Comparative Efficacy of Vibration foam Rolling and Cold Water Immersion in Amateur Basketball Players after a Simulated Load of Basketball Game
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant
2.2. Experimental Setup
2.2.1. Basketball Game Simulation
2.2.2. Experimental Intervention Methods
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Effect of Different Interventions on Explosive Power
3.2. Influence of Different Intervention Methods on Agility
3.3. Influence of Different Intervention Methods on Dynamic Balance Ability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allan, R.; Malone, J.; Alexander, J.; Vorajee, S.; Ihsan, M.; Gregson, W.; Kwiecien, S.; Mawhinney, C. Cold for centuries: A brief history of cryotherapies to improve health, injury and post-exercise recovery. Eur. J. Appl. Physiol. 2022, 122, 1153–1162. [Google Scholar] [CrossRef]
- Song, Y.; Cen, X.; Chen, H.; Sun, D.; Munivrana, G.; Bálint, K.; Bíró, I.; Gu, Y. The influence of running shoe with different carbon-fiber plate designs on internal foot mechanics: A pilot computational analysis. J. Biomech. 2023, 153, 111597. [Google Scholar] [CrossRef] [PubMed]
- White, G.E.; Wells, G.D. Cold-water immersion and other forms of cryotherapy: Physiological changes potentially affecting recovery from high-intensity exercise. Extrem. Physiol. Med. 2013, 2, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Moraleda, B.; González-García, J.; Cuéllar-Rayo, Á.; Balsalobre-Fernández, C.; Muñoz-García, D.; Morencos, E. Effects of Vibration and Non-Vibration Foam Rolling on Recovery after Exercise with Induced Muscle Damage. J. Sports Sci. Med. 2019, 18, 172–180. [Google Scholar] [PubMed]
- Song, Y.; Cen, X.; Zhang, Y.; Bíró, I.; Ji, Y.; Gu, Y. Development and Validation of a Subject-Specific Coupled Model for Foot and Sports Shoe Complex: A Pilot Computational Study. Bioengineering 2022, 9, 553. [Google Scholar] [CrossRef]
- Terrados, N.; Mielgo-Ayuso, J.; Delextrat, A.; Ostojic, S.M.; Calleja-Gonzalez, J. Dietetic-nutritional, physical and physiological recovery methods post-competition in team sports. J. Sports Med. Phys. Fit. 2019, 59, 415–428. [Google Scholar] [CrossRef]
- Song, Y.; Shao, E.; Bíró, I.; Baker, J.S.; Gu, Y. Finite element modelling for footwear design and evaluation: A systematic scoping review. Heliyon 2022, 8, e10940. [Google Scholar] [CrossRef]
- Farkhari Babak, M.; Mosaferi Ziaaldini, M.; Hoseini Seyyed Reza, A. Experience of cold-water immersion on recovery efficiency after soccer match. La Tunis. Medicale 2021, 99, 252–258. [Google Scholar]
- Pritchett, K.; Pritchett, R. Chocolate milk: A post-exercise recovery beverage for endurance sports. Med. Sport Sci. 2012, 59, 127–134. [Google Scholar] [CrossRef]
- Tiidus, P.M. Manual massage and recovery of muscle function following exercise: A literature review. J. Orthop. Sports Phys. Ther. 1997, 25, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Dupuy, O.; Douzi, W.; Theurot, D.; Bosquet, L.; Dugué, B. An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review with Meta-Analysis. Front. Physiol. 2018, 9, 403. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [Green Version]
- Mancha-Triguero, D.; García-Rubio, J.; Calleja-González, J.; Ibáñez, S.J. Physical fitness in basketball players: A systematic review. J. Sports Med. Phys. Fit. 2019, 59, 1513–1525. [Google Scholar] [CrossRef]
- Anderson, D.; Nunn, J.; Tyler, C.J. Effect of Cold (14 °C) vs. Ice (5 °C) Water Immersion on Recovery From Intermittent Running Exercise. J. Strength Cond. Res. 2018, 32, 764–771. [Google Scholar] [CrossRef] [Green Version]
- White, G.E.; Rhind, S.G.; Wells, G.D. The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise. Eur. J. Appl. Physiol. 2014, 114, 2353–2367. [Google Scholar] [CrossRef]
- Swenson, C.; Swärd, L.; Karlsson, J. Cryotherapy in sports medicine. Scand. J. Med. Sci. Sports 1996, 6, 193–200. [Google Scholar] [CrossRef]
- Tipton, M.J.; Collier, N.; Massey, H.; Corbett, J.; Harper, M. Cold water immersion: Kill or cure? Exp. Physiol. 2017, 102, 1335–1355. [Google Scholar] [CrossRef] [Green Version]
- Mawhinney, C.; Low, D.A.; Jones, H.; Green, D.J.; Costello, J.T.; Gregson, W. Cold Water Mediates Greater Reductions in Limb Blood Flow than Whole Body Cryotherapy. Med. Sci. Sports Exerc. 2017, 49, 1252–1260. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Davis, J.K.; Casa, D.J.; Bishop, P.A. Optimizing Cold Water Immersion for Exercise-Induced Hyperthermia: A Meta-analysis. Med. Sci. Sports Exerc. 2015, 47, 2464–2472. [Google Scholar] [CrossRef]
- Meeusen, R.; Lievens, P. The use of cryotherapy in sports injuries. Sports Med. 1986, 3, 398–414. [Google Scholar] [CrossRef]
- Reiner, M.M.; Glashüttner, C.; Bernsteiner, D.; Tilp, M.; Guilhem, G.; Morales-Artacho, A.; Konrad, A. A comparison of foam rolling and vibration foam rolling on the quadriceps muscle function and mechanical properties. Eur. J. Appl. Physiol. 2021, 121, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Kasahara, K.; Yoshida, R.; Murakami, Y.; Koizumi, R.; Sato, S.; Takeuchi, K.; Nishishita, S.; Ye, X.; Konrad, A. Comparison of The Effect of High- and Low-Frequency Vibration Foam Rolling on The Quadriceps Muscle. J. Sports Sci. Med. 2022, 21, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, K.; Yoshida, R.; Yahata, K.; Sato, S.; Murakami, Y.; Aizawa, K.; Konrad, A.; Nakamura, M. Comparison of the Acute Effects of Foam Rolling with High and Low Vibration Frequencies on Eccentrically Damaged Muscle. J. Sports Sci. Med. 2022, 21, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, Y.; Chon, T.E.; Baker, J.S.; Gu, Y. Analysis of stress and stabilization in adolescent with osteoporotic idiopathic scoliosis: Finite element method. Comput. Methods Biomech. Biomed. Eng. 2023, 26, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Cen, X.; Song, Y.; Sun, D.; Bíró, I.; Gu, Y. Applications of Finite Element Modeling in Biomechanical Analysis of Foot Arch Deformation: A Scoping Review. J. Biomech. Eng. 2023, 145, 070801. [Google Scholar] [CrossRef]
- Petway, A.J.; Freitas, T.T.; Calleja-González, J.; Medina Leal, D.; Alcaraz, P.E. Training load and match-play demands in basketball based on competition level: A systematic review. PLoS ONE 2020, 15, e0229212. [Google Scholar] [CrossRef] [Green Version]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Berkelmans, D.M.; Milanović, Z. The Activity Demands and Physiological Responses Encountered During Basketball Match-Play: A Systematic Review. Sports Med. 2018, 48, 111–135. [Google Scholar] [CrossRef]
- García, F.; Fernández, D.; Martín, L. Relationship Between Game Load and Player’s Performance in Professional Basketball. Int. J. Sports Physiol. Perform. 2022, 17, 1473–1479. [Google Scholar] [CrossRef]
- King, M.; Duffield, R. The effects of recovery interventions on consecutive days of intermittent sprint exercise. J. Strength Cond. Res. 2009, 23, 1795–1802. [Google Scholar] [CrossRef]
- Bishop, D.; Spencer, M.; Duffield, R.; Lawrence, S. The validity of a repeated sprint ability test. J. Sci. Med. Sport 2001, 4, 19–29. [Google Scholar] [CrossRef]
- Delextrat, A.; Calleja-González, J.; Hippocrate, A.; Clarke, N.D. Effects of sports massage and intermittent cold-water immersion on recovery from matches by basketball players. J. Sports Sci. 2013, 31, 11–19. [Google Scholar] [CrossRef]
- Rowsell, G.J.; Coutts, A.J.; Reaburn, P.; Hill-Haas, S. Effects of cold-water immersion on physical performance between successive matches in high-performance junior male soccer players. J. Sports Sci. 2009, 27, 565–573. [Google Scholar] [CrossRef]
- Lin, W.C.; Lee, C.L.; Chang, N.J. Acute Effects of Dynamic Stretching Followed by Vibration Foam Rolling on Sports Performance of Badminton Athletes. J. Sports Sci. Med. 2020, 19, 420–428. [Google Scholar]
- Reiner, M.M.; Tilp, M.; Guilhem, G.; Morales-Artacho, A.; Konrad, A. Comparison of A Single Vibration Foam Rolling and Static Stretching Exercise on the Muscle Function and Mechanical Properties of the Hamstring Muscles. J. Sports Sci. Med. 2022, 21, 287–297. [Google Scholar] [CrossRef]
- De Oliveira, F.; Paz, G.A.; Corrêa Neto, V.G.; Alvarenga, R.; Marques Neto, S.R.; Willardson, J.M.; Miranda, H. Effects of Different Recovery Modalities on Delayed Onset Muscle Soreness, Recovery Perceptions, and Performance Following a Bout of High-Intensity Functional Training. Int. J. Environ. Res. Public Health 2023, 20, 3461. [Google Scholar] [CrossRef]
- Abaïdia, A.E.; Lamblin, J.; Delecroix, B.; Leduc, C.; McCall, A.; Nédélec, M.; Dawson, B.; Baquet, G.; Dupont, G. Recovery From Exercise-Induced Muscle Damage: Cold-Water Immersion Versus Whole-Body Cryotherapy. Int. J. Sports Physiol. Perform. 2017, 12, 402–409. [Google Scholar] [CrossRef]
- de Benito, A.M.; Valldecabres, R.; Ceca, D.; Richards, J.; Barrachina Igual, J.; Pablos, A. Effect of vibration vs non-vibration foam rolling techniques on flexibility, dynamic balance and perceived joint stability after fatigue. PeerJ 2019, 7, e8000. [Google Scholar] [CrossRef] [Green Version]
- Sasagawa, S.; Ushiyama, J.; Masani, K.; Kouzaki, M.; Kanehisa, H. Balance control under different passive contributions of the ankle extensors: Quiet standing on inclined surfaces. Exp. Brain Res. 2009, 196, 537–544. [Google Scholar] [CrossRef]
- Lee, C.L.; Chu, I.H.; Lyu, B.J.; Chang, W.D.; Chang, N.J. Comparison of vibration rolling, nonvibration rolling, and static stretching as a warm-up exercise on flexibility, joint proprioception, muscle strength, and balance in young adults. J. Sports Sci. 2018, 36, 2575–2582. [Google Scholar] [CrossRef]
- Patterson, S.M.; Udermann, B.E.; Doberstein, S.T.; Reineke, D.M. The effects of cold whirlpool on power, speed, agility, and range of motion. J. Sports Sci. Med. 2008, 7, 387–394. [Google Scholar]
- Didehdar, D.; Sobhani, S. The effect of cold-water immersion on physical performance. J. Bodyw. Mov. Ther. 2019, 23, 258–261. [Google Scholar] [CrossRef]
- Dewhurst, S.; Macaluso, A.; Gizzi, L.; Felici, F.; Farina, D.; De Vito, G. Effects of altered muscle temperature on neuromuscular properties in young and older women. Eur. J. Appl. Physiol. 2010, 108, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Costello, J.T.; Baker, P.R.; Minett, G.M.; Bieuzen, F.; Stewart, I.B.; Bleakley, C. Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults. Cochrane Database Syst. Rev. 2015, 2015, Cd010789. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.S.; Nagesh, D.S. Thermo regulated infant warming wrapper with infrared light emitting diodes for prevention of hypothermia in preterm low birth weight babies. Int. J. Biomed. Eng. Technol. 2023, 41, 145–165. [Google Scholar] [CrossRef]
- Xianjian, C.; Datao, X. Effects of Tai Chi Chuan on the Physical and Mental Health of the Elderly: A Systematic Review. Phys. Act. Health 2021, 5, 21–27. [Google Scholar] [CrossRef]
- Higgins, T.R.; Greene, D.A.; Baker, M.K. Effects of Cold Water Immersion and Contrast Water Therapy for Recovery From Team Sport: A Systematic Review and Meta-analysis. J. Strength Cond. Res. 2017, 31, 1443–1460. [Google Scholar] [CrossRef]
- Bergh, U.; Ekblom, B. Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol. Scand. 1979, 107, 33–37. [Google Scholar] [CrossRef]
- Gao, Z. The Effect of Application of Asymmetry Evaluation in Competitive Sports: A Systematic Review. Phys. Act. Health 2022, 6, 257–272. [Google Scholar] [CrossRef]
- Evans, T.A.; Ingersoll, C.; Knight, K.L.; Worrell, T. Agility following the application of cold therapy. J. Athl. Train. 1995, 30, 231–234. [Google Scholar]
- Ringhof, S.; Stein, T. Biomechanical assessment of dynamic balance: Specificity of different balance tests. Hum. Mov. Sci. 2018, 58, 140–147. [Google Scholar] [CrossRef]
- Steib, S.; Zech, A.; Hentschke, C.; Pfeifer, K. Fatigue-induced alterations of static and dynamic postural control in athletes with a history of ankle sprain. J. Athl. Train. 2013, 48, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Dixon, P.G.; Kraemer, W.J.; Volek, J.S.; Howard, R.L.; Gomez, A.L.; Comstock, B.A.; Dunn-Lewis, C.; Fragala, M.S.; Hooper, D.R.; Häkkinen, K.; et al. The impact of cold-water immersion on power production in the vertical jump and the benefits of a dynamic exercise warm-up. J. Strength Cond. Res. 2010, 24, 3313–3317. [Google Scholar] [CrossRef]
Variables | Subjects’ Profile | |
---|---|---|
Age (years) | 22.80 ± 0.84 | |
Height (cm) | 1.79 ± 0.04 | |
Body weight (kg) | 75.56 ± 6.59 | |
Advantageous leg length (cm) | 91.70 ± 4.37 | |
BMI (kg/m2) | 23.61 ± 2.34 | |
Basketball years played (years) | 4.40 ± 1.14 | |
Number of training/competitions (times/week) | 2.60 ± 0.89 | |
Position of play | Point Guard | 4 |
Shooting Guard | 2 | |
Small Forward | 4 | |
Power Forward | 0 | |
Center | 0 |
Vertical Jump Height | CON | CWI | VFR | Mean Range | ||
---|---|---|---|---|---|---|
(cm) | Mean (SD) | Mean (SD) | Mean (SD) | Δ 1–2 | Δ 1–3 | Δ 2–3 |
post-warm-up | 33.03 ± 2.12 | 33.15 ± 1.86 | 33.03 ± 2.04 | 0.119 | 0.003 | 0.122 |
immediate post-game | 28.06 ± 2.29 a | 27.90 ± 2.26 a | 27.57 ± 2.14 a | 0.159 | 0.485 | 0.325 |
immediate post-intervention | 28.73 ± 2.18 ab | 25.23 ± 2.48 #ab | 29.18 ± 2.04 *ab | 3.501 | 0.499 | 3.951 |
1 h after the intervention | 29.46 ± 1.71 abc | 30.15 ± 2.01 #abc | 30.90 ± 1.96 &abc | 0.687 | 1.437 | 0.751 |
24 h after intervention | 30.90 ± 1.87 abcd | 33.22 ± 2.13 #bcd | 31.51 ± 2.14 *bc | 2.327 | 0.608 | 1.719 |
RM ANOVA | Does it satisfy Mauchly’s test of sphericity? No (p = 0.032) | F (4.051, 56.710) = 32.202 | Interaction (p < 0.001) | |||
Reaction Time (s) | CON | CWI | VFR | Mean Range | ||
Mean (SD) | Mean (SD) | Mean (SD) | Δ 1–2 | Δ 1–3 | Δ 2–3 | |
post-warm-up | 24.20 ± 1.21 | 24.33 ± 1.23 | 24.13 ± 1.60 | 0.133 | 0.067 | 0.200 |
immediate post-game | 28.20 ± 2.73 a | 27.60 ± 2.38 a | 27.80 ± 1.66 a | 0.600 | 0.400 | 0.200 |
immediate post-intervention | 26.53 ± 1.73 a | 29.47 ± 2.47 #a | 25.27 ± 2.12 *b | 2.933 | 1.267 | 4.200 |
1 h after the intervention | 25.20 ± 1.42 bc | 25.40 ± 1.84 bc | 24.87 ± 1.55 b | 0.200 | 0.333 | 0.533 |
24 h after intervention | 25.73 ± 1.83 b | 23.40 ± 1.80 #bc | 24.13 ± 1.96 b | 2.333 | 1.600 | 0.733 |
RM ANOVA | Does it satisfy Mauchly’s test of sphericity? No (p = 0.668) | F (8, 112) = 8.095 | Interaction (p < 0.001) | |||
Dynamic Balance | CON | CWI | VFR | Mean Range | ||
(%) | Mean (SD) | Mean (SD) | Mean (SD) | Δ 1–2 | Δ 1–3 | Δ 2–3 |
post-warm-up | 83.02 ± 7.26 | 82.96 ± 7.67 | 82.40 ± 7.22 | 0.060 | 0.622 | 0.562 |
immediate post-game | 75.25 ± 8.06 a | 76.37 ± 7.83 a | 76.09 ± 7.64 a | 1.122 | 0.838 | 0.284 |
immediate post-intervention | 78.34 ± 7.90 ab | 80.31 ± 8.65 #ab | 80.18 ± 7.47 ab | 1.969 | 1.842 | 0.127 |
1 h after the intervention | 80.26 ± 7.40 abc | 82.40 ± 7.95 bc | 81.67 ± 6.62 b | 2.146 | 1.414 | 0.732 |
24 h after intervention | 80.59 ± 7.32 abc | 84.68 ± 7.73 #bcd | 81.88 ± 7.34 b | 4.097 | 1.301 | 2.796 |
RM ANOVA | Does it satisfy Mauchly’s test of sphericity? No (p = 0.015) | F (4.183, 58.555) = 3.741 | Interaction (p = 0.008) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Song, Y.; Cen, X.; Sun, D.; Lu, Z.; Bíró, I.; Gu, Y. Comparative Efficacy of Vibration foam Rolling and Cold Water Immersion in Amateur Basketball Players after a Simulated Load of Basketball Game. Healthcare 2023, 11, 2178. https://doi.org/10.3390/healthcare11152178
Li F, Song Y, Cen X, Sun D, Lu Z, Bíró I, Gu Y. Comparative Efficacy of Vibration foam Rolling and Cold Water Immersion in Amateur Basketball Players after a Simulated Load of Basketball Game. Healthcare. 2023; 11(15):2178. https://doi.org/10.3390/healthcare11152178
Chicago/Turabian StyleLi, Fengping, Yang Song, Xuanzhen Cen, Dong Sun, Zhenghui Lu, István Bíró, and Yaodong Gu. 2023. "Comparative Efficacy of Vibration foam Rolling and Cold Water Immersion in Amateur Basketball Players after a Simulated Load of Basketball Game" Healthcare 11, no. 15: 2178. https://doi.org/10.3390/healthcare11152178
APA StyleLi, F., Song, Y., Cen, X., Sun, D., Lu, Z., Bíró, I., & Gu, Y. (2023). Comparative Efficacy of Vibration foam Rolling and Cold Water Immersion in Amateur Basketball Players after a Simulated Load of Basketball Game. Healthcare, 11(15), 2178. https://doi.org/10.3390/healthcare11152178