Knowledge, Attitude, and Behaviour with Regard to Medication Errors in Intravenous Therapy: A Cross-Cultural Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Iranian Sample
2.3. Persian Validation Study
2.4. Data Analysis
2.4.1. Exploratory Factor Analysis
2.4.2. Confirmatory Factor Analysis
2.5. Ethical Considerations
3. Results
3.1. Characteristics of the Sample
Professional and Socio-Demographic Characteristics of the Iranian Sample
3.2. Exploratory Factor Analysis
3.3. Internal Consistency
3.4. Confirmatory Factor Analysis and Measurement Equivalence
3.4.1. Measurement Equivalence of Knowledge Scale
3.4.2. Measurement Equivalence of the Attitude Scale
3.4.3. Measurement Equivalence of Behaviour Scale
4. Discussion
4.1. Study Limitations
4.2. Implication for Clinical Practice and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Coordinating Council for Medication Error. Reporting Index for Categorizing Medication Errors. Available online: https://www.nccmerp.org/about-medication-errors (accessed on 20 July 2020).
- Mekonnen, A.B.; Alhawassi, T.M.; McLachlan, A.J.; Brien, J.E. Adverse Drug Events and Medication Errors in African Hospitals: A Systematic Review. Drugs Real World Outcomes 2018, 5, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, G.H.; Keers, R.N.; Ashcroft, D.M. Frequency and Nature of Medication Errors and Adverse Drug Events in Mental Health Hospitals: A Systematic Review. Drug Saf. 2017, 40, 871–886. [Google Scholar] [CrossRef]
- Alanazi, M.A.; Tully, M.P.; Lewis, P.J. A systematic review of the prevalence and incidence of prescribing errors with high-risk medicines in hospitals. J. Clin. Pharm. Ther. 2016, 41, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.L.; Mulcaster, H.L.; Triffitt, K.L.; Sittig, D.F.; Ash, J.S.; Reygate, K.; Husband, A.K.; Bates, D.W.; Slight, S.P. A systematic review of the types and causes of prescribing errors generated from using computerized provider order entry systems in primary and secondary care. J. Am. Med. Inform. Assoc. 2017, 24, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Salmasi, S.; Wimmer, B.C.; Khan, T.M.; Patel, R.P.; Ming, L.C. Quantitative exploration of medication errors among older people: A systematic review. Drugs Ther. Perspect. 2018, 34, 129–137. [Google Scholar] [CrossRef]
- Feinstein, M.M.; Pannunzio, A.E.; Castro, P. Frequency of medication error in pediatric anesthesia: A systematic review and meta-analytic estimate. Paediatr. Anaesth. 2018, 28, 1071–1077. [Google Scholar] [CrossRef]
- Mrayyan, M.T.; Shishani, K.; Al-Faouri, I. Rate, causes and reporting of medication errors in Jordan: Nurses’ perspectives. J. Nurs. Manag. 2007, 15, 659–670. [Google Scholar] [CrossRef]
- Armitage, G.; Knapman, H. Adverse events in drug administration: A literature review. J. Nurs. Manag. 2003, 11, 130–140. [Google Scholar] [CrossRef]
- Wilmer, A.; Louie, K.; Dodek, P.; Wong, H.; Ayas, N. Incidence of medication errors and adverse drug events in the ICU: A systematic review. Qual. Saf. Health Care 2010, 19, e7. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Keers, R.N.; Sutherland, A.; Ashcroft, D.M. Prevalence and Nature of Medication Errors and Preventable Adverse Drug Events in Paediatric and Neonatal Intensive Care Settings: A Systematic Review. Drug Saf. 2019, 42, 1423–1436. [Google Scholar] [CrossRef] [Green Version]
- Vrbnjak, D.; Denieffe, S.; O’Gorman, C.; Pajnkihar, M. Barriers to reporting medication errors and near misses among nurses: A systematic review. Int. J. Nurs. Stud. 2016, 63, 162–178. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.; Ahmadvand, A.; Hadjibabaie, M.; Javadi, M.; Khoee, S.H.; Dastan, F.; Gholami, K. A review of medication errors in iran: Sources, underreporting reasons and preventive measures. Iran J. Pharm. Res. 2014, 13, 3–17. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Medication Errors; World Health Organization: Geneva, Switzerland, 2016; Available online: https://apps.who.int/iris/handle/10665/252274 (accessed on 18 July 2020).
- Sabzi, Z.; Mohammadi, R.; Talebi, R.; Roshandel, G.R. Medication Errors and Their Relationship with Care Complexity and Work Dynamics. Open Access Maced. J. Med. Sci. 2019, 7, 3579–3583. [Google Scholar] [CrossRef] [PubMed]
- Zarea, K.; Mohammadi, A.; Beiranvand, S.; Hassani, F.; Baraz, S. Iranian nurses’ medication errors: A survey of the types, the causes, and the related factors. Int. J. Afr. Nurs. Sci. 2018, 8, 112–116. [Google Scholar] [CrossRef]
- Di Muzio, M.; De Vito, C.; Tartaglini, D.; Villari, P. Knowledge, behaviours, training and attitudes of nurses during preparation and administration of intravenous medications in intensive care units (ICU). A multicenter Italian study. Appl. Nurs. Res. 2017, 38, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Márquez-Hernández, V.V.; Fuentes-Colmenero, A.L.; Cañadas-Núñez, F.; Di Muzio, M.; Giannetta, N.; Gutiérrez-Puertas, L. Factors related to medication errors in the preparation and administration of intravenous medication in the hospital environment. PLoS ONE 2019, 14, e0220001. [Google Scholar] [CrossRef]
- Giannetta, N.; Dionisi, S.; Cassar, M.; Trapani, J.; Renzi, E.; Di Simone, E.; Di Muzio, M. Measuring knowledge, attitudes and behavior of nurses in medication management: Cross-cultural comparisons in Italy and Malta. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 5167–5175. [Google Scholar] [CrossRef]
- Dionisi, S.; Giannetta, N.; Maselli, N.; Di Muzio, M.; Di Simone, E. Medication errors in homecare setting: An Italian validation study. Public Health Nurs. 2021, 38, 1116–1125. [Google Scholar] [CrossRef]
- Reichenheim, M.E.; Moraes, C.L. Operacionalização de adaptação transcultural de instrumentos de aferição usados em epidemiologia [Operationalizing the cross-cultural adaptation of epidemiological measurement instruments]. Rev. Saude Publica 2007, 41, 665–673. [Google Scholar] [CrossRef]
- Thomas, B.; Paudyal, V.; MacLure, K.; Pallivalapila, A.; McLay, J.; El Kassem, W.; Al Hail, M.; Stewart, D. Medication errors in hospitals in the Middle East: A systematic review of prevalence, nature, severity and contributory factors. Eur. J. Clin. Pharmacol. 2019, 75, 1269–1282. [Google Scholar] [CrossRef] [Green Version]
- Di Simone, E.; Di Muzio, M.; Dionisi, S.; Giannetta, N.; Di Muzio, F.; De Gennaro, L.; Orsi, G.B.; Fabbian, F. Infodemiological patterns in searching medication errors: Relationship with risk management and shift work. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 5522–5529. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.; Ahmadvand, A.; Hadjibabaie, M.; Kargar, M.; Javadi, M.; Gholami, K. Types and severity of medication errors in Iran; a review of the current literature. Daru 2013, 21, 49. [Google Scholar] [CrossRef] [PubMed]
- Bilancio, M.C.; Leoni, O. Errore Terapeutico E Prevenibilità In Lombardia: Panoramica Basata Sulla Normativa Europea. [Medication error and preventability in Lombardy: An overview based on European legislation]. G. Ital. Di Farm. E Farm. 2018, 10, 61–79. [Google Scholar]
- World Health Organization. Process of Translation and Adaptation of Instruments; World Health Organization: Geneva, Switzerland, 2016; Available online: https://www.who.int/substance_abuse/research_tools/translation/en/ (accessed on 20 July 2020).
- Beaton, D.; Bombardier, C.; Guillemin, F.; Ferraz, M.B. Recommendations for the cross-cultural adaptation of health status measures. N. Y. Am. Acad. Orthop. Surg. 2002, 12, 1–9. [Google Scholar]
- Williams, B.; Onsman, A.; Brown, T. Exploratory factor analysis: A five-step guide for novices. Australas. J. Paramed. 2010, 8, 3. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory 3E; Tata McGraw-Hill Education: Telangana, India, 1994. [Google Scholar]
- Taber, K.S. The use of Cronbach’s alpha when developing and reporting research instruments in science education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef]
- Meredith, W. Measurement invariance, factor analysis and factorial invariance. Psychometrika 1993, 58, 525–543. [Google Scholar] [CrossRef]
- Tanaka, J.S. Multifaceted conceptions of fit in structural equation models. In Testing Structural Equation Models Sage; Bollen, K.A., Long, J.S., Eds.; Sage: Newbury Park, CA, USA.
- Brown, T.A. Confirmatory Factor Analysis for Applied Research, 2nd ed.; Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Kenny, D.A. Measuring Model Fit. Available online: http://davidakenny.net/cm/fit.htm (accessed on 26 September 2020).
- Browne, M.W.; Cudeck, R. Alternative Ways of Assessing Model Fit. Sociol. Methods Res. 1992, 21, 230–258. [Google Scholar] [CrossRef]
- Kenny, D.A.; Kaniskan, B.; McCoach, D.B. The Performance of RMSEA in Models with Small Degrees of Freedom. Sociol. Methods Res. 2015, 44, 486–507. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cut off criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Cheung, G.W.; Rensvold, R.B. Evaluating goodness-of-fit indexes for testing measurement invariance. Struct. Equ. Model. 2002, 9, 233–255. [Google Scholar] [CrossRef]
- Jambrina, A.M.; Santomà, À.; Rocher, A.; Rams, N.; Cereza, G.; Rius, P.; Gironès, M.; Pareja, C.; Franch, À.; Rabanal, M. Detection and Prevention of Medication Errors by the Network of Sentinel Pharmacies in a Southern European Region. J. Clin. Med. 2022, 12, 194. [Google Scholar] [CrossRef] [PubMed]
- Liquori, G.; De Leo, A.; Di Simone, E.; Dionisi, S.; Giannetta, N.; Ganci, E.; Trainito, S.P.; Orsi, G.B.; Di Muzio, M.; Napoli, C. Medication Adherence in Chronic Older Patients: An Italian Observational Study Using Medication Adherence Report Scale (MARS-5I). Int. J. Environ. Res. Public Health 2022, 19, 5190. [Google Scholar] [CrossRef]
- Napoli, C.; Iatta, R.; Fasano, F.; Marsico, T.; Montagna, M.T. Variable bacterial load of Legionella spp. in a hospital water system. Sci. Total Environ. 2009, 408, 242–244. [Google Scholar] [CrossRef]
- Montagna, M.T.; De Giglio, O.; Cristina, M.L.; Napoli, C.; Pacifico, C.; Agodi, A.; Baldovin, T.; Casini, B.; Coniglio, M.A.; D’Errico, M.M.; et al. Evaluation of Legionella Air Contamination in Healthcare Facilities by Different Sampling Methods: An Italian Multicenter Study. Int. J. Environ. Res. Public Health 2017, 14, 670. [Google Scholar] [CrossRef]
- Giannetta, N.; Dionisi, S.; Stievano, A.; Eltaybani, S.; Abdelgawad, M.E.; Katigri, M.R.; Azadboni, T.T.; López-Soto, P.; Morales-Cané, I.; Ali, I.; et al. Comparison across 12 countries on knowledge, attitude, and behavior scores about medication errors in Intensive Care Units: An international study. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7223–7230. [Google Scholar] [CrossRef]
- Al-Worafi, Y.M. Drug safety in developing versus developed countries. In Drug Safety in Developing Countries; Elsevier: Amsterdam, The Netherlands, 2020; pp. 613–615. [Google Scholar] [CrossRef]
- Di Simone, E.; Fabbian, F.; Giannetta, N.; Dionisi, S.; Renzi, E.; Cappadona, R.; Di Muzio, M.; Manfredini, R. Risk of medication errors and nurses’ quality of sleep: A national cross-sectional web survey study. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7058–7062. [Google Scholar] [CrossRef] [PubMed]
- Jessurun, J.G.; Hunfeld, N.G.M.; van Rosmalen, J.; van Dijk, M.; van den Bemt, P.M.L.A. Effect of a Pharmacy-based Centralized Intravenous Admixture Service on the Prevalence of Medication Errors: A Before-and-After Study. J. Patient Saf. 2022, 18, e1181–e1188. [Google Scholar] [CrossRef]
Iranian Sample | Italian Sample Di Muzio et al. [17] | |
---|---|---|
Variables | N (%) | |
Age, years | ||
Mean (range) | 36.52 | 39.9 |
Gender | ||
Male | 9 (20.5) | 169 (31.9) |
Female | 35 (79.5) | 360 (68.1) |
Educational qualification | ||
University degree in nursing | 44 (100) | 301 (56.9) |
Non-university qualification | 0 | 228 (43.1) |
Postgraduate training courses | ||
Master courses | 3 (6.8) | 144 (88.3) |
Other | 41 (93.2) | 19 (11.7) |
Years of work | ||
Mean (range) | 10.98 | 13.10 |
Medication management training in university degree | ||
No | 19 (43.2) | 31 (5.9) |
Yes | 25 (56.8) | 498 (94.1) |
Medication management training in post-degree university courses | ||
No | 19 (43.2) | 126 (37.6) |
Yes | 25 (56.8) | 209 (62.4) |
English language | ||
Very low | 7 (15.9) | 100 (18.9) |
Low | 13 (29.5) | 164 (31.0) |
Good | 22 (50.0) | 90 (17.0) |
Very good | 2 (4.5) | 23 (4.3) |
Having the Internet at Work | ||
No | 5 (11.4) | 146 (27.7) |
Yes | 39 (88.6) | 382 (72.3) |
Having the library access at work | ||
No | 23 (52.3) | 146 (27.7) |
Yes | 21 (47.7) | 382 (72.3) |
The number of hours per week dedicated to the learning | ||
<1 | 38 (86.5) | 332 (62.8) |
2–5 | 6 (13.6) | 164 (31.0) |
6–10 | - | 24 (4.5) |
>10 | - | 9 (1.7) |
Item | M | SD | CITC | Factors and Factor Loadings | ||
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
Factor 1: knowledge about medication errors prevention | ||||||
Dosage calculus of intravenous drug reduces preparation errors | 4.02 | 0.849 | 0.601 | 0.567 | 0.223 | 0.22 |
Computerized provide order entry system (CPOE) reduce errors during the preparation’s phase | 4.05 | 0.861 | 0.684 | 0.627 | 0.272 | 0.237 |
Provision of pre-packaged by the pharmacy reduces medication errors risk | 4.09 | 0.984 | 0.746 | 0.778 | 0.193 | 0.269 |
Availability of informative protocols, posters and brochures in the wards, promotes the decrease of the error risk | 4.09 | 0.884 | 0.841 | 0.758 | 0.472 | 0.2 |
Assistance of a pharmacist during drug preparation reduces the error risk | 4.16 | 0.914 | 0.778 | 0.762 | 0.315 | 0.222 |
Alarm noises and ward emergencies may cause distractions during drugs preparation and administration | 4.09 | 0.960 | 0.789 | 0.806 | 0.307 | 0.208 |
Workload (double shifts, extra time) contributes to pharmacological therapy errors | 4.34 | 0.963 | 0.765 | 0.666 | 0.171 | 0.485 |
Following the 8 R rule (right patient, right medication, right dose, right route, right time, right documentation, right reason, right response) reduces errors | 4.05 | 1.056 | 0.675 | 0.445 | 0.453 | 0.292 |
Factor 2: Attitude to medication errors prevention | ||||||
Ongoing and specific training on safe management of IV drug could reduce the risk of errors | 2.80 | 0.408 | 0.557 | 0.23 | 0.405 | 0.405 |
Awareness of the prevention of the errors and management of the clinical risk could reduce the errors during the preparation and administration phases of the drugs | 2.77 | 0.476 | 0.845 | 0.56 | 0.582 | 0.329 |
The motivation of the workers can improve their professional performance during the whole medication process | 2.89 | 0.387 | 0.65 | 0.282 | 0.555 | 0.347 |
For a secure management of the entire managing process of IV drugs, some authoritative guidelines drawn up taking into account the available scientific evidence are necessary | 2.82 | 0.446 | 0.669 | 0.295 | 0.737 | 0.201 |
Protocols/guidelines/procedure can affect professional behaviour, ensuring proper management of therapeutic process | 2.77 | 0.476 | 0.747 | 0.333 | 0.806 | 0.236 |
Clinical skills about safe management of drug therapy should be regularly evaluated | 2.80 | 0.462 | 0.716 | 0.228 | 0.899 | 0.237 |
Medication errors should be reported in order to become an opportunity to improve the care service | 2.80 | 0.462 | 0.752 | 0.314 | 0.874 | 0.215 |
Factor 3: Behaviour to medication errors prevention | ||||||
Hand-washing is necessary before the drug preparation and administration | 4.23 | 0.743 | 0.803 | 0.386 | 0.265 | 0.85 |
A check of vital signs before and after the vasoactive drug administration (dopamine, dobutamine, nitroglycerine, etc) reduces complications | 4.32 | 0.674 | 0.673 | 0.235 | 0.18 | 0.892 |
Respecting the speed of infusion of the IV administrated solutions (such as chemotherapy, antibiotics, amines, heparin, etc) reduces errors | 4.36 | 0.780 | 0.736 | 0.296 | 0.292 | 0.807 |
Before administration, it is necessary to perform a double check to verify the right correspondence among prescription, preparation and administration of the IV drug | 4.45 | 0.627 | 0.749 | 0.279 | 0.443 | 0.677 |
Eingevalue | 11.070 | 1.634 | 1.540 | |||
Percentage of variance explained | 25.950 | 25.121 | 20.250 |
Scale | χ2 | CFI | TLI | RMSEA | SRMR | Wald Test | Δχ2 | Δgl | p |
---|---|---|---|---|---|---|---|---|---|
Knowledge | |||||||||
Configural invariance | 39.552 (p = 0.07) 14.285 vs. 25.464 | 0.939 | 0.909 | 0.094 (0.00–0.158) | 0.072 | 14.285 df: 7—p < 0.05 | - | - | - |
Metric invariance | 52.999 (p = 0.02) 25.324 vs. 27.675 | 0.906 | 0.887 | 0.105 (0.037–0.160) | 0.177 | 52.514 df: 7—p < 0.001 | 13.447 | 7 | 0.06 |
Scalar invariance | 96.745 (p < 0.001) 57.252 vs. 39.493 | 0.713 | 0.713 | 0.167 (0.124–0.211) | 0.235 | 64.977 df: 7—p < 0.001 | 43.746 | p < 0.001 | |
Strict invariance | 192.964 (p < 0.001) 56.377 vs. 136.588 | 0.244 | 0.352 | 0.251 (0.251–2.89) | 0.546 | - | 96.219 | 7 | p < 0.001 |
Attitude | |||||||||
Configural invariance | 79.116 (p < 0.001) 40.594 vs. 38.522 | 0.904 | 0.856 | 0.079 (0.059–0.100) | 0.044 | 59.294 df: 7—p < 0.001 | - | - | - |
Metric invariance | 154.199 (p < 0.001) 48.802 vs. 105–397 | 0.776 | 0.731 | 0.108 (0.91–0.126) | 0.235 | 10.674 df: 7—p = 0.15 | 75.083 | 7 | p < 0.001 |
Scalar invariance | 96.745 (p < 0.001) 57.252 vs. 39.439 | 0.713 | 0.713 | 0.167 (0.124–0.211) | 0.235 | 64.977 df: 7—p = 0.15 | 57.454 | 7 | p < 0.001 |
Strict invariance | 164.546 (p < 0.001) 49.798 vs. 114.748 | 0.769 | 0.769 | 0.100 (−084–0.116) | 0.245 | - | 67.802 | 7 | p < 0.001 |
Behaviour | |||||||||
Configural invariance | 17.519 (p = 0.06) 9.409 vs. 8.110 | 0.979 | 0.958 | 0.127 (0.00–0.224) | 0.033 | 0.727 df: 5—p = 0.98 | - | - | - |
Metric invariance | 18.251 (p < 0.05) 9.811 vs. 8.439 | 0.991 | 0.988 | 0.068 (0.00–0.162) | 0.064 | 19.926 df: 5—p = 0.0013 | 0.732 | 5 | 0.98 |
Scalar invariance | 36.726 (p = 0.0126) 22.353 vs. 14.373 | 0.954 | 0.954 | 0.134 (0.061–0.202) | 0.126 | 26.809 df: 5—p < 0.001 | 18.475 | 5 | p < 0.001 |
Strict invariance | 76.680 (p < 0.001) 27.637 vs. 49.043 | 0.853 | 0.886 | 0.211 (0.158–0.265) | 0.453 | - | 39.954 | 5 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannetta, N.; Katigri, M.R.; Azadboni, T.T.; Caruso, R.; Liquori, G.; Dionisi, S.; De Leo, A.; Di Simone, E.; Rocco, G.; Stievano, A.; et al. Knowledge, Attitude, and Behaviour with Regard to Medication Errors in Intravenous Therapy: A Cross-Cultural Pilot Study. Healthcare 2023, 11, 436. https://doi.org/10.3390/healthcare11030436
Giannetta N, Katigri MR, Azadboni TT, Caruso R, Liquori G, Dionisi S, De Leo A, Di Simone E, Rocco G, Stievano A, et al. Knowledge, Attitude, and Behaviour with Regard to Medication Errors in Intravenous Therapy: A Cross-Cultural Pilot Study. Healthcare. 2023; 11(3):436. https://doi.org/10.3390/healthcare11030436
Chicago/Turabian StyleGiannetta, Noemi, Meysam Rahmani Katigri, Tahere Talebi Azadboni, Rosario Caruso, Gloria Liquori, Sara Dionisi, Aurora De Leo, Emanuele Di Simone, Gennaro Rocco, Alessandro Stievano, and et al. 2023. "Knowledge, Attitude, and Behaviour with Regard to Medication Errors in Intravenous Therapy: A Cross-Cultural Pilot Study" Healthcare 11, no. 3: 436. https://doi.org/10.3390/healthcare11030436
APA StyleGiannetta, N., Katigri, M. R., Azadboni, T. T., Caruso, R., Liquori, G., Dionisi, S., De Leo, A., Di Simone, E., Rocco, G., Stievano, A., Orsi, G. B., Napoli, C., & Di Muzio, M. (2023). Knowledge, Attitude, and Behaviour with Regard to Medication Errors in Intravenous Therapy: A Cross-Cultural Pilot Study. Healthcare, 11(3), 436. https://doi.org/10.3390/healthcare11030436