Effects of Pelvic-Tilt Imbalance on Disability, Muscle Performance, and Range of Motion in Office Workers with Non-Specific Low-Back Pain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Research Procedures
2.3. Pelvis Alignment Imbalance
2.4. Numeric Pain-Rating Scale (NPRS)
2.5. Oswestry Disability Index (ODI)
2.6. Muscle Power of the Lumbar Flexors, Extensors, and Hip Extensors
2.7. Muscle Endurance of Lumbar Flexors and Extensors
2.8. ROM in Lumbar Flexion and Extension
2.9. ROM in Hip Extension, Flexion, and Internal and External Rotation
2.10. ROM in Knee Flexion and Extension
2.11. Trunk-Muscle Activity and Foot Pressure
2.12. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maher, C.; Underwood, M.; Buchbinder, R. Non-specific low back pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardin, L.D.; King, P.; Maher, C.G. Diagnostic triage for low back pain: A practical approach for primary care. Med. J. Aust. 2017, 206, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Von Korff, M.; Barlow, W.; Cherkin, D.; Deyo, R.A. Effects of practice style in managing back pain. Ann. Intern. Med. 1994, 121, 187–195. [Google Scholar] [CrossRef]
- Bergquist-Ullman, M.; Larsson, U. Acute low back pain in industry: A controlled prospective study with special reference to therapy and confounding factors. Acta Orthop. Scand. 1977, 48, 1–117. [Google Scholar] [CrossRef]
- Delitto, A.; George, S.Z.; Dillen, L.V.; Whitman, J.M.; Sowa, G.; Shekelle, P.; Denninger, T.R.; Godges, J.J. Orthopaedic Section of the American Physical Therapy Association. Low Back Pain. J. Orthop. Sport. Phys. Ther. 2012, 42, A1–A57. [Google Scholar] [CrossRef] [Green Version]
- Furtado, R.N.; Ribeiro, L.H.; Abdo Bde, A.; Descio, F.J.; Martucci, C.E., Jr.; Serruya, D.C. Nonspecific low back pain in young adults: Associated risk factors. Rev. Bras. Reumatol. 2014, 54, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Parreira, P.; Maher, C.G.; Steffens, D.; Hancock, M.J.; Ferreira, M.L. Risk factors for low back pain and sciatica: An umbrella review. Spine J. 2018, 18, 1715–1721. [Google Scholar] [CrossRef]
- Goubert, D.; Oosterwijck, J.V.; Meeus, M.; Danneels, L. Structural Changes of Lumbar Muscles in Non-specific Low Back Pain: A Systematic Review. Pain Physician 2016, 19, E985–E1000. [Google Scholar] [PubMed]
- Kato, S.; Murakami, H.; Demura, S.; Yoshioka, K.; Shinmura, K.; Yokogawa, N.; Shimizu, T.; Tsuchiya, H. Abdominal trunk muscle weakness and its association with chronic low back pain and risk of falling in older women. BMC Musculoskelet. Disord. 2019, 20, 273. [Google Scholar] [CrossRef]
- Hamberg-van Reenen, H.H.; Ariëns, G.A.; Blatter, B.M.; van Mechelen, W.; Bongers, P.M. A systematic review of the relation between physical capacity and future low back and neck/shoulder pain. Pain 2007, 130, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Alsufiany, M.B.; Lohman, E.B.; Daher, N.S.; Gang, G.R.; Shallan, A.I.; Jaber, H.M. Non-specific chronic low back pain and physical activity: A comparison of postural control and hip muscle isometric strength: A cross-sectional study. Medicine 2020, 99, e18544. [Google Scholar] [CrossRef]
- Arab, A.M.; Soleimanifar, M.; Nourbakhsh, M.R. Relationship Between Hip Extensor Strength and Back Extensor Length in Patients with Low Back Pain: A Cross-Sectional Study. J. Manip. Physiol. Ther. 2019, 42, 125–131. [Google Scholar] [CrossRef]
- Harris-Hayes, M.; Sahrmann, S.A.; Van Dillen, L.R. Relationship between the hip and low back pain in athletes who participate in rotation-related sports. J. Sport Rehabil. 2009, 18, 60–75. [Google Scholar] [CrossRef] [Green Version]
- Wand, B.M.; O’Connell, N.E. Chronic non-specific low back pain-sub-groups or a single mechanism? BMC Musculoskelet. Disord. 2008, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Kwon, O.Y.; Yi, C.H.; Cynn, H.S.; Ha, S.M.; Park, K.N. Lumbopelvic motion during seated hip flexion in subjects with low-back pain accompanying limited hip flexion. Eur. Spine J. 2014, 23, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Sadeghisani, M.; Sobhani, V.; Kouchaki, E.; Bayati, A.; Ashari, A.A.; Mousavi, M. Comparison of Lumbopelvic and Hip Movement Patterns during Passive Hip External Rotation in Two Groups of Low Back Pain Patients with and without Rotational Demand Activities. Ortop. Traumatol. Rehabil. 2015, 17, 611–618. [Google Scholar] [CrossRef] [Green Version]
- Abelin-Genevois, K. Sagittal balance of the spine. Orthop. Traumatol. Surg. Res. 2021, 107, 102769. [Google Scholar] [CrossRef] [PubMed]
- Vleeming, A.; Schuenke, M. Form and Force Closure of the Sacroiliac Joints. PM R 2019, 11 (Suppl. S1), S24–S31. [Google Scholar] [CrossRef] [PubMed]
- Preece, S.J.; Tan, Y.F.; Alghamdi, T.D.A.; Arnall, F.A. Comparison of Pelvic Tilt Before and after Hip Flexor Stretching in Healthy Adults. J. Manip. Physiol. Ther. 2021, 44, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Menezes-Reis, R.; Bonugli, G.P.; Salmon, C.E.G.; Mazoroski, D.; Herrero, C.; Nogueira-Barbosa, M.H. Relationship of spinal alignment with muscular volume and fat infiltration of lumbar trunk muscles. PLoS ONE 2018, 13, e0200198. [Google Scholar] [CrossRef]
- Al-Eisa, E.; Egan, D.; Deluzio, K.; Wassersug, R. Effects of pelvic asymmetry and low back pain on trunk kinematics during sitting: A comparison with standing. Spine 2006, 31, E135–E143. [Google Scholar] [CrossRef] [PubMed]
- Król, A.; Polak, M.; Szczygieł, E.; Wójcik, P.; Gleb, K. Relationship between mechanical factors and pelvic tilt in adults with and without low back pain. J. Back Musculoskelet. Rehabil. 2017, 30, 699–705. [Google Scholar] [CrossRef]
- Cejudo, A.; Centenera-Centenera, J.M.; Santonja-Medina, F. The Potential Role of Hamstring Extensibility on Sagittal Pelvic Tilt, Sagittal Spinal Curves and Recurrent Low Back Pain in Team Sports Players: A Gender Perspective Analysis. Int. J. Environ. Res. Public Health 2021, 18, 8654. [Google Scholar] [CrossRef]
- Yoo, W.G.L.D.; Kim, M.H. The relationship between pelvic asymmetry and low back pain: A systematic review. Phys. Ther. Korea 2016, 23, 1–9. [Google Scholar]
- Degenhardt, B.F.; Starks, Z.; Bhatia, S. Reliability of the DIERS Formetric 4D spine shape parameters in adults without postural deformities. BioMed Res. Int. 2020, 2020, 1796247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Childs, J.D.; Piva, S.R.; Fritz, J.M. Responsiveness of the numeric pain rating scale in patients with low back pain. Spine 2005, 30, 1331–1334. [Google Scholar] [CrossRef]
- Fairbank, J.C.; Pynsent, P.B. The Oswestry disability index. Spine 2000, 25, 2940–2953. [Google Scholar] [CrossRef]
- Thorborg, K.; Petersen, J.; Magnusson, S.P.; Holmich, P. Clinical assessment of hip strength using a hand-held dynamometer is reliable. Scand. J. Med. Sci. Sport. 2010, 20, 493–501. [Google Scholar] [CrossRef]
- del Pozo-Cruz, B.; Mocholi, M.H.; del Pozo-Cruz, J.; Parraca, J.A.; Adsuar, J.C.; Gusi, N. Reliability and validity of lumbar and abdominal trunk muscle endurance tests in office workers with nonspecific subacute low back pain. J. Back Musculoskelet. Rehabil. 2014, 27, 399–408. [Google Scholar] [CrossRef]
- Rainville, J.; Sobel, J.B.; Hartigan, C. Comparison of total lumbosacral flexion and true lumbar flexion measured by a dual inclinometer technique. Spine 1994, 19, 2698–2701. [Google Scholar] [CrossRef] [PubMed]
- San Juan, J.G.; Suprak, D.N.; Roach, S.M.; Lyda, M. Lower extremity strength and range of motion in high school cross-country runners. Appl. Bionics Biomech. 2018, 2018, 6797642. [Google Scholar] [CrossRef]
- Nussbaumer, S.; Leunig, M.; Glatthorn, J.F.; Stauffacher, S.; Gerber, H.; Maffiuletti, N.A. Validity and test-retest reliability of manual goniometers for measuring passive hip range of motion in femoroacetabular impingement patients. BMC Musculoskelet. Disord. 2010, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bittencourt, N.F.; Ocarino, J.M.; Mendonça, L.D.; Hewett, T.E.; Fonseca, S.T. Foot and hip contributions to high frontal plane knee projection angle in athletes: A classification and regression tree approach. J. Orthop. Sport. Phys. Ther. 2012, 42, 996–1004. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, R.A.; Derhon, V.; Brandalize, M.; Brandalize, D.; Rossi, L.P. Evaluation of knee range of motion: Correlation between measurements using a universal goniometer and a smartphone goniometric application. J. Bodyw. Mov. Ther. 2017, 21, 699–703. [Google Scholar] [CrossRef]
- Shojaei, I.; Bazrgari, B. Activity of Erector Spinae during Trunk Forward Bending and Backward Return: The Effects of Age. Ann. Biomed. Eng. 2017, 45, 1511–1519. [Google Scholar] [CrossRef]
- Chuang, C.Y.; Liaw, M.Y.; Wang, L.Y.; Huang, Y.C.; Pong, Y.P.; Chen, C.W.; Wu, R.W.; Lau, Y.C. Spino-pelvic alignment, balance, and functional disability in patients with low-grade degenerative lumbar spondylolisthesis. J. Rehabil. Med. 2018, 50, 898–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salt, E.; Wiggins, A.T.; Rayens, M.K.; Hooker, Q.; Shojaei, I.; Bazrgari, B. The relationship between indicators of lumbo-pelvic coordination and pain, disability, pain catastrophizing and depression in patients presenting with non-chronic low back pain. Ergonomics 2020, 63, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.V.; Han, S.; Lenherr, C.; Harris, J.D.; Noble, P.C. Pelvic Tilt and Range of Motion in Hips with Femoroacetabular Impingement Syndrome. J. Am. Acad. Orthop. Surg. 2020, 28, e427–e432. [Google Scholar] [CrossRef]
- Uemura, K.; Atkins, P.R.; Peters, C.L.; Anderson, A.E. The effect of pelvic tilt on three-dimensional coverage of the femoral head: A computational simulation study using patient-specific anatomy. Anat. Rec. 2021, 304, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Miyachi, R.; Deguchi, M.; Nishi, Y.; Yonekura, S.; Hara, J. Relationship between iliopsoas muscle thickness and hip angle during squats in different pelvic positions. J. Phys. Ther. Sci. 2021, 33, 351–355. [Google Scholar] [CrossRef]
- Kuszewski, M.T.; Gnat, R.; Gogola, A. The impact of core muscles training on the range of anterior pelvic tilt in subjects with increased stiffness of the hamstrings. Hum. Mov. Sci. 2018, 57, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; McGrath, M.L.; Grandgenett, N.; Rosen, A.B. Clinical Measures and Their Contribution to Dysfunction in Individuals with Patellar Tendinopathy. J. Sport Rehabil. 2019, 28, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Laird, R.A.; Gilbert, J.; Kent, P.; Keating, J.L. Comparing lumbo-pelvic kinematics in people with and without back pain: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2014, 15, 229. [Google Scholar] [CrossRef]
- Noshchenko, A.; Hoffecker, L.; Cain, C.M.J.; Patel, V.V.; Burger, E.L. Spinopelvic Parameters in Asymptomatic Subjects Without Spine Disease and Deformity: A Systematic Review with Meta-Analysis. Clin. Spine Surg. 2017, 30, 392–403. [Google Scholar] [CrossRef] [PubMed]
With Pelvic-Tilt Imbalance (n = 25) | Without Pelvic-Tilt Imbalance (n = 16) | p | |||||
---|---|---|---|---|---|---|---|
Age (years) | 32.72 | ± | 5.72 | 32.63 | ± | 5.85 | 0.959 |
Weight (kg) | 68.16 | ± | 12.2 | 64.88 | ± | 7.99 | 0.835 |
Height (cm) | 170.86 | ± | 8.26 | 169.33 | ± | 5.47 | 0.952 |
BMI (score) | 23.08 | ± | 3.03 | 22.96 | ± | 1.61 | 0.878 |
Pelvic-tilt imbalance (mm) | 5.8 | ± | 3.38 | 0 | ± | 0 | 0.000 |
With Pelvic-Tilt Imbalance (n = 25) | Without Pelvic-Tilt Imbalance (n = 16) | p | |||||
---|---|---|---|---|---|---|---|
ODI (score) | 17.84 | ± | 6.71 | 10.13 | ± | 4.22 | 0.000 |
NPRS (score) | 4.2 | ± | 1.58 | 3.69 | ± | 1.49 | 0.361 |
Computer-use time (hour/week) | 40.96 | ± | 13.01 | 38.31 | ± | 20.01 | 0.843 |
Exercise time (hour/week) | 2.98 | ± | 2.0 | 3.54 | ± | 3.6 | 0.947 |
With Pelvic-Tilt Imbalance (n = 25) | Without Pelvic-Tilt Imbalance (n = 16) | p | ||||||
---|---|---|---|---|---|---|---|---|
Trunk | Flexion (°) | 82 | ± | 31.76 | 90.06 | ± | 37.05 | 0.347 |
Extension (°) | 25.08 | ± | 13.33 | 27.38 | ± | 14.16 | 0.781 | |
Hip | Rt. internal rotation (°) | 43.32 | ± | 10.77 | 37.38 | ± | 13.05 | 0.188 |
Lt. internal rotation (°) | 33.32 | ± | 11.12 | 36.13 | ± | 9.24 | 0.259 | |
Rt. external rotation (°) | 33.08 | ± | 9.0 | 40.19 | ± | 13.32 | 0.139 | |
Lt. external rotation (°) | 40.68 | ± | 10.04 | 40.5 | ± | 9.75 | 0.663 | |
Rt. flexion (°) | 125.04 | ± | 23.07 | 123.88 | ± | 19.83 | 0.926 | |
Lt. flexion (°) | 126.6 | ± | 21.04 | 125.69 | ± | 18.2 | 0.905 | |
Rt. extension (°) | 20.8 | ± | 7.68 | 18.94 | ± | 5.07 | 0.404 | |
Lt. extension (°) | 20.00 | ± | 7.82 | 19 | ± | 5.73 | 0.781 | |
Internal-rotation ratio | 0.68 | ± | 0.09 | 0.86 | ± | 0.12 | 0.000 | |
External-rotation ratio | 0.74 | ± | 0.16 | 0.85 | ± | 0.16 | 0.016 | |
Flexion ratio | 0.96 | ± | 0.03 | 0.95 | ± | 0.05 | 0.905 | |
Extension ratio | 0.79 | ± | 0.17 | 0.87 | ± | 0.12 | 0.101 | |
Knee | Rt. flexion (°) | 124.44 | ± | 20.85 | 123.75 | ± | 15.95 | 0.500 |
Lt. flexion (°) | 124.8 | ± | 18.27 | 126.44 | ± | 16.09 | 0.761 | |
Rt. extension (°) | 149.8 | ± | 18.67 | 152.63 | ± | 16.89 | 0.500 | |
Lt. extension (°) | 150.04 | ± | 19.19 | 155.94 | ± | 18.16 | 0.517 | |
Flexion ratio | 0.94 | ± | 0.06 | 0.96 | ± | 0.04 | 0.032 | |
Extension ratio | 0.97 | ± | 0.03 | 0.96 | ± | 0.04 | 0.588 |
With Pelvic-Tilt Imbalance (n = 25) | Without Pelvic-Tilt Imbalance (n = 16) | p | |||||
---|---|---|---|---|---|---|---|
Lumbar-flexor power (kg) | 73.8 | ± | 37.11 | 66.06 | ± | 38.05 | 0.534 |
Lumbar-extensor power (kg) | 91.88 | ± | 50.31 | 83.88 | ± | 43.45 | 0.761 |
Lumbar-flexor endurance (sec) | 68.96 | ± | 40.47 | 60.43 | ± | 22.58 | 0.968 |
Lumbar-extensor endurance (sec) | 89.44 | ± | 58.87 | 87.31 | ± | 39.74 | 0.741 |
Lt.-hip-extensor power (kg) | 35.76 | ± | 14.85 | 35.12 | ± | 14.42 | 0.864 |
Rt.-hip-extensor power (kg) | 38.46 | ± | 16.99 | 39.16 | ± | 19.72 | 0.843 |
Hip-extensor-power ratio | 0.84 | ± | 0.13 | 0.86 | ± | 0.11 | 0.802 |
With Pelvic-Tilt Imbalance (n = 25) | Without Pelvic-Tilt Imbalance (n = 16) | p | ||||||
---|---|---|---|---|---|---|---|---|
Erector-spinae-muscle activity | Flexion peak ratio | 0.8 | ± | 0.133 | 0.72 | ± | 0.18 | 0.307 |
Re-extension peak ratio | 0.87 | ± | 0.08 | 0.83 | ± | 0.13 | 0.435 | |
Foot pressure | Rt/Lt ratio | 0.94 | ± | 0.05 | 0.93 | ± | 0.04 | 0.307 |
Rt. front/back ratio | 0.81 | ± | 0.14 | 0.86 | ± | 0.12 | 0.347 | |
Lt. front/back ratio | 0.81 | ± | 0.16 | 0.79 | ± | 0.11 | 0.361 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.-D.; Shin, D. Effects of Pelvic-Tilt Imbalance on Disability, Muscle Performance, and Range of Motion in Office Workers with Non-Specific Low-Back Pain. Healthcare 2023, 11, 893. https://doi.org/10.3390/healthcare11060893
Kim W-D, Shin D. Effects of Pelvic-Tilt Imbalance on Disability, Muscle Performance, and Range of Motion in Office Workers with Non-Specific Low-Back Pain. Healthcare. 2023; 11(6):893. https://doi.org/10.3390/healthcare11060893
Chicago/Turabian StyleKim, Won-Deuk, and Doochul Shin. 2023. "Effects of Pelvic-Tilt Imbalance on Disability, Muscle Performance, and Range of Motion in Office Workers with Non-Specific Low-Back Pain" Healthcare 11, no. 6: 893. https://doi.org/10.3390/healthcare11060893