Effects of Iron Salts on Demineralization and Discoloration of Primary Incisor Enamel Subjected to Artificial Cariogenic Challenge versus Saline Immersion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Grouping
2.3. Structural Assessment
2.4. Statistical Analysis
3. Results
3.1. Results of Samples Measurement
3.2. Results of Color Change
3.3. Structural Assessment
4. Discussion
5. Limitations and Suggestions for Future Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehran, M.A.; Bassir, M.M.; Jafari, S.E. Effect of two kinds of iron drops on the discoloration, atomic absorption and structural changes of primary teeth enamel. J. Dent. Med. 2009, 21, 290–299. [Google Scholar]
- Pahel, B.T.; Rozier, R.G.; Slade, G.D. Parental perceptions of children’s oral health: The Early Childhood Oral Health Impact Scale (ECOHIS). Health Qual. Life Outcomes 2007, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Chin, J.R.; Kowolik, J.E.; Stookey, G.K. Dental Caries in the Child and Adolescent. In McDonald and Avery’s Dentistry for the Child and Adolescent; Elsevier: Amsterdam, The Netherlands, 2016; pp. 155–176. [Google Scholar]
- Primosch, R.E.; Balsewich, C.M.; Thomas, C.W. Outcomes assessment an intervention strategy to improve parental compliance to follow-up evaluations after treatment of early childhood caries using general anesthesia in a Medicaid population. ASDC J. Dent. Child. 2001, 68, 102–108. [Google Scholar]
- Szatko, F.; Wierzbicka, M.; Dybizbanska, E.; Struzycka, I.; Iwanicka-Frankowska, E. Oral health of Polish three-year-olds and mothers’ oral health-related knowledge. Community Dent. Health 2004, 21, 175–180. [Google Scholar] [PubMed]
- Martins-Júnior, P.A.; Vieira-Andrade, R.G.; Corrêa-Faria, P.; Oliveira-Ferreira, F.; Marques, L.S.; Ramos-Jorge, M.L. Impact of early childhood caries on the oral health-related quality of life of preschool children and their parents. Caries Res. 2013, 47, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Eskandarian, T.; Motamedifar, M.; Hekmatfar, S.; Tamaddon, A.M. Comparison of the effect of three types of iron drops on surface roughness of deciduous teeth in a simulated cariogenic environment. J. Dent. Sch. Shahid Beheshti Univ. Med. Sci. 2013, 31, 15–22. [Google Scholar]
- Shojaipour, R.; KHazaeli, P.; Mahmodi, T. Adsorption rate of iron onto primary incisor teeth following the application of three iron drops. J. Kerman Univ. Med. Sci. 2010, 16, 42–84. [Google Scholar]
- Christofides, A.; Asante, K.P.; Schauer, C.; Sharieff, W.; Owusu-Agyei, S.; Zlotkin, S. Multi-micronutrient Sprinkles including a low dose of iron provided as microencapsulated ferrous fumarate improves haematologic indices in anaemic children: A randomized clinical trial. Matern. Child Nutr. 2006, 2, 169–180. [Google Scholar] [CrossRef]
- Pushpanjali, K.; Khanal, S.S.; Niraula, S.R. The relationship of dental extrinsic stains with the concentration of trace elements in water sources in a district of Nepal. Oral Health Prev. Dent. 2004, 2, 33–38. [Google Scholar]
- Ellingsen, J.E.; Rølla, G.; Eriksen, H.M. Extrinsic dental stain caused by chlorhexidine and other denaturing agents. J. Clin. Periodontol. 1982, 9, 317–322. [Google Scholar] [CrossRef]
- Reid, J.S.; Beeley, J.A.; MacDonald, D.G. Investigations into black extrinsic tooth stain. J. Dent. Res. 1977, 56, 895–899. [Google Scholar] [CrossRef]
- Addy, M.; Moran, J. Extrinsic tooth discoloration by metals and chlorhexidine. II. Clinical staining produced by chlorhexidine, iron and tea. Br. Dent. J. 1985, 159, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, H.; Baharvand, M.; Khodadoustan, A. Colors in tooth discoloration: A new classification and literature review. Int. J. Clin. Dent. 2014, 7, 17–27. [Google Scholar]
- Eskandarian, T.; Joshan, M.J. Evaluation of the DMFT index and its relationship to some factors consisting the consumption of iron supplementary drugs in 2–5 years old Kindergarden children in Shiraz. J. Dent. 2005, 6, 1–9. [Google Scholar]
- Delbem, A.C.; Alves, K.M.; Sassaki, K.T.; Moraes, J.C. Effect of iron II on hydroxyapatite dissolution and precipitation in vitro. Caries Res. 2012, 46, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Martinhon, C.C.; de Moraes Italiani, F.; de Magalhães Padilha, P.; Bijella, M.F.; Delbem, A.C.; Buzalaf, M.A. Effect of iron on bovine enamel and on the composition of the dental biofilm formed “in situ”. Arch. Oral Biol. 2006, 51, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Eshghi, A.; Kowsari-Isfahan, R.; Rezaiefar, M.; Razavi, M.; Zeighami, S. Effect of iron containing supplements on rats’ dental caries progression. Front Dent. 2012, 9, 14–19. [Google Scholar]
- Ribeiro CC, C.; Ccahuana-Vásquez, R.A.; Carmo CD, S.D.; Alves CM, C.; Leitão, T.J.; Vidotti, L.R.; Cury, J.A. The effect of iron on Streptococcus mutans biofilm and on enamel demineralization. Braz. Oral Res. 2012, 26, 300–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabari, M.; Alaghemand, H.; Rabiee, M.; Khefri, S.; Ahadi, M.S.; Nikpour, M.R. The Effect of Silicone Oil and Nano-hydroxyapatite/Chitosan Powder on Microhardness and Surface Structure of Primary Teeth Enamel after Iron Drop Consumption. J. Dent. Sch. Shahid Beheshti Univ. Med. Sci. 2013, 31, 138–147. [Google Scholar]
- Alves, K.M.; Franco, K.S.; Sassaki, K.T.; Buzalaf, M.A.; Delbem, A.C. Effect of iron on enamel demineralization and remineralization in vitro. Arch. Oral Biol. 2011, 56, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Pani, S.C.; Alenazi, F.M.; Alotain, A.M.; Alanazi, H.D.; Alasmari, A.S. Extrinsic tooth staining potential of high dose and sustained release iron syrups on primary teeth. BMC Oral Health 2015, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.J.; Gao, S.S.; Duangthip, D.; Lo, E.C.M.; Chu, C.H. Managing Early Childhood Caries for Young Children in China. Healthcare 2018, 6, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Environment | Group | Mean (SD *) | Min | Max | Fisher’s Statistic | p-Value |
---|---|---|---|---|---|---|
ACC | Control | 1.71 (1.2) | 0.97 | 2.64 | 18.32 | 0.003 |
Ferrous gluconate | 6.82 (2.4) | 4.23 | 8.91 | |||
Ferrous fumarate | 8.79 (4.5) | 4.16 | 14.49 | |||
Ferrous ammonium citrate | 13.99 (2.1) | 11.58 | 14.87 | |||
Ferrous sulfate | 25.98 (3.7) | 22.68 | 26.81 | |||
Saline | Control | 1.16 (0.8) | 0.9 | 1.62 | 4.96 | 0.054 |
Ferrous fumarate | 2.85 (1.9) | 2.10 | 3.21 | |||
Ferrous ammonium citrate | 3.61 (0.7) | 2.95 | 4.13 | |||
Ferrous gluconate | 3.80 (0.1) | 3.85 | 3.92 | |||
Ferrous sulfate | 17.99 (9.46) | 12.41 | 25.68 |
Groups | NS | ACC | Independent t-Test Statistic | Confidence Interval | p Value | |
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | |||||
Control | 1.16 (0.8) | 1.71 (1.2) | 1.470 | −0.75 | 1.60 | 0.379 |
Ferrous fumarate | 2.85 (1.9) | 8.79 (4.5) | 1.710 | −0.81 | 1.80 | 0.229 |
Ferrous ammonium citrate | 3.61 (0.7) | 13.99 (2.1) | 6.436 | 4.52 | 7.96 | 0.023 |
Ferrous gluconate | 3.80 (0.1) | 6.82 (2.4) | −1.749 | −0.91 | 0.58 | 0.223 |
Ferrous sulfate | 17.99 (9.46) | 25.98 (3.7) | 1.112 | −0.72 | 0.69 | 0.382 |
Environment | Group | Mean Rank | Min | Max | Kruskal-Wallis Statistic | p-Value |
---|---|---|---|---|---|---|
ACC | Control | 1.5 | 1 | 3 | 9.00 | 0.061 |
Ferrous gluconate | 6.5 | 1 | 8 | |||
Ferrous fumarate | 6.5 | 2 | 8 | |||
Ferrous ammonium citrate | 6.5 | 1 | 7 | |||
Ferrous sulfate | 6.5 | 1 | 8 | |||
Saline | Control | 1.5 | 1 | 4 | 9.00 | 0.061 |
Ferrous fumarate | 6.5 | 2 | 8 | |||
Ferrous ammonium citrate | 6.5 | 1 | 9 | |||
Ferrous gluconate | 6.5 | 2 | 8 | |||
Ferrous sulfate | 6.5 | 1 | 7 |
Group | Saline | ACC | Min | Max | Mann-Whitney Statistic | p-Value |
---|---|---|---|---|---|---|
Mean Rank | Mean Rank | |||||
Control | 1.5 | 3.5 | 1 | 5 | 0.001 | 0.083 |
Ferrous fumarate | 1.5 | 3.5 | 2 | 5 | 0.001 | 0.083 |
Ferrous ammonium citrate | 1.5 | 3.5 | 1 | 6 | 0.001 | 0.083 |
Ferrous gluconate | 1.5 | 3.5 | 1 | 7 | 0.001 | 0.083 |
Ferrous sulfate | 1.5 | 3.5 | 2 | 6 | 0.001 | 0.083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazemisalman, B.; Mohseni, M.; Darvish, S.; Farsadeghi, M.; Luchian, I. Effects of Iron Salts on Demineralization and Discoloration of Primary Incisor Enamel Subjected to Artificial Cariogenic Challenge versus Saline Immersion. Healthcare 2023, 11, 569. https://doi.org/10.3390/healthcare11040569
Nazemisalman B, Mohseni M, Darvish S, Farsadeghi M, Luchian I. Effects of Iron Salts on Demineralization and Discoloration of Primary Incisor Enamel Subjected to Artificial Cariogenic Challenge versus Saline Immersion. Healthcare. 2023; 11(4):569. https://doi.org/10.3390/healthcare11040569
Chicago/Turabian StyleNazemisalman, Bahareh, Mehran Mohseni, Shayan Darvish, Mahya Farsadeghi, and Ionut Luchian. 2023. "Effects of Iron Salts on Demineralization and Discoloration of Primary Incisor Enamel Subjected to Artificial Cariogenic Challenge versus Saline Immersion" Healthcare 11, no. 4: 569. https://doi.org/10.3390/healthcare11040569
APA StyleNazemisalman, B., Mohseni, M., Darvish, S., Farsadeghi, M., & Luchian, I. (2023). Effects of Iron Salts on Demineralization and Discoloration of Primary Incisor Enamel Subjected to Artificial Cariogenic Challenge versus Saline Immersion. Healthcare, 11(4), 569. https://doi.org/10.3390/healthcare11040569