Analysis and Forecast of Indicators Related to Medical Workers and Medical Technology in Selected Countries of Eastern Europe and Balkan
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Number of Medical Workers per 100,000 Inhabitants
3.2. Number of Medical Technologies Used in Health Services
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brownson, R.C.; Gurney, J.G.; Land, G.H. Evidence-based decision making in public health. J. Public Health Manag. Pract. 1999, 5, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Abdulaziz, A.I. Quality management and its role in improving service quality in public sector. J. Bus. Manag. Sci. 2014, 2, 123–147. [Google Scholar] [CrossRef] [Green Version]
- Bassett, M.T. Health for all in the 21st century. Am. J. Public Health 2006, 96, 2089. [Google Scholar] [CrossRef]
- Branning, G.; Vater, M. Healthcare spending: Plenty of blame to go around. Am. Health Drug Benefits 2016, 9, 445–447. [Google Scholar]
- Tulchinsky, T.H.; Varavikova, E.A. The New Public Health, 2nd ed.; Elsevier Academic Press: Cambridge, MA, USA, 2009; p. 658. [Google Scholar]
- Kumar, S.; Preetha, G. Health promotion: An effective tool for global health. Indian J. Community Med. 2012, 37, 5–12. [Google Scholar] [CrossRef]
- Edington, D.W.; Schultz, A.B.; Pitts, J.S.; Camilleri, A. The future of health promotion in the 21st century: A focus on the working population. Am. J. Lifestyle Med. 2015, 10, 242–252. [Google Scholar] [CrossRef]
- Rao, R.; Hawkins, M.; Ulrich, T.; Gatlin, G.; Mabry, G.; Mishra, C. The evolving role of public health in medical education. Front. Public Health 2020, 8, 251. [Google Scholar] [CrossRef]
- Resnick, B.; Selig, S.; Riegelman, R. An examination of the growing US undergraduate public health movement. Public Health Rev. 2017, 38, 4. [Google Scholar] [CrossRef] [Green Version]
- Boniol, M.; Kunjumen, T.; Nair, T.S.; Siyam, A.; Campbell, J.; Diallo, K. The global health workforce stock and distribution in 2020 and 2030: A threat to equity and ‘universal’ health coverage? BMJ Global Health 2022, 7, e009316. [Google Scholar] [CrossRef]
- Van Weel, C.; Kidd, M.R. Why strengthening primary health care is essential to achieving universal health coverage. CMAJ 2018, 190, E463–E466. [Google Scholar] [CrossRef] [Green Version]
- Hajat, C.; Stein, E. The global burden of multiple chronic conditions: A narrative review. Prev. Med. Rep. 2018, 12, 284–293. [Google Scholar] [CrossRef]
- Rodríguez-Navarro, A.; Brito, R. The link between countries’ economic and scientific wealth has a complex dependence on technological activity and research policy. Scientometrics 2022, 127, 2871–2896. [Google Scholar] [CrossRef]
- Reyes-Santias, F.; Antelo, M. Explaining the adoption and use of computed tomography and magnetic resonance image technologies in public hospitals. BMC Health Serv. Res. 2021, 21, 1278. [Google Scholar] [CrossRef] [PubMed]
- Jakovljevic, M.; Camilleri, C.; Rancic, N.; Grima, S.; Jurisevic, M.; Grech, K.; Buttigieg, S.C. Cold war legacy in public and private health spending in Europe. Front. Public Health 2018, 6, 215. [Google Scholar] [CrossRef] [Green Version]
- Kesternich, I.; Siflinger, B.; Smith, J.P.; Winter, J.K. The effects of World War II on economic and health outcomes across Europe. Rev. Econ. Stat. 2014, 96, 103–118. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation. European Health for All Database (HFA-DB). Available online: https://gateway.euro.who.int/en/datasets/european-health-for-all-database/ (accessed on 21 November 2022).
- Vafeiadis, T.; Bora-Senta, E.; Kugiumtzis, D. Estimation of linear trend onset in time series. Simul. Model. Pract. Theory 2011, 19, 1384–1398. [Google Scholar] [CrossRef]
- Schneider, A.; Hommel, G.; Blettner, M. Linear regression analysis: Part 14 of a series on evaluation of scientific publications. Dtsch. Arztebl. Int. 2010, 107, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C.; Steyerbergd, E.W. The number of subjects per variable required in linear regression analyses. J. Clin. Epidemiol. 2015, 68, 627–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogura, S.; Jakovljevic, M. Health financing constrained by population aging—An opportunity to learn from Japanese experience. Serb. J. Exp. Clin. Res. 2014, 15, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Jakovljevic, M.B.; Vukovic, M.; Fontanesi, J. Life expectancy and health expenditure evolution in Eastern Europe-DiD and DEA analysis. Expert Rev. Pharmacoecon. Outcomes Res. 2015, 16, 537–546. [Google Scholar] [CrossRef]
- Jakovljevic, M.; Potapchik, E.; Popovich, L.; Barik, D.; Getzen, T.E. Evolving health expenditure landscape of the BRICS nations and projections to 2025. Health Econ. 2017, 26, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Politzer, E.; Shmueli, A.; Avni, S. The economic burden of health disparities related to socioeconomic status in Israel. Isr. J. Health Policy Res. 2019, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Jakovljevic, M. Population ageing alongside health care spending growth. Srp. Arh. 2017, 145, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Stepovic, M. GDP growth and health care expenditures worldwide. Open Pharm. Health Econ. J. 2019, 7, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Greenhalgh, T.; Wherton, J.; Papoutsi, C.; Lynch, J.; Hughes, G.; A’Court, C.; Hinder, S.; Fahy, N.; Procter, R.; Shaw, S. Beyond adoption: A new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. J. Med. Internet Res. 2017, 19, e367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, M.; Koike, S.; Kashima, S.; Awai, K. Geographic distribution of radiologists and utilization of teleradiology in Japan: A longitudinal analysis based on National Census Data. PLoS ONE 2015, 30, 10. [Google Scholar] [CrossRef]
- He, L.; Yu, H.; Shi, L.; He, Y.; Geng, J.; Wei, Y.; Sun, H.; Chen, Y. Equity assessment of the distribution of CT and MRI scanners in China: A panel data analysis. Int. J. Equity Health 2018, 17, 157. [Google Scholar] [CrossRef]
- Brodaty, H.; Gibson, L.H.; Waine, M.L.; Shell, A.M.; Lilian, R.; Pond, C.D. Research in general practice: A survey of incentives and disincentives for research participation. Ment. Health Fam. Med. 2013, 10, 163–173. [Google Scholar]
- Del Mar, C.; Askew, D. Building family/general practice research capacity. Ann. Fam. Med. 2004, 26, S35–S40. [Google Scholar] [CrossRef]
- Freund, T.; Everett, C.; Griffiths, P.; Hudon, C.; Naccarella, L.; Laurant, M. Skill mix, roles and remuneration in the primary care workforce: Who are the healthcare professionals in the primary care teams across the world? Int. J. Nurs. Stud. 2015, 52, 727–743. [Google Scholar] [CrossRef] [Green Version]
- Winkelmann, J.; Muench, U.; Maier, C.B. Time trends in the regional distribution of physicians, nurses and midwives in Europe. BMC Health Serv. Res. 2020, 20, 937. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.E.; Hutchinson, L. Analysis of human resources for oral health globally: Inequitable distribution. Int. Dent. J. 2018, 68, 183–189. [Google Scholar] [CrossRef]
- Gallagher, J.E.; Patel, R.; Wilson, N.H.F. The emerging dental workforce: Long-term career expectations and influences. A quantitative study of final year dental students’ views on their long-term career from one London Dental School. BMC Oral Health 2009, 9, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achembong, L.N.; Ashu, A.M.; Hagopian, A.; Downer, A.; Barnhart, S. Cameroon mid-level providers offer a promising public health dentistry model. Hum. Resour. Health 2012, 26, 10–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobdell, M.; Petersen, P.E.; Clarkson, J.; Johnson, N. Global goals for oral health 2020. Int. Dent J. 2003, 53, 285–288. [Google Scholar] [CrossRef]
- Hawthorne, N.; Anderson, C. The global pharmacy workforce: A systematic review of the literature. Hum. Resour. Health 2009, 7, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, I.; John, C.; Bruno, A.; Fu, P.; Aliabadi, S. An analysis of the global pharmacy workforce capacity. Hum. Resour. Health 2016, 14, 61. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Lee, J.H.; Gupta, A.J.; Tucker, A.; Larkin, C.; Turimumahoro, P.; Katamba, A.; Davis, J.L.; Dowdy, D. Cost-effectiveness analysis of human-centred design for global health interventions: A quantitative framework. BMJ Glob. Health 2022, 7, e007912. [Google Scholar] [CrossRef]
- Stepovic, M.; Rancic, N.; Vekic, B.; Dragojevic-Simic, V.; Vekic, S.; Ratkovic, N.; Jakovljevic, M. Gross domestic product and health expenditure growth in Balkan and East European countries—Three-decade horizon. Front. Public Health 2020, 8, 492. [Google Scholar] [CrossRef]
- Stepović, M.; Vekić, B.; Dragojević Simić, V.; Vekić, S.; Rančić, N. Forecasting analysis of selected health and economy related indicators in South Eastern European and Balkan countries. Vojnosanit. Pregl. 2022, 79, 10. [Google Scholar] [CrossRef]
- Marino, A.; Morgan, D.; Lorenzoni, L.; James, C. Future trends in health care expenditure: A modelling framework for cross-country forecasts. OECD Health Work. Pap. 2017, 95, 52. [Google Scholar] [CrossRef]
- Raleigh, V. Trends in life expectancy in EU and other OECD countries: Why are improvements slowing? OECD Health Work. Pap. 2019, 108. [Google Scholar] [CrossRef]
Countries | First Year (1990–2000) | Last Year (2014–2016) | Prediction | Median | IQR | Regression Analysis |
---|---|---|---|---|---|---|
Albania | 52.9 | 55.86 | 60.63 | 53 | 3.94 | y = −0.9346x + 56.908; R2 = 0.0911 |
Bulgaria | 67.6 | 62.84 | 58.43 | 65 | 4.37 | y = 2.7521x + 34.728; R2 = 0.283 |
Bosnia and Herzegovina | 11.49 | 19.72 | 31.90 | 15 | 7.32 | y = 1.4859x − 0.0295; R2 = 0.8872 |
Belarus | 6.33 | 9.24 | 20.29 | 9 | 2.42 | y = 0.6631x − 3.1129; R2 = 0.6046 |
Greece | 14.31 | 39.15 | 52.88 | 18 | 6.91 | y = 2.3669x − 5.6518; R2 = 0.8642 |
Croatia | 55.02 | 57 | 62.33 | 53 | 4.65 | y = 5.1864x − 20.139; R2 = 0.7321 |
Montenegro | 30.48 | 39.18 | 46.01 | 33 | 7.68 | y = 3.2036x − 3.3379; R2 = 0.746 |
Romania | 65.82 | 56.95 | 51.34 | 65 | 9.16 | y = 4.7354x − 12.363; R2 = 0.4253 |
Russia | 38.7 | 32.09 | 49.38 | 43 | 14.62 | y = 0.7576x + 37.779; R2 = 0.2111 |
Serbia | 68.82 | 70.71 | 77.48 | 71 | 4.75 | y = 4.8411x + 17.998; R2 = 0.5384 |
Slovenia | 38.18 | 51.5 | 67.17 | 43 | 7.37 | y = 4.338x − 5.5783; R2 = 0.8044 |
Turkey | 48.26 | 53.47 | 64.72 | 51 | 8.19 | y = 0.9193x + 43.067; R2 = 0.8606 |
Estonia | 68.87 | 71.8 | 86.64 | 70 | 5.34 | y = 1.8208x + 51.784; R2 = 0.6143 |
Lithuania | 67.24 | 89.14 | 115.37 | 72 | 19.98 | y = 2.4167x + 52.227; R2 = 0.95 |
Ukraine | 31.78 | 36.11 | 46.84 | 33 | 7.12 | y = 0.8446x + 25.892; R2 = 0.932 |
Countries | First Year (1990–1994) | Last Year (2014–2016) | Prediction | Median | IQR | Regression Analysis |
---|---|---|---|---|---|---|
Albania | 38 | 84 | 72 | 39 | 6 | y = 0.5234x + 21.161; R2 = 0.0276 |
Bulgaria | 36 | 17 | 0 | 22 | 11 | y = −1.5415x + 28.358; R2 = 0.7519 |
Bosnia and Herzegovina | 18 | 12 | 11 | 10 | 1 | y = 0.4002x + 2.293; R2 = 0.3079 |
Belarus | 34 | 34 | 35 | 31 | 4 | y = 0.049x + 30.474; R2 = 0.0163 |
Greece | 86 | 105 | 129 | 96 | 13 | y = 6.1128x − 32.852; R2 = 0.7909 |
Croatia | 36 | 71 | 90 | 52 | 18 | y = 1.6326x + 31.777; R2 = 0.985 |
North Macedonia | 21 | 45 | 62 | 18 | 19 | y = 0.7059x + 14.216; R2 = 0.1491 |
Montenegro | 17 | 17 | 15 | 16 | 2 | y = 0.9668x − 5.4213; R2 = 0.7147 |
Romania | 29 | 73 | 114 | 46 | 31 | y = 3.0312x − 7.7631; R2 = 0.6437 |
Russia | 2 | 5 | 6 | 6 | 1 | y = 0.1491x + 3.3187; R2 = 0.378 |
Serbia | 25 | 33 | 42 | 30 | 6 | y = 1.9579x − 9.5945; R2 = 0.8164 |
Slovenia | 34 | 60 | 78 | 47 | 16 | y = 2.99x − 4.5248; R2 = 0.8709 |
Turkey | 29 | 35 | 38 | 34 | 2 | y = 0.2371x + 30.43; R2 = 0.7305 |
Estonia | 53 | 68 | 76 | 59 | 9 | y = 1.5993x + 34.126; R2 = 0.4133 |
Latvia | 56 | 78 | 100 | 63 | 12 | y = 4.2935x − 21.52; R2 = 0.8292 |
Lithuania | 52 | 66 | 87 | 59 | 3 | y = −1.9902x + 49.605; R2 = 0.2204 |
Ukraine | 3 | 3 | 5 | 3 | 1 | y = 0.2082x − 0.6699; R2 = 0.8304 |
Countries | First Year (1990–2000) | Last Year (2014–2016) | Prediction | Median | IQR | Regression Analysis |
---|---|---|---|---|---|---|
Albania | 147 | 128 | 116 | 128 | 10 | y = −3.0557x + 152.14; R2 = 0.2289 |
Bulgaria | 298 | 400 | 426 | 353 | 24 | y = 3.1217x + 316.19; R2 = 0.8513 |
Bosnia and Herzegovina | 156 | 188 | 223 | 157 | 28 | y = 6.9955x + 12.747; R2 = 0.3806 |
Belarus | 288 | 407 | 446 | 327 | 45 | y = 4.5933x + 276.18; R2 = 0.9225 |
Greece | 363 | 625 | 815 | 466 | 219 | y = 13.422x + 320.17; R2 = 0.9517 |
Croatia | 194 | 313 | 357 | 241 | 41 | y = 4.7335x + 186.48; R2 = 0.967 |
North Macedonia | 234 | 280 | 315 | 232 | 41 | y = −0.4363x + 235.11; R2 = 0.0034 |
Montenegro | 193 | 219 | 241 | 204 | 13 | y = 12.61x − 72.457; R2 = 0.7484 |
Romania | 188 | 236 | 293 | 216 | 41 | y = 10.824x − 0.7556; R2 = 0.5072 |
Russia | 225 | 331 | 280 | 237 | 7 | y = 3.7004x + 183.78; R2 = 0.2451 |
Serbia | 275 | 307 | 355 | 300 | 28 | y = 18.965x − 89.172; R2 = 0.7849 |
Slovenia | 219 | 276 | 301 | 236 | 26 | y = 13.403x − 0.2986; R2 = 0.7342 |
Turkey | 97 | 175 | 218 | 140 | 49 | y = 3.5474x + 94.603; R2 = 0.9923 |
Estonia | 354 | 332 | 340 | 321 | 14 | y = 0.1548x + 320.25; R2 = 0.012 |
Latvia | 361 | 322 | 348 | 294 | 31 | y = 0.8818x + 288.77; R2 = 0.0841 |
Lithuania | 358 | 433 | 455 | 372 | 22 | y = 6.1806x + 288.31; R2 = 0.2928 |
Ukraine | 300 | 300 | 382 | 308 | 49 | y = 19.561x − 45.216; R2 = 0.7598 |
Countries | First Year (1990–1999) | Last Year (2016) | Prediction | Median | IQR | Regression Analysis |
---|---|---|---|---|---|---|
Albania | 33.93 | 34.59 | 0 | 40 | 8.27 | y = −2.5801x + 53.951 R2 = 0.9068 |
Bulgaria | 67.95 | 100.38 | 109.97 | 82 | 19.01 | y = 7.0214x + 71.396 R2 = 0.8403 |
Bosnia and Herzegovina | 31.44 | 21.08 | 26.94 | 19 | 3.01 | y = 1.8061x + 15.872 R2 = 0.7331 |
Belarus | 31.72 | 54.89 | 69.26 | 44 | 15.53 | y = 5.7146x + 36.692 R2 = 0.8768 |
Croatia | 43.35 | 75.78 | 80.89 | 68 | 11.13 | y = 2.9356x + 64.89 R2 = 0.8937 |
Montenegro | 41.13 | 4.02 | 0 | 41 | 28.75 | y = −24.34x + 80.441 R2 = 0.8498 |
Romania | 31.65 | 67 | 98.34 | 49 | 22.15 | y = 14.54x + 18.098 R2 = 0.9328 |
Russia | 26.95 | 29.22 | 28.58 | 29 | 1.94 | y = −0.2971x + 30.108 R2 = 0.7027 |
Slovenia | 59.06 | 64.93 | 68.43 | 60 | 2.10 | y = 2.5453x + 54.943 R2 = 0.9631 |
Estonia | 51.75 | 89.68 | 100.75 | 79 | 22.56 | y = 5.2017x + 73.115 R2 = 0.8348 |
Latvia | 55.24 | 90.54 | 115.01 | 67 | 14.43 | y = 11.234x + 51.215 R2 = 0.8855 |
Ukraine | 45.43 | 68.37 | 100.43 | 46 | 20.32 | y = 13.211x + 25.66 R2 = 0.8721 |
Countries | First Year (2005) | Last Year (2016) | Prediction | Median | IQR | Regression Analysis |
---|---|---|---|---|---|---|
Bulgaria | 1.6 | 3.5 | 5.2 | 3.0 | 1.4 | y = 0.1892x + 1.5121 R2 = 0.9188 |
Estonia | 0.7 | 1.8 | 2.6 | 1.6 | 0.6 | y = 0.1049x + 0.8015 R2 = 0.7725 |
Greece | 2.5 | 3.7 | 4.5 | 3.3 | 0.5 | y = 0.1x + 2.5333 R2 = 0.9429 |
Croatia | 1.6 | 1.8 | 1.8 | 1.6 | 0.2 | y = 0.0129x + 1.48 R2 = 0.0643 |
Lithuania | 1.2 | 2.3 | 3.5 | 1.9 | 1.1 | y = 0.1294x + 0.9424 R2 = 0.8095 |
Latvia | 1.8 | 3.6 | 5.5 | 3.0 | 1.4 | y = 0.1962x + 1.55 R2 = 0.9615 |
Romania | 0.3 | 1.3 | 2.4 | 0.8 | 0.7 | y = 0.1152x − 0.0636 R2 = 0.9945 |
Slovenia | 1 | 1 | 0.8 | 1.1 | 0.2 | y = −0.0112x + 1.1727 R2 = 0.1119 |
Serbia | 1.3 | 1.4 | 1.6 | 1.3 | 0.1 | y = 0.03x + 1 R2 = 0.45 |
Turkey | 0.7 | 1.5 | 2.0 | 1.3 | 0.4 | y = 0.0671x + 0.7636 R2 = 0.8951 |
Countries | First Year (2005) | Last Year (2016) | Prediction | Median | IQR | Regression Analysis |
---|---|---|---|---|---|---|
Bulgaria | 0.3 | 0.8 | 1.3 | 0.5 | 0.4 | y = 0.0524x + 0.1758 R2 = 0.9008 |
Estonia | 0.2 | 1.4 | 2.1 | 0.9 | 0.5 | y = 0.0941x + 0.247 R2 = 0.9377 |
Greece | 1.3 | 2.7 | 3.4 | 2.2 | 0.5 | y = 0.0976x + 1.4742 R2 = 0.8353 |
Croatia | 0.3 | 0.4 | 0.5 | 0.3 | 0.1 | y = 0.0123x + 0.2234 R2 = 0.5033 |
Lithuania | 0.2 | 1.2 | 2.2 | 0.6 | 0.8 | y = 0.101x + 0.0348 R2 = 0.9305 |
Latvia | 0.3 | 1.4 | 2.3 | 0.9 | 0.7 | y = 0.1021x + 0.1864 R2 = 0.9743 |
Romania | 0.1 | 0.6 | 1.1 | 0.4 | 0.3 | y = 0.0576x − 0.1018 R2 = 0.9733 |
Slovenia | 0.6 | 1.1 | 1.4 | 0.8 | 0.2 | y = 0.0445x + 0.4882 R2 = 0.9095 |
Serbia | 0.3 | 0.3 | 0.3 | 0.3 | 0 | / |
Turkey | 0.3 | 1.1 | 1.6 | 1.0 | 0.4 | y = 0.0643x + 0.4152 R2 = 0.7927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepovic, M.; Vekic, S.; Vojinovic, R.; Jovanovic, K.; Radovanovic, S.; Radevic, S.; Rancic, N. Analysis and Forecast of Indicators Related to Medical Workers and Medical Technology in Selected Countries of Eastern Europe and Balkan. Healthcare 2023, 11, 655. https://doi.org/10.3390/healthcare11050655
Stepovic M, Vekic S, Vojinovic R, Jovanovic K, Radovanovic S, Radevic S, Rancic N. Analysis and Forecast of Indicators Related to Medical Workers and Medical Technology in Selected Countries of Eastern Europe and Balkan. Healthcare. 2023; 11(5):655. https://doi.org/10.3390/healthcare11050655
Chicago/Turabian StyleStepovic, Milos, Stefan Vekic, Radisa Vojinovic, Kristijan Jovanovic, Snezana Radovanovic, Svetlana Radevic, and Nemanja Rancic. 2023. "Analysis and Forecast of Indicators Related to Medical Workers and Medical Technology in Selected Countries of Eastern Europe and Balkan" Healthcare 11, no. 5: 655. https://doi.org/10.3390/healthcare11050655
APA StyleStepovic, M., Vekic, S., Vojinovic, R., Jovanovic, K., Radovanovic, S., Radevic, S., & Rancic, N. (2023). Analysis and Forecast of Indicators Related to Medical Workers and Medical Technology in Selected Countries of Eastern Europe and Balkan. Healthcare, 11(5), 655. https://doi.org/10.3390/healthcare11050655