Computer-Based Cognitive Training vs. Paper-and-Pencil Training for Language and Cognitive Deficits in Greek Patients with Mild Alzheimer’s Disease: A Preliminary Study
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Procedure
2.2.1. Neurological, Neuropsychological and Language Assessment
2.2.2. Measures and Variables Description
2.2.3. Computer-Based Cognitive Training with RehaCom
2.2.4. Paper-and-Pencil Cognitive Training
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Detailed Description of the RehaCom
References
- Clare, L.; Woods, R.T. Cognitive training and cognitive rehabilitation for people with early-stage Alzheimer’s disease: A review. Neuropsychol. Rehabil. 2004, 14, 385–401. [Google Scholar] [CrossRef]
- Taler, V.; Phillips, N.A. Language performance in Alzheimer’s disease and mild cognitive impairment: A comparative review. J. Clin. Exp. Neuropsychol. 2008, 30, 501–556. [Google Scholar] [CrossRef] [PubMed]
- Kosmidis, M.H.; Vlachos, G.S.; Anastasiou, C.A.; Yannakoulia, M.; Dardiotis, E.; Hadjigeorgiou, G.; Sakka, P.; Ntanasi, E.; Scarmeas, N. Dementia prevalence in greece. Alzheimer Dis. Assoc. Disord. 2018, 32, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Siokas, V.; Aslanidou, P.; Aloizou, A.M.; Peristeri, E.; Stamati, P.; Liampas, I.; Arseniou, S.; Drakoulis, N.; Aschner, M.; Tsatsakis, A.; et al. Does the CD33 rs3865444 polymorphism confer susceptibility to Alzheimer’s disease? J. Mol. Neurosci. 2020, 70, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Dardiotis, E.; Siokas, V.; Moza, S.; Kosmidis, M.H.; Vogiatzi, C.; Aloizou, A.M.; Geronikola, N.; Ntanasi, E.; Zalonis, I.; Yannakoulia, M.; et al. Pesticide exposure and cognitive function: Results from the Hellenic Longitudinal Investigation of Aging and Diet (HELIAD). Environ. Res. 2019, 177, 108632. [Google Scholar] [CrossRef]
- Karakaya, T.; Fußer, F.; Schroder, J.; Pantel, J. Pharmacological treatment of mild cognitive impairment as a prodromal syndrome of Alzheimer’s disease. Curr. Neuropharmacol. 2013, 11, 102–108. [Google Scholar] [CrossRef]
- Tsapanou, A.; Gu, Y.; O’Shea, D.M.; Yannakoulia, M.; Kosmidis, M.; Dardiotis, E.; Hadjigeorgiou, G.; Sakka, P.; Stern, Y.; Scarmeas, N. Sleep quality and duration in relation to memory in the elderly: Initial results from the Hellenic Longitudinal Investigation of Aging and Diet. Neurobiol. Learn. Mem. 2017, 141, 217–225. [Google Scholar] [CrossRef]
- Cooper, C.; Li, R.; Lyketsos, C.; Livingston, G. Treatment for mild cognitive impairment: Systematic review. Br. J. Psychiatry 2013, 203, 255–264. [Google Scholar] [CrossRef]
- Tsapanou, A.; Vlachos, G.S.; Cosentino, S.; Gu, Y.; Manly, J.J.; Brickman, A.M.; Schupf, N.; Zimmerman, M.E.; Yannakoulia, M.; Kosmidis, M.H.; et al. Sleep and subjective cognitive decline in cognitively healthy elderly: Results from two cohorts. J. Sleep Res. 2019, 28, e12759. [Google Scholar] [CrossRef] [PubMed]
- Nousia, A.; Siokas, V.; Aretouli, E.; Messinis, L.; Aloizou, A.M.; Martzoukou, M.; Karala, M.; Koumpoulis, C.; Nasios, G.; Dardiotis, E. Beneficial effect of multidomain cognitive training on the neuropsychological performance of patients with early-stage Alzheimer’s disease. Neural Plast. 2018, 2018, 2845176. [Google Scholar] [CrossRef] [Green Version]
- Requena, C.; Ibor, M.L.; Maestú, F.; Campo, P.; Ibor, J.L.; Ortiz, T. Effects of cholinergic drugs and cognitive training on dementia. Dement. Geriatr. Cogn. Disord. 2004, 18, 50–54. [Google Scholar] [CrossRef]
- Cipriani, G.; Bianchetti, A.; Trabucchi, M. Outcomes of a computer-based cognitive rehabilitation program on Alzheimer’s disease patients compared with those on patients affected by mild cognitive impairment. Arch. Gerontol. Geriatr. 2006, 43, 327–335. [Google Scholar] [CrossRef]
- Jelcic, N.; Cagnin, A.; Meneghello, F.; Turolla, A.; Ermani, M.; Dam, M. Effects of lexical-semantic treatment on memory in early Alzheimer disease: An observer-blinded randomized controlled trial. Neurorehabilit. Neural Repair 2012, 26, 949–956. [Google Scholar] [CrossRef]
- Lee, G.Y.; Yip, C.C.; Yu, E.C.; Man, D.W. Evaluation of a computer-assisted errorless learning-based memory training program for patients with early Alzheimer’s disease in Hong Kong: A pilot study. Clin. Interv. Aging 2013, 8, 623–633. [Google Scholar]
- Yang, Y.; Kwak, Y.T. Improvement of cognitive function after computer-based cognitive training in early stage of Alzheimer’s dementia. Dement. Neurocogn. Disord. 2017, 16, 7–11. [Google Scholar] [CrossRef]
- Viola, L.F.; Nunes, P.V.; Yassuda, M.S.; Aprahamian, I.; Santos, F.S.; Santos, G.D.; Brum, P.S.; Borges, S.M.; Oliveira, A.M.; Chaves, G.F.; et al. Effects of a multidisciplinar cognitive rehabilitation program for patients with mild Alzheimer’s disease. Clinics 2011, 66, 1395–1400. [Google Scholar] [CrossRef]
- Man, D.W.; Chung, J.C.; Lee, G.Y. Evaluation of a virtual reality-based memory training programme for Hong Kong Chinese older adults with questionable dementia: A pilot study. Int. J. Geriatr. Psychiatry 2012, 27, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, M.; Hunter, E.M.; van der Hiele, K.; Angilletta, C. Computerized structured cognitive training in patients affected by early-stage Alzheimer’s disease is feasible and effective: A randomized controlled study. Arch. Clin. Neuropsychol. 2016, 31, 868–876. [Google Scholar] [CrossRef]
- Chapman, S.B.; Weiner, M.F.; Rackley, A.; Hynan, L.S.; Zientz, J. Effects of cognitive-communication stimulation for Alzheimer’s disease patients treated with donepezil. J. Speech Lang. Hear. Res. 2004, 45, 1149–1163. [Google Scholar] [CrossRef] [PubMed]
- Buschert, V.; Bokde, A.L.; Hampel, H. Cognitive intervention in Alzheimer disease. Nat. Rev. Neurol. 2010, 6, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, O.; Shido, E.; Hashikai, A.; Shibuya, H.; Kouno, M.; Hara, C.; Saito, M. Short-term effect of combined drug therapy and cognitive stimulation therapy on the cognitive function of Alzheimer’s disease. Psychogeriatrics 2010, 10, 167–172. [Google Scholar] [CrossRef]
- Hwang, H.R.; Choi, S.H.; Yoon, D.H.; Yoon, B.N.; Suh, Y.J.; Lee, D.; Han, I.T.; Hong, C.G. The effect of cognitive training in patients with mild cognitive impairment and early Alzheimer’s disease: A preliminary study. J. Clin. Neurol. 2012, 8, 190–197. [Google Scholar] [CrossRef]
- Bergamaschi, S.; Arcara, G.; Calza, A.; Villani, D.; Orgeta, V.; Mondini, S. One-year repeated cycles of cognitive training (CT) for Alzheimer’s disease. Aging Clin. Exp. Res. 2013, 25, 421–426. [Google Scholar] [CrossRef]
- Mapelli, D.; Di Rosa, E.; Nocita, R.; Sava, D. Cognitive stimulation in patients with dementia: Randomized controlled trial. Dement. Geriatr. Cogn. Disord. Extra 2013, 3, 263–271. [Google Scholar] [CrossRef]
- Kim, S. Cognitive rehabilitation for elderly people with early-stage Alzheimer’s disease. J. Phys. Ther. Sci. 2015, 27, 543–546. [Google Scholar] [CrossRef]
- Kosta-Tsolaki, M.; Poptsi, E.; Aggogiatou, C.; Kounti, F.; Zafeiropoulos, S.; Markou, N. Computer-based cognitive training versus paper and pencil training: Which is more effective? A randomized controlled trial in people with mild cognitive impairment. JSM Alzheimer’s Dis. Relat. Dement. 2017, 4, 1032. [Google Scholar]
- Trebbastoni, A.; Imbriano, L.; Podda, L.; Rendace, L.; Sacchetti, M.L.; Campanelli, A.; D’Antonio, F.; de Lena, C. Cognitive training in patients with Alzheimer’s disease: Findings of a 12-month randomized controlled trial. Curr. Alzheimer Res. 2018, 15, 452–461. [Google Scholar] [CrossRef]
- Kang, M.J.; Kim, S.M.; Han, S.E.; Bae, J.H.; Yu, W.J.; Park, M.Y.; Ku, S.; Yang, Y. Effect of paper-based cognitive training in early stage of Alzheimer’s dementia. Dement. Neurocogn. Disord. 2019, 18, 62–68. [Google Scholar] [CrossRef]
- Groot, C.; Hooghiemstra, A.M.; Raijmakers, P.G.; van Berckel, B.N.; Scheltens, P.; Scherder, E.J.; van der Flier, W.M.; Ossenkoppele, R. The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized control trials. Ageing Res. Rev. 2016, 25, 13–23. [Google Scholar] [CrossRef]
- Särkämö, T.; Tervaniemi, M.; Laitinen, S.; Numminen, A.; Kurki, M.; Johnson, J.K.; Rantanen, P. Cognitive, emotional, and social benefits of regular musical activities in early dementia: Randomized controlled study. Gerontologist 2014, 54, 634–650. [Google Scholar] [CrossRef]
- Vecchio, F.; Quaranta, D.; Miraglia, F.; Pappalettera, C.; Di Iorio, R.; L’Abbate, F.; Cotelli, M.; Marra, C.; Rossini, P.M. Neuronavigated Magnetic Stimulation combined with cognitive training for Alzheimer’s patients: An EEG graph study. Geroscience 2022, 44, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Lichtenberg, P.A. (Ed.) Handbook of Assessment in Clinical Gerontology; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Doerflinger, D.M. Mental Status Assessment in Older Adults: Montreal Cognitive Assessment MoCA Version 7.1 (Original Version). Clin. Neuropsychol. 2012, 3. [Google Scholar]
- Konstantopoulos, K.; Vogazianos, P.; Doskas, T. Normative data of the Montreal Cognitive Assessment in the Greek population and parkinsonian dementia. Arch. Clin. Neuropsychol. 2016, 31, 246–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlahou, C.H.; Kosmidis, M.H. The Greek Trail Making Test: Preliminary normative data for clinical and research use. Psychol. J. Hell. Psychol. Soc. 2002, 9, 336–352. [Google Scholar]
- Richardson, J.T. Measures of short-term memory: A historical review. Cortex 2007, 43, 635–650. [Google Scholar] [CrossRef]
- Kosmidou, M.; Bozikas, V.; Vlaxou, C. Neuropsychological Unpublished Array; Aristotle University of Thessaloniki: Thessaloniki, Greece, 2012. [Google Scholar]
- Kosmidis, M.H.; Vlahou, C.H.; Panagiotaki, P.; Kiosseoglou, G. The verbal fluency task in the Greek population: Normative data and clustering and switching strategies. J. Int. Neuropsychol. Soc. 2004, 10, 164–172. [Google Scholar] [CrossRef]
- Messinis, L.; Panagea, E.; Papathanasopoulos, P.; Kastellakis, A.A. The Assessment of Aphasia and Related Disorders: Adaptation and Validation of the Boston Diagnostic Aphasia Examination—Short Form in Greek; Gotsis: Patras, Greece, 2013. [Google Scholar]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 1982, 17, 37–49. [Google Scholar] [CrossRef]
- Lawton, M.P.; Moss, M.; Fulcomer, M.; Kleban, M.H. Multi-Level Assessment Instrument Manual for Full-Length MAI; Madlyn and Leonard Abramson Center for Jewish Life: North Wales, PA, USA, 2003. [Google Scholar]
- Quade, D. Rank analysis of covariance. J. Am. Stat. Assoc. 1967, 62, 1187–1200. [Google Scholar] [CrossRef]
- Rabey, J.M.; Dobronevsky, E.; Aichenbaum, S.; Gonen, O.; Marton, R.G.; Khaigrekht, M. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: A randomized, double-blind study. J. Neural Transm. 2013, 120, 813–819. [Google Scholar] [CrossRef]
- Nousia, A.; Pappa, E.; Siokas, V.; Liampas, I.; Tsouris, Z.; Messinis, L.; Patrikelis, P.; Manouilidou, C.; Dardiotis, E.; Nasios, G. Evaluation of the Efficacy and Feasibility of a Telerehabilitation Program Using Language and Cognitive Exercises in Multi-Domain Amnestic Mild Cognitive Impairment. Arch. Clin. Neuropsychol. 2022, acac078. [Google Scholar] [CrossRef]
- Farina, E.; Mantovani, F.; Fioravanti, R.; Pignatti, R.; Chiavari, L.; Imbornone, E.; Olivotto, F.; Alberoni, M.; Mariani, C.; Nemni, R. Evaluating two group programmes of cognitive training in mild-to-moderate AD: Is there any difference between a ‘global’stimulation and a ‘cognitive-specific’ one? Aging Ment. Health. 2006, 10, 211–218. [Google Scholar] [CrossRef]
- Bottino, C.M.; Carvalho, I.A.; Alvarez, A.M.; Avila, R.; Zukauskas, P.R.; Bustamante, S.E.; Andrade, F.C.; Hototian, S.R.; Saffi, F.; Camargo, C.H. Cognitive rehabilitation combined with drug treatment in Alzheimer’s disease patients: A pilot study. Clin. Rehabil. 2005, 19, 861–869. [Google Scholar] [CrossRef]
- Giebel, C.; Challis, D. Translating cognitive and everyday activity deficits into cognitive interventions in mild dementia and mild cognitive impairment. Int. J. Geriatr. Psychiatry 2015, 30, 21–31. [Google Scholar] [CrossRef]
- Reijnders, J.; van Heugten, C.; van Boxtel, M. Cognitive interventions in healthy older adults and people with mild cognitive impairment: A systematic review. Ageing Res. Rev. 2013, 12, 263–275. [Google Scholar] [CrossRef]
- Bahar-Fuchs, A.; Clare, L.; Woods, B. Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer’s disease and vascular dementia. Cochrane Database Syst. Rev. 2013, 2013, CD003260. [Google Scholar] [CrossRef]
- Kallio, E.L.; Öhman, H.; Kautiainen, H.; Hietanen, M.; Pitkälä, K. Cognitive training interventions for patients with Alzheimer’s disease: A systematic review. J. Alzheimer’s Dis. 2017, 56, 1349–1372. [Google Scholar] [CrossRef]
- García-Casal, J.A.; Loizeau, A.; Csipke, E.; Franco-Martín, M.; Perea-Bartolomé, M.V.; Orrell, M. Computer-based cognitive interventions for people living with dementia: A systematic literature review and meta-analysis. Aging Ment. Health 2017, 21, 454–467. [Google Scholar] [CrossRef]
- Llewellyn-Bennett, R.; Bowman, L.; Bulbulia, R. Post-trial follow-up methodology in large randomized controlled trials: A systematic review protocol. Syst. Rev. 2016, 5, 214. [Google Scholar] [CrossRef]
- Berthelot, J.M.; Nizard, J.; Maugars, Y. The negative Hawthorne effect: Explaining pain over expression. Jt. Bone Spine 2019, 86, 445–449. [Google Scholar] [CrossRef]
Paper-Pencil Cognitive Training (P-PCT) Group (N = 10) | Computer-Based Cognitive Training (C-BCT) Group (N = 10) | p-Value | |
---|---|---|---|
Sex male/female | 3/7 | 3/7 | 1.00 a |
Age (years), mean (SD) | 75.00 (5.21) | 75.20 (4.73) | 0.929 b |
Years of education, median (IQR) | 9.50 (5.00) | 7.50 (7.00) | 1.00 c |
IADL (score), mean (SD) | 12.60 (1.83) | 13.70 (2.26) | 0.248 b |
GDS, median, (IQR) | 2.00 (2.00) | 2.00 (2.00) | 0.631 c |
P-PCT Group (N = 10) | C-BCT Group (N = 10) | p-Value | |
---|---|---|---|
Recall, median, (IQR) | 18.00 (4.00) | 18.00 (1.00) | 0.971 c |
Delay memory, median, (IQR) | 0.00 (0.00) | 0.00 (0.00) | 1.00 c |
MoCA, mean (SD) | 16.30 (1.49) | 17.00 (1.49) | 0.308 b |
Verbal fluency, mean (SD) | 21.80 (6.32) | 22.40 (8.23) | 0.857 b |
BNT, mean (SD) | 12.30 (1.25) | 12.30 (1.49) | 1.00 b |
DFT, median, (IQR) | 4.50 (2.00) | 5.00 (2.00) | 0.436 c |
DBT, median, (IQR) | 3.00 (1.00) | 3.00 (1.00) | 0.912 c |
TMT-A, mean (SD) | 182.70 (55.25) | 149.80 (37.65) | 0.137 b |
TMT-B, mean (SD) | 300 (0.00) | 300 (0.00) | 1.00 b |
P-PCT Group | C-BCT Group | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre-Assesment | Post-Assesment | Pre-Assesment | Post-Assesment | |||||||
Mean (SD) | Mean (SD) | 95% Confidence Interval of the Difference | Effect Size | p-Value | Mean (SD) | Mean (SD) | 95% Confidence Interval of the Difference | Effect Size | p-Value | |
Recall | 17.00 (3.30) | 18.20 (2.78) | 1.20 (0.38, 2.01) | 0.51 | 0.009b | 17.50 (1.35) | 17.00 (2.00) | −0.50 (−1.52, 0.52) | 0.24 | 0.273 b |
Delay memory | 0.20 (0.42) | 1.10 (0.73) | 0.90 (0.27, 1.52) | 0.50 | 0.024b | 0.20 (0.42) | 1.30 (0.48) | 1.10 (0.57, 1.62) | 0.58 | 0.009b |
BNT | 12.30 (1.25) | 12.30 (0.82) | 0.00 (−0.58, 0.58) | 0 | 1.000 b | 12.30 (1.49) | 14.20 (0.63) | 1.90 (1.11, 2.68) | 0.63 | 0.004b |
Verbal fluency | 21.80 (6.32) | 24.20 (6.81) | 2.40 (0.48, 4.31) | 0.89 | 0.019a | 22.40 (8.23) | 23.00 (6.89) | 0.60 (−2.06, 3.26) | 0.16 | 0.622 a |
DFT | 4.70 (1.05) | 4.20 (0.78) | −0.50 (−1.40, 0.40) | 0.27 | 0.236 b | 5.10 (0.87) | 6.00 (0.66) | 0.90 (0.37, 1.42) | 0.55 | 0.014b |
DBT | 3.30 (0.48) | 3.00 (0.66) | −0.30 (−0.88, 0.28) | 0.25 | 0.257 b | 3.20 (0.78) | 4.20 (0.63) | 1.00 (0.41, 1.58) | 0.54 | 0.015b |
TMT-A | 182.70 (55.25) | 158.00 (48.25) | −24.70 (−31.94, −17.45) | 2.43 | < 0.001 a | 149.80 (37.65) | 136.50 (31.09) | −13.30 (−32.43, 5.83) | 0.49 | 0.150 a |
TMT-B | 300.00 (0.00) | 261.50 (21.35) | −38.50 (−53.77, −23.22) | 1.80 | < 0.001a | 300.00 (0.00) | 279.00 (22.46) | −21.00 (−37.06, −4.93) | 0.93 | 0.016a |
IADL | 12.60 (1.83) | 14.60 (1.77) | 2.00 (1.10, 2.89) | 1.6 | 0.001a | 13.70 (2.26) | 14.30 (2.21) | 0.60 (−0.16, 1.36) | 0.55 | 0.111 a |
MoCA | 16.30 (1.49) | 17.20 (1.22) | 0.90 (0.11, 1.68) | 0.81 | 0.029a | 17.00 (1.49) | 17.00 (1.15) | 0.00 (−0.47, 0.47) | 0 | 1.000 a |
P-PCT Group (N = 10) | C-BCT Group (N = 10) | p-Value | |||
---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Treatment Difference | Effect Size | ||
Recall | 1.20 (1.13) | −0.50 (1.43) | 1.70 (0.48, 2.92) | 0.33 | 0.008b |
Delay memory | 0.90 (0.87) | 1.10 (0.73) | −0.20 (−0.96, 0.56) | 0.028 | 0.476 b |
BNT | 0.00 (0.81) | 1.90 (1.10) | −1.90 (−2.81, −0.98) | 0.83 | <0.001b |
Verbal fluency | 2.40 (2.67) | 0.60 (3.71) | 1.80 (−1.26, 4.86) | 0.08 | 0.237 a |
DFT | −0.50 (1.26) | 0.90 (0.73) | −1.40 (−2.39, −0.40) | 0.58 | <0.001b |
DBT | −0.30 (0.82) | 1.00 (0.81) | −1.30 (−2.07, −0.53) | 0.50 | <0.001b |
TMT-A | −24.70 (10.13) | −13.30 (26.75) | −11.40 (−31.19, 8.39) | 0.01 | 0.637 a |
TMT-B | −38.50 (21.35) | −21.00 (22.46) | −17.50 (−38.09, 3.09) | 0.15 | 0.091 a |
IADL | 2.00 (1.24) | 0.60 (1.07) | 1.40 (0.30, 2.49) | 0.25 | 0.024b |
MoCA | 0.90 (1.10) | 0.00 (0.66) | 0.90 (0.03, 1.76) | 0.15 | 0.086 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgopoulou, E.-N.; Nousia, A.; Siokas, V.; Martzoukou, M.; Zoupa, E.; Messinis, L.; Dardiotis, E.; Nasios, G. Computer-Based Cognitive Training vs. Paper-and-Pencil Training for Language and Cognitive Deficits in Greek Patients with Mild Alzheimer’s Disease: A Preliminary Study. Healthcare 2023, 11, 443. https://doi.org/10.3390/healthcare11030443
Georgopoulou E-N, Nousia A, Siokas V, Martzoukou M, Zoupa E, Messinis L, Dardiotis E, Nasios G. Computer-Based Cognitive Training vs. Paper-and-Pencil Training for Language and Cognitive Deficits in Greek Patients with Mild Alzheimer’s Disease: A Preliminary Study. Healthcare. 2023; 11(3):443. https://doi.org/10.3390/healthcare11030443
Chicago/Turabian StyleGeorgopoulou, Eleni-Nefeli, Anastasia Nousia, Vasileios Siokas, Maria Martzoukou, Elli Zoupa, Lambros Messinis, Efthimios Dardiotis, and Grigorios Nasios. 2023. "Computer-Based Cognitive Training vs. Paper-and-Pencil Training for Language and Cognitive Deficits in Greek Patients with Mild Alzheimer’s Disease: A Preliminary Study" Healthcare 11, no. 3: 443. https://doi.org/10.3390/healthcare11030443