Changed Digital Technology Perceptions and Influencing Factors among Older Adults during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Research Design and Methods
2.1. Research Design
2.2. Study Sample and Data Collection
2.3. Research Instruments
2.3.1. Demographic Characteristics
2.3.2. Digital Networking
2.3.3. Accessibility to Digital Devices
2.3.4. Ability to Use Digital Devices
2.3.5. Self-Efficacy for Digital Devices
2.3.6. Changed Perceptions of Digital Technology
2.4. Ethical Considerations
2.5. Data Analysis
3. Results
3.1. Demographic Characteristics and Levels of Research Variables
3.2. Correlations between Digital Technology Perceptions and Research Variables
3.3. Influencing Factors for Changed Digital Technology Perceptions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182. [Google Scholar] [CrossRef]
- Golinelli, D.; Boetto, E.; Carullo, G.; Nuzzolese, A.G.; Landini, M.P.; Fantini, M.P. Adoption of digital technologies in health care during the COVID-19 pandemic: Systematic review of early scientific literature. J. Med. Internet Res. 2020, 22, e22280. [Google Scholar] [CrossRef] [PubMed]
- Kaihlanen, A.M.; Virtanen, L.; Buchert, U.; Safarov, N.; Valkonen, P.; Hietapakka, L.; Hörhammer, I.; Kujala, S.; Kouvonen, A.; Heponiemi, T. Towards digital health equity-a qualitative study of the challenges experienced by vulnerable groups in using digital health services in the COVID-19 era. BMC Health Serv. Res. 2022, 22, 188. [Google Scholar] [CrossRef]
- Pérez-Escolar, M.; Canet, F. Research on vulnerable people and digital inclusion: Toward a consolidated taxonomical framework. Univ. Access Inf. Soc. 2022, 22, 1059–1072. [Google Scholar] [CrossRef]
- Cheshmehzangi, A.; Zou, T.; Zhang, Y.; Chen, H.; Su, Z.; Dawodu, A.; Xie, L. Commentary: Reflecting on the neglected digital divide barriers of telemedicine during COVID-19. Front. Public Health 2022, 10, 915401. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Zhang, S.; Zhu, S.; Ni, J.; Wu, Q.; Liu, M. The new role of nursing in digital inclusion: Reflections on smartphone use and willingness to increase digital skills among Chinese older adults. Geriatr. Nurs. 2022, 48, 114–122. [Google Scholar] [CrossRef]
- Choi, N.G.; DiNitto, D.M. Internet use among older adults: Association with health needs, psychological capital, and social capital. J. Med. Internet Res. 2013, 15, e2333. [Google Scholar] [CrossRef]
- Seifert, A.; Batsis, J.A.; Smith, A.C. Telemedicine in long-term care facilities during and beyond COVID-19: Challenges caused by the digital divide. Front. Public Health 2020, 8, 601595. [Google Scholar] [CrossRef]
- Berg, T.; Winterton, R.; Petersen, M.; Warburton, J. ‘Although we’re isolated, we’re not really isolated’: The value of information and communication technology for older people in rural Australia. Australas J. Ageing 2017, 36, 313–317. [Google Scholar] [CrossRef]
- Wu, Y.H.; Damnee, S.; Kerherve, H.; Ware, C.; Rigaud, A.S. Bridging the digital divide in older adults: A study from an initiative to inform older adults about new technologies. Clin. Interv. Aging 2015, 10, 193–201. [Google Scholar] [CrossRef]
- Berkowsky, R.W.; Sharit, J.; Czaja, S.J. Factors predicting decisions about technology adoption among older adults. Innov. Aging 2018, 1, igy002. [Google Scholar] [CrossRef]
- Friemel, T.N. The digital divide has grown old: Determinants of a digital divide among seniors. New Media Soc. 2016, 18, 313–331. [Google Scholar] [CrossRef]
- Miller, L.M.S.; Bell, R.A. Online health information seeking: The influence of age, information trustworthiness, and search challenges. J. Aging. Health 2012, 24, 525–541. [Google Scholar] [CrossRef]
- Gjevjon, E.R.; Øderud, T.; Wensaas, G.H.; Moen, A. Toward a typology of technology users: How older people experience technology’s potential for active aging. Stud. Health Technol. Inform. 2014, 201, 25–31. [Google Scholar] [PubMed]
- Shin, H.R.; Yoon, T.Y.; Kim, S.K.; Kim, Y.S. An exploratory study on changes in daily life of the elderly amid COVID-19—Focusing on technology use and restrictions on participation in elderly welfare centers. Korean J. Gerontol. Soc. Wel. 2020, 75, 207–232. [Google Scholar] [CrossRef]
- Zapletal, A.; Wells, T.; Russell, E.; Skinner, M.W. On the triple exclusion of older adults during COVID-19: Technology, digital literacy and social isolation. Soc. Sci. Humanit. Open 2023, 8, 100511. [Google Scholar] [CrossRef]
- Nganda, J.M. Contextualizing the Technology Acceptance Model for Application in Health Communication in Africa. In Media and Communication Theory in Africa; Palgrave Macmillan Cham: London, UK, 2023; pp. 321–338. [Google Scholar] [CrossRef]
- Van Deursen, A.J. Digital inequality during a pandemic: Quantitative study of differences in COVID-19–related internet uses and outcomes among the general population. J. Med. Internet Res. 2020, 22, e20073. [Google Scholar] [CrossRef]
- Xie, B.; Charness, N.; Fingerman, K.; Kaye, J.; Kim, M.T.; Khurshid, A. When going digital becomes a necessity: Ensuring older adults’ needs for information, services, and social inclusion during COVID-19. J. Aging Soc. Policy 2022, 32, 460–470. [Google Scholar] [CrossRef]
- Betts, L.R.; Hill, R.; Gardner, S.E. “There’s not enough knowledge out there”: Examining older adults’ perceptions of digital technology use and digital inclusion classes. J. Appl. Gerontol. 2019, 38, 1147–1166. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.Y.S.; Shillair, R.; Cotten, S.R. Social support and “playing around” an examination of how older adults acquire digital literacy with tablet computers. J. Appl. Gerontol. 2017, 36, 29–55. [Google Scholar] [CrossRef] [Green Version]
- Medlock, S.; Eslami, S.; Askari, M.; Arts, D.L.; Sent, D.; De Rooij, S.E.; Abu-Hanna, A. Health information–seeking behavior of seniors who use the internet: A survey. J. Med. Internet Res. 2015, 17, e10. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.; Mosadeghi, S.; Almario, C.V. Persistent digital divide in access to and use of the Internet as a resource for health information: Results from a California population-based study. Int. J. Med. Inform. 2017, 103, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.G.S.; Nogueras, D.; van Woerden, H.C.; Kiparoglou, V. Evaluation of the effectiveness of digital technology interventions to reduce loneliness in older adults: Systematic review and meta-analysis. J. Med. Internet Res. 2021, 23, e24712. [Google Scholar] [CrossRef]
- National Information Society Agency. The Report on the Digital Divide. 2021. Available online: https://www.msit.go.kr/bbs/view.do?sCode=user&bbsSeqNo=79&nttSeqNo=3173457 (accessed on 8 August 2022).
- Vinnikova, A.; Lu, L.; Wei, J.; Fang, G.; Yan, J. The Use of Smartphone Fitness Applications: The Role of Self-Efficacy and Self-Regulation. Int. J. Environ. Res. Public Health 2020, 17, 7639. [Google Scholar] [CrossRef] [PubMed]
- Cebreros-Valenzuela, D.; Mortis-Lozoya, S.V.; Hierro-Parra, E.D.; Muñoz-Arteaga, J. Efficacy of a cognitive stimulation programme using technology on older adults’ self-esteem, self-efficacy, and autonomy. Rev. Latinoam. Psicol. 2020, 52, 42–50. [Google Scholar] [CrossRef]
- Eastin, M.S.; LaRose, R. Internet self-efficacy and the psychology of the digital divide. J. Comput. Mediat. Commun. 2000, 6, JCMC611. [Google Scholar] [CrossRef]
- Ogonowski, C.; Aal, K.; Vaziri, D.; Rekowski, T.V.; Randall, D.; Schreiber, D.; Wieching, R.; Wulf, V. ICT-based fall prevention system for older adults: Qualitative results from a long-term field study. ACM Trans. Comput. Hum. Interact. 2016, 23, 1–33. [Google Scholar] [CrossRef]
- Teixeira, E.; Fonseca, H.; Diniz-Sousa, F.; Veras, L.; Boppre, G.; Oliveira, J.; Pinto, D.; Alves, A.J.; Barbosa, A.; Mendes, R.; et al. Wearable devices for physical activity and healthcare monitoring in elderly people: A critical review. Geriatrics 2021, 6, 38. [Google Scholar] [CrossRef]
- Sims, T.; Reed, A.E.; Carr, D.C. Information and communication technology use is related to higher well-being among the oldest-old. J. Gerontol. B Psychol. Sci. Soc. Sci. 2017, 72, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Choukou, M.A.; Sanchez-Ramirez, D.C.; Pol, M.; Uddin, M.; Monnin, C.; Syed-Abdul, S. COVID-19 infodemic and digital health literacy in vulnerable populations: A scoping review. Digit. Health 2022, 8, 20552076221076927. [Google Scholar] [CrossRef]
- Shapira, S.; Yeshua-Katz, D.; Cohn-Schwartz, E.; Aharonson-Daniel, L.; Sarid, O.; Clarfield, A.M. A pilot randomized controlled trial of a group intervention via Zoom to relieve loneliness and depressive symptoms among older persons during the COVID-19 outbreak. Internet Interv. 2021, 24, 100368. [Google Scholar] [CrossRef]
- Litchfield, I.; Shukla, D.; Greenfield, S. Impact of COVID-19 on the digital divide: A rapid review. BMJ Open 2021, 11, e053440. [Google Scholar] [CrossRef] [PubMed]
- Runfola, M.; Fantola, G.; Pintus, S.; Iafrancesco, M.; Moroni, R. Telemedicine implementation on a bariatric outpatient clinic during COVID-19 pandemic in Italy: An unexpected hill-start. Obes. Surg. 2020, 30, 5145–5149. [Google Scholar] [CrossRef] [PubMed]
- Jun, W. A study on the current status and improvement of the digital divide among older people in korea. Int. J. Environ. Res. Public Health 2020, 17, 3917. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, H.; Zhang, Y.; Du, C.; Li, H.; Zhao, J. Current situation and influencing factors of e-health literacy among rural older adults in Zhengzhou. Modern Prevent. Med. 2020, 47, 283–309. [Google Scholar]
- Bailis, D.S.; Segall, A.; Chipperfield, J.G. Two views of self-rated general health status. Soc. Sci. Med. 2003, 56, 203–217. [Google Scholar] [CrossRef]
- Ozduran, E.; Büyükçoban, S. A content analysis of the reliability and quality of Youtube videos as a source of information on health-related post-COVID pain. PeerJ 2022, 10, e14089. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, C.; Luo, S.; Xie, Y.; Liu, F.; Li, X.; Zhou, Z. Factors Influencing Patients’ Intentions to Use Diabetes Management Apps Based on an Extended Unified Theory of Acceptance and Use of Technology Model: Web-Based Survey. J. Med. Internet Res. 2019, 21, e15023. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Categories | Total | Digital Technology Perceptions | |
---|---|---|---|---|
n (%) | Mean ± SD | t or F (p/Post hoc) | ||
Sex | Male | 509 (43.5) | 3.22 ± 0.78 | 4.58 (<0.001) |
Female | 662 (56.5) | 2.99 ± 0.87 | ||
Age (years) | 71.9 ± 5.3 * | |||
65∼74 | 872 (74.5) | 3.19 ± 0.81 | 6.77 (<0.001) | |
≥75 | 299 (25.5) | 2.81 ± 0.86 | ||
Economic activities | Yes | 430 (36.7) | 3.24 ± 0.79 | 4.68 (<0.001) |
No | 741 (63.3) | 3.00 ± 0.86 | ||
Education | ≤Elementary school a | 365 (31.2) | 2.70 ± 0.88 | 75.91 (<0.001) |
Middle school b | 378 (32.3) | 3.12 ± 0.80 | a < b < c | |
≥High school c | 427 (36.5) | 3.40 ± 0.70 | ||
Monthly household | <100 a | 188 (16.0) | 2.66 ± 0.87 | 43.99 (<0.001) |
Income (KRW 10,000) | 100∼299 b | 643 (54.9) | 3.07 ± 0.82 | a < b < c |
≥300 c | 340 (29.1) | 3.36 ± 0.76 | ||
Household type | Living alone | 236 (20.1) | 2.89 ± 0.85 | 4.05 (<0.001) |
Two or more | 935 (79.9) | 3.14 ± 0.83 | ||
Residential area unit | City | 1059 (90.5) | 3.11 ± 0.84 | 2.45 (0.014) |
Country | 112 (9.5) | 2.90 ± 0.83 | ||
Perceived health status | Dissatisfied | 553 (47.3) | 2.85 ± 0.83 | 9.63 (<0.001) |
Satisfied | 617 (52.7) | 3.31 ± 0.79 | ||
Digitally leveraged | Yes | 430 (36.7) | 3.48 ± 0.70 | 13.34 (<0.001) |
networking | No | 741 (63.3) | 2.87 ± 0.83 |
Variables | M ± SD | Pearson’s Correlation Coefficient * | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
1. Accessibility to Digital Information | 76.30 ± 23.70 | ||||
2. Ability to Use Digital Devices | 20.75 ± 27.81 | 0.546 (<0.001) | |||
3. Self-Efficacy for Digital Devices | 1.97 ± 0.74 | 0.449 (<0.001) | 0.478 (<0.001) | ||
4. Changed Digital Technology Perceptions | 3.09 ± 0.84 | 0.387 (<0.001) | 0.370 (<0.001) | 0.511 (<0.001) |
Variables | B | SE | Β | T | p | 95% CI | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
(Constant) | 1.76 | 0.11 | 16.14 | <0.001 | 1.55 | 1.98 | ||
Sex (ref: Female) | Male | 0.02 | 0.05 | 0.01 | 0.40 | 0.693 | −0.08 | 0.11 |
Age (years) (ref: ≥75) | 65∼74 | 0.02 | 0.05 | 0.01 | 0.44 | 0.659 | −0.08 | 0.12 |
Economic activities (ref: No) | −0.03 | 0.05 | −0.01 | −0.51 | 0.612 | −0.12 | 0.07 | |
Education (ref: ≤Elementary school) | Middle school | 0.06 | 0.06 | 0.03 | 1.08 | 0.282 | −0.05 | 0.17 |
≥High school | 0.06 | 0.06 | 0.03 | 0.94 | 0.346 | −0.07 | 0.19 | |
Monthly income (KRW 10,000) | 100∼299 | 0.08 | 0.07 | 0.05 | 1.17 | 0.241 | −0.05 | 0.21 |
(ref: ≤100) | ≥300 | 0.09 | 0.09 | 0.05 | 1.01 | 0.315 | −0.08 | 0.25 |
Household type (ref: Living alone) | Two or more | −0.01 | 0.06 | −0.01 | −0.24 | 0.811 | −0.13 | 0.10 |
Residential area unit (ref: Country) | City | −0.02 | 0.07 | −0.01 | −0.32 | 0.746 | −0.16 | 0.12 |
Perceived health status (ref: Dissatisfied) | Satisfied | 0.13 | 0.05 | 0.08 | 2.96 | 0.003 | 0.05 | 0.22 |
Digitally leveraged networking (ref: No) | Yes | 0.19 | 0.05 | 0.11 | 3.73 | <0.001 | 0.09 | 0.29 |
Accessibility to digital information | 0.01 | 0.01 | 0.10 | 3.09 | 0.002 | 0.01 | 0.01 | |
Ability to use digital devices | 0.01 | 0.01 | 0.06 | 1.71 | 0.088 | 0.01 | 0.01 | |
Self-efficacy for digital devices | 0.39 | 0.04 | 0.35 | 11.30 | <0.001 | 0.33 | 0.46 | |
R2 | 0.316 | |||||||
Adjusted R2 | 0.308 | |||||||
F(p) | 38.15(<0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, O.-H.; Cho, J. Changed Digital Technology Perceptions and Influencing Factors among Older Adults during the COVID-19 Pandemic. Healthcare 2023, 11, 2146. https://doi.org/10.3390/healthcare11152146
Cho O-H, Cho J. Changed Digital Technology Perceptions and Influencing Factors among Older Adults during the COVID-19 Pandemic. Healthcare. 2023; 11(15):2146. https://doi.org/10.3390/healthcare11152146
Chicago/Turabian StyleCho, Ok-Hee, and Junghee Cho. 2023. "Changed Digital Technology Perceptions and Influencing Factors among Older Adults during the COVID-19 Pandemic" Healthcare 11, no. 15: 2146. https://doi.org/10.3390/healthcare11152146
APA StyleCho, O. -H., & Cho, J. (2023). Changed Digital Technology Perceptions and Influencing Factors among Older Adults during the COVID-19 Pandemic. Healthcare, 11(15), 2146. https://doi.org/10.3390/healthcare11152146