholar] [CrossRef]
- Sobel, E.; Levitz, S.; Caselli, M.; Brentnall, Z.; Tran, M.Q. Natural history of the rearfoot angle: Preliminary values in 150 children. Foot Ankle Int. 1999, 20, 119–125. [Google Scholar] [CrossRef]
- Chuckpaiwong, B.; Nunley, J.A., 2nd; Queen, R.M. Correlation between static foot type measurements and clinical assessments. Foot Ankle Int. 2009, 30, 205–212. [Google Scholar] [CrossRef]
- Ikuta, Y.; Nakasa, T.; Fujishita, H.; Obayashi, H.; Fukuhara, K.; Sakamitsu, T.; Ushio, K.; Adachi, N. An association between excessive valgus hindfoot alignment and postural stability during single-leg standing in adolescent athletes. BMC Sports Sci. Med. Rehabil. 2022, 14, 64. [Google Scholar] [CrossRef]
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Permana, M.S.; Winarni, T.I.; van der Heide, E. Adopted walking condition for computational simulation approach on bearing of hip joint prosthesis: Review over the past 30 years. Heliyon 2022, 8, e12050. [Google Scholar] [CrossRef]
- McKay, M.J.; Baldwin, J.N.; Ferreira, P.; Simic, M.; Vanicek, N.; Wojciechowski, E.; Mudge, A.; Burns, J.; 1000 Norms Project Consortium. Spatiotemporal and plantar pressure patterns of 1000 healthy individuals aged 3–101 years. Gait Posture 2017, 58, 78–87. [Google Scholar] [CrossRef]
- Kasovic, M.; Stefan, L.; Zvonar, M. Foot characteristics during walking in 6–14-year-old children. Sci. Rep. 2020, 10, 9501. [Google Scholar] [CrossRef] [PubMed]
- DeJong Lempke, A.F.; Whitney, K.E.; Collins, S.E.; d’Hemecourt, P.A.; Meehan Iii, W.P. Biomechanical running gait assessments across prevalent adolescent musculoskeletal injuries. Gait Posture 2022, 96, 123–129. [Google Scholar] [CrossRef]
- Harradine, P.; Bevan, L.; Carter, N. An overview of podiatric biomechanics theory and its relation to selected gait dysfunction. Physiotherapy 2006, 92, 122–127. [Google Scholar] [CrossRef]
- Obayashi, H.; Ikuta, Y.; Fujishita, H.; Fukuhara, K.; Sakamitsu, T.; Ushio, K.; Kimura, H.; Adachi, N. The relevance of whole or segmental body bioelectrical impedance phase angle and physical performance in adolescent athletes. Physiol. Meas. 2021, 42, 035011. [Google Scholar] [CrossRef] [PubMed]
- Jonson, S.R.; Gross, M.T. Intraexaminer reliability, interexaminer reliability, and mean values for nine lower extremity skeletal measures in healthy naval midshipmen. J. Orthop. Sports Phys. Ther. 1997, 25, 253–263. [Google Scholar] [CrossRef]
- Lee, Y.C.; Lin, G.; Wang, M.J. Comparing 3D foot scanning with conventional measurement methods. J. Foot Ankle Res. 2014, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Maeda, N.; Hirota, A.; Komiya, M.; Morikawa, M.; Mizuta, R.; Fujishita, H.; Nishikawa, Y.; Kobayashi, T.; Urabe, Y. Intrinsic foot muscle hardness is related to dynamic postural stability after landing in healthy young men. Gait Posture 2021, 86, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, M.; Maeda, N.; Komiya, M.; Hirota, A.; Mizuta, R.; Kobayashi, T.; Kaneda, K.; Nishikawa, Y.; Urabe, Y. Contribution of Plantar Fascia and Intrinsic Foot Muscles in a Single-Leg Drop Landing and Repetitive Rebound Jumps: An Ultrasound-Based Study. Int. J. Environ. Res. Public Health 2021, 18, 4511. [Google Scholar] [CrossRef] [PubMed]
- Tas, S.; Unluer, N.O.; Cetin, A. Thickness, cross-sectional area, and stiffness of intrinsic foot muscles affect performance in single-leg stance balance tests in healthy sedentary young females. J. Biomech. 2020, 99, 109530. [Google Scholar] [CrossRef]
- Zhang, X.; Schutte, K.H.; Vanwanseele, B. Foot muscle morphology is related to center of pressure sway and control mechanisms during single-leg standing. Gait Posture 2017, 57, 52–56. [Google Scholar] [CrossRef]
- Ushio, K.; Mikami, Y.; Obayashi, H.; Fujishita, H.; Fukuhara, K.; Sakamitsu, T.; Hirata, K.; Ikuta, Y.; Kimura, H.; Adachi, N. Decreased Muscle-to-Fat Mass Ratio Is Associated with Low Muscular Fitness and High Alanine Aminotransferase in Children and Adolescent Boys in Organized Sports Clubs. J. Clin. Med. 2021, 10, 2272. [Google Scholar] [CrossRef]
- Putti, A.B.; Arnold, G.P.; Cochrane, L.; Abboud, R.J. The Pedar in-shoe system: Repeatability and normal pressure values. Gait Posture 2007, 25, 401–405. [Google Scholar] [CrossRef]
- Ramanathan, A.K.; Kiran, P.; Arnold, G.P.; Wang, W.; Abboud, R.J. Repeatability of the Pedar-X in-shoe pressure measuring system. Foot Ankle Surg. 2010, 16, 70–73. [Google Scholar] [CrossRef]
- Carroll, K.; Kennedy, R.A.; Koutoulas, V.; Bui, M.; Kraan, C.M. Validation of shoe-worn Gait Up Physilog(R)5 wearable inertial sensors in adolescents. Gait Posture 2022, 91, 19–25. [Google Scholar] [CrossRef]
- Mariani, B.; Hoskovec, C.; Rochat, S.; Bula, C.; Penders, J.; Aminian, K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006. [Google Scholar] [CrossRef] [PubMed]
- Wuest, S.; Masse, F.; Aminian, K.; Gonzenbach, R.; de Bruin, E.D. Reliability and validity of the inertial sensor-based Timed “Up and Go” test in individuals affected by stroke. J. Rehabil. Res. Dev. 2016, 53, 599–610. [Google Scholar] [CrossRef]
- Liu, X.C.; Lyon, R.; Thometz, J.G.; Curtin, B.; Tarima, S.; Tassone, C. Insole-pressure distribution for normal children in different age groups. J. Pediatr. Orthop. 2011, 31, 705–709. [Google Scholar] [CrossRef]
- Buldt, A.K.; Forghany, S.; Landorf, K.B.; Levinger, P.; Murley, G.S.; Menz, H.B. Foot posture is associated with plantar pressure during gait: A comparison of normal, planus and cavus feet. Gait Posture 2018, 62, 235–240. [Google Scholar] [CrossRef]
- Lee, S.Y.; Hertel, J. Effect of static foot alignment on plantar-pressure measures during running. J. Sport Rehabil. 2012, 21, 137–143. [Google Scholar] [CrossRef]
- Resende, R.A.; Pinheiro, L.S.P.; Ocarino, J.M. Effects of foot pronation on the lower limb sagittal plane biomechanics during gait. Gait Posture 2019, 68, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Prachgosin, T.; Chong, D.Y.; Leelasamran, W.; Smithmaitrie, P.; Chatpun, S. Medial longitudinal arch biomechanics evaluation during gait in subjects with flexible flatfoot. Acta Bioeng. Biomech. 2015, 17, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Okamura, K.; Egawa, K.; Ikeda, T.; Fukuda, K.; Kanai, S. Relationship between foot muscle morphology and severity of pronated foot deformity and foot kinematics during gait: A preliminary study. Gait Posture 2021, 86, 273–277. [Google Scholar] [CrossRef]
- Zhang, X.; Pauel, R.; Deschamps, K.; Jonkers, I.; Vanwanseele, B. Differences in foot muscle morphology and foot kinematics between symptomatic and asymptomatic pronated feet. Scand. J. Med. Sci. Sports 2019, 29, 1766–1773. [Google Scholar] [CrossRef]
- Anderson, R.B. Turf Toe Injuries of the Hallux Metatarsophalangeal Joint. Tech. Foot Ankle Surg. 2002, 1, 102–111. [Google Scholar] [CrossRef]
- Chauvin, N.A.; Jaimes, C.; Khwaja, A. Ankle and Foot Injuries in the Young Athlete. Semin. Musculoskelet. Radiol. 2018, 22, 104–117. [Google Scholar] [CrossRef]
- Brophy, R.H.; Gamradt, S.C.; Ellis, S.J.; Barnes, R.P.; Rodeo, S.A.; Warren, R.F.; Hillstrom, H. Effect of turf toe on foot contact pressures in professional American football players. Foot Ankle Int. 2009, 30, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Yokozuka, M.; Okazaki, K.; Sakamoto, Y.; Takahashi, K. Correlation between functional ability, toe flexor strength, and plantar pressure of hallux valgus in young female adults: A cross-sectional study. J. Foot Ankle Res. 2020, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Ammarullah, M.I.; Hartono, R.; Supriyono, T.; Santoso, G.; Sugiharto, S.; Permana, M.S. Polycrystalline diamond as a potential material for the hard-on-hard bearing of total hip prosthesis: Von Mises stress analysis. Biomedicines 2023, 11, 951. [Google Scholar] [CrossRef] [PubMed]
Control Group (n = 45) | RE Group (n = 33) | p Value | |
---|---|---|---|
Female (%) | 24 (53.3) | 16 (48.5) | 0.819 |
Age (years) | 13.9 ± 0.88 | 13.4 ± 0.97 | 0.038 |
Body height (cm) | 161.4 ± 7.22 | 160.7 ± 5.24 | 0.663 |
Body mass (kg) | 55.5 ± 12.07 | 52.7 ± 8.19 | 0.293 |
BMI (kg/m2) | 21.2 ± 3.46 | 20.4 ± 2.43 | 0.373 |
Body fat percent (%) | 20.0 ± 7.45 | 17.6 ± 7.01 | 0.142 |
Control Group (n = 45) | RE Group (n = 33) | p Value | |
---|---|---|---|
Foot morphological parameters | |||
Navicular Index | 6.9 ± 1.11 | 7.4 ± 1.07 | 0.046 |
Navicular drop (mm) | 8.4 ± 2.88 | 8.2 ± 2.94 | 0.717 |
AbH CSA (mm2) | 243.5 ± 56.62 | 241.5 ± 72.50 | 0.895 |
AbH thickness (mm) | 11.4 ± 2.07 | 11.4 ± 2.20 | 0.846 |
FDB CSA (mm2) | 191.8 ± 48.70 | 206.1 ± 52.94 | 0.222 |
FDB, thickness (mm) | 7.5 ± 1.56 | 7.9 ± 1.54 | 0.321 |
FHB CSA (mm2) | 208.7 ± 31.68 | 218.4 ± 32.02 | 0.187 |
FHB, thickness (mm) | 10.5 ± 1.91 | 10.4 ± 1.42 | 0.842 |
Muscle strength parameters | |||
Ankle plantarflexion (Nm/kg) | 80.6 ± 25.54 | 87.0 ± 26.53 | 0.291 |
Ankle dorsiflexion (Nm/kg) | 37.6 ± 8.41 | 44.9 ± 16.72 | 0.041 |
Toe flexor strength (kg) | 19.1 ± 5.69 | 20.3 ± 5.52 | 0.671 |
Ankle range of motion | |||
Plantarflexion (°) | 47.0 ± 11.20 | 49.4 ± 5.97 | 0.542 |
Dorsiflexion (°) | 11.1 ± 10.22 | 9.4 ± 5.27 | 0.823 |
Plantar pressure variables | |||
Total contact area (cm2) | 141.2 ± 12.75 | 138.1 ± 11.18 | 0.266 |
FTI (N-s) | 1973.4 ± 481.98 | 1667.9 ± 464.27 | 0.006 |
WPP (kPa) | 279.6 ± 32.58 | 251.2 ± 76.07 | 0.517 |
M1 (kPa) | 111.3 ± 25.71 | 99.2 ± 19.69 | 0.026 |
M2 (kPa) | 115.9 ± 22.61 | 103.8 ± 22.32 | 0.021 |
M3 (kPa) | 22.8 ± 14.44 | 24.8 ± 12.32 | 0.515 |
M4 (kPa) | 64.2 ± 15.63 | 57.6 ± 14.63 | 0.062 |
M5 (kPa) | 119.6 ± 40.39 | 100.8 ± 33.45 | 0.033 |
M6 (kPa) | 115.8 ± 28.21 | 98.8 ± 27.68 | 0.010 |
M7 (kPa) | 103.1 ± 24.34 | 86.8 ± 19.06 | 0.002 |
M8 (kPa) | 131.7 ± 54.12 | 158.4 ± 54.37 | 0.034 |
M9 (kPa) | 59.5 ± 20.57 | 63.6 ± 18.91 | 0.376 |
Spatiotemporal variables | |||
GCT (s) | 1.13 ± 0.07 | 1.10 ± 0.05 | 0.034 |
cadence (steps/min) | 107.1 ± 6.83 | 109.7 ± 4.76 | 0.050 |
stance (% gct) | 62.4 ± 2.00 | 62.4 ± 1.56 | 0.986 |
swing (% gct) | 37.6 ± 2.00 | 37.6 ± 1.56 | 0.986 |
LDr (% stance) | 10.0 ± 2.34 | 11.1 ± 2.26 | 0.052 |
FFr (% stance) | 54.5 ± 5.81 | 52.4 ± 5.23 | 0.104 |
Pur (% stance) | 35.5 ± 5.17 | 36.5 ± 5.10 | 0.219 |
slength (m) | 1.3 ± 0.12 | 1.3 ± 0.09 | 0.262 |
speed (m/s) | 1.1 ± 0.16 | 1.2 ± 0.10 | 0.126 |
HSP (°) | 21.7 ± 6.62 | 24.5 ± 3.12 | 0.015 |
TOP (°) | −73.8 ± 10.90 | −78.0 ± 5.61 | 0.088 |
peak-swing speed (°/s) | 370.5 ± 64.60 | 395.2 ± 30.70 | 0.068 |
Model 1 | Model 2 | Final Model | |||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p Value | OR | 95% CI | p Value | OR | 95% CI | p Value | |
Plantar pressure parameters | |||||||||
M1 (kPa) | 0.974 | 0.952–0.998 | 0.030 | 0.965 | 0.941–0.990 | 0.007 | |||
M2 (kPa) | 0.994 | 0.957–1.031 | 0.731 | ||||||
M5 (kPa) | 0.989 | 0.973–1.005 | 0.173 | ||||||
M6 (kPa) | 1.000 | 0.968–1.033 | 0.999 | ||||||
M7 (kPa) | 0.969 | 0.944–0.994 | 0.015 | 0.975 | 0.950–1.001 | 0.056 | |||
M8 (kPa) | 1.012 | 1.002–1.022 | 0.019 | 1.011 | 1.001–1.021 | 0.033 | |||
Spatiotemporal parameters | |||||||||
GCT (s) | 0.034 | 0.000–329.306 | 0.470 | ||||||
HSP (°) | 1.107 | 1.008–1.216 | 0.033 | 1.134 | 1.003–1.283 | 0.015 | |||
TOP (°) | 0.953 | 0.881–1.031 | 0.229 | ||||||
peak-swing (°/s) | 0.987 | 0.961–1.014 | 0.341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujishita, H.; Ikuta, Y.; Maeda, N.; Komiya, M.; Morikawa, M.; Arima, S.; Sakamitsu, T.; Obayashi, H.; Fukuhara, K.; Ushio, K.; et al. Effects of Rearfoot Eversion on Foot Plantar Pressure and Spatiotemporal Gait Parameters in Adolescent Athletes. Healthcare 2023, 11, 1842. https://doi.org/10.3390/healthcare11131842
Fujishita H, Ikuta Y, Maeda N, Komiya M, Morikawa M, Arima S, Sakamitsu T, Obayashi H, Fukuhara K, Ushio K, et al. Effects of Rearfoot Eversion on Foot Plantar Pressure and Spatiotemporal Gait Parameters in Adolescent Athletes. Healthcare. 2023; 11(13):1842. https://doi.org/10.3390/healthcare11131842
Chicago/Turabian StyleFujishita, Hironori, Yasunari Ikuta, Noriaki Maeda, Makoto Komiya, Masanori Morikawa, Satoshi Arima, Tetsuhiko Sakamitsu, Hiromune Obayashi, Kouki Fukuhara, Kai Ushio, and et al. 2023. "Effects of Rearfoot Eversion on Foot Plantar Pressure and Spatiotemporal Gait Parameters in Adolescent Athletes" Healthcare 11, no. 13: 1842. https://doi.org/10.3390/healthcare11131842
APA StyleFujishita, H., Ikuta, Y., Maeda, N., Komiya, M., Morikawa, M., Arima, S., Sakamitsu, T., Obayashi, H., Fukuhara, K., Ushio, K., & Adachi, N. (2023). Effects of Rearfoot Eversion on Foot Plantar Pressure and Spatiotemporal Gait Parameters in Adolescent Athletes. Healthcare, 11(13), 1842. https://doi.org/10.3390/healthcare11131842