Long-Term Effects of Subthalamic Stimulation on Motor Symptoms and Quality of Life in Patients with Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Surgical Procedure
2.3. Measures
2.3.1. UPDRS
2.3.2. H & Y Stage
2.3.3. SEADL
2.3.4. LEDD
2.3.5. PDQ-39
2.4. Statistical Analysis
3. Results
3.1. Motor Outcome
3.1.1. Off-Medication/On-Stimulation Evaluation
3.1.2. On-Medication/On-Stimulation Evaluation
3.2. LEDD
3.3. QoL
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mubeen, A.M.; Ardekani, B.; Tagliati, M.; Alterman, R.; Dhawan, V.; Eidelberg, D.; Sidtis, J.J. Global and multi-focal changes in cerebral blood flow during subthalamic nucleus stimulation in Parkinson’s disease. J. Cereb. Blood Flow Metab. 2018, 38, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Lozano, A.M.; Lipsman, N.; Bergman, H.; Brown, P.; Chabardes, S.; Chang, J.W.; Matthews, K.; McIntyre, C.C.; Schlaepfer, T.E.; Schulder, M.; et al. Deep brain stimulation: Current challenges and future directions. Nat. Rev. Neurol. 2019, 15, 148–160. [Google Scholar] [CrossRef]
- Bratsos, S.; Karponis, D.; Saleh, S.N. Efficacy and Safety of Deep Brain Stimulation in the Treatment of Parkinson’s Disease: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Cureus 2018, 10, e3474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleiner-Fisman, G.; Herzog, J.; Fisman, D.N.; Tamma, F.; Lyons, K.E.; Pahwa, R.; Lang, A.E.; Deuschl, G. Subthalamic nucleus deep brain stimulation: Summary and meta-analysis of outcomes. Mov. Disord. 2006, 21 (Suppl. S14), S290–S304. [Google Scholar] [CrossRef] [PubMed]
- Bari, A.A.; Fasano, A.; Munhoz, R.P.; Lozano, A.M. Improving outcomes of subthalamic nucleus deep brain stimulation in Parkinson’s disease. Expert Rev. Neurother. 2015, 15, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W.; et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. NEJM 2006, 355, 896–908. [Google Scholar] [CrossRef] [Green Version]
- Weaver, F.M.; Follett, K.; Stern, M.; Hur, K.; Harris, C.; Marks, W.J., Jr.; Rothlind, J.; Sagher, O.; Reda, D.; Moy, C.S.; et al. Bilateral deep brain stimulation vs. best medical therapy for patients with advanced Parkinson disease. JAMA 2009, 301, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.; Gill, S.; Varma, T.; Jenkinson, C.; Quinn, N.; Mitchell, R.; Scott, R.; Ives, N.; Rick, C.; Daniels, J.; et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): A randomised, open-label trial. Lancet Neurol. 2010, 9, 581–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okun, M.S.; Gallo, B.V.; Mandybur, G.; Jagid, J.; Foote, K.D.; Revilla, F.J.; Alterman, R.; Jankovic, J.; Simpson, R.; Junn, F.; et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: An open-label randomised controlled trial. Lancet Neurol. 2012, 11, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Schupbach, W.M.; Maltete, D.; Houeto, J.L.; du Montcel, S.T.; Mallet, L.; Welter, M.L.; Gargiulo, M.; Behar, C.; Bonnet, A.M.; Czernecki, V.; et al. Neurosurgery at an earlier stage of Parkinson disease: A randomized, controlled trial. Neurology 2007, 68, 267–271. [Google Scholar] [CrossRef]
- Schuepbach, W.M.; Rau, J.; Knudsen, K.; Volkmann, J.; Krack, P.; Timmermann, L.; Halbig, T.D.; Hesekamp, H.; Navarro, S.M.; Meier, N.; et al. Neurostimulation for Parkinson’s disease with early motor complications. NEJM 2013, 368, 610–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Zhang, C.; Gault, J.; Wang, W.; Liu, J.; Shao, M.; Zhao, Y.; Zeljic, K.; Gao, G.; Sun, B. Remotely programmed deep brain stimulation of the bilateral subthalamic nucleus for the treatment of primary Parkinson disease: A randomized controlled trial investigating the safety and efficacy of a novel deep brain stimulation system. Stereotact. Funct. Neurosurg. 2017, 95, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Stenmark Persson, R.; Nordin, T.; Hariz, G.M.; Wårdell, K.; Forsgren, L.; Hariz, M.; Blomstedt, P. Deep brain stimulation of caudal zona incerta for Parkinson’s disease: One-year follow-up and electric field simulations. Neuromodulation 2022, 25, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.; Taslimi, S.; Badhiwala, J.H.; Witiw, C.D.; Nassiri, F.; Odekerken, V.J.J.; De Bie, R.M.A.; Kalia, S.K.; Hodaie, M.; Munhoz, R.P.; et al. Deep brain stimulation for Parkinson’s disease: Meta-analysis of results of randomized trials at varying lengths of follow-up. J. Neurosurg. 2018, 128, 1199–1213. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.G.; Zhou, Q.; Huang, T.; Jiang, Y. Efficacies of globus pallidus stimulation and subthalamic nucleus stimulation for advanced Parkinson’s disease: A meta-analysis of randomized controlled trials. Clin. Interv. Aging 2016, 11, 777–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Li, W.; Tan, C.; Liu, X.; Wang, X.; Gui, Y.; Qin, L.; Deng, F.; Hu, C.; Chen, L. Meta-analysis comparing deep brain stimulation of the globus pallidus and subthalamic nucleus to treat advanced Parkinson disease. J. Neurosurg. 2014, 121, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.L.; Shao, B.; Chen, J.; Zhou, Y.; Lin, S.Y.; Wang, W.W. Effects of neurostimulation for advanced Parkinson’s disease patients on motor symptoms: A multiple-treatments meta-analysas of randomized controlled trials. Sci. Rep. 2016, 6, 25285. [Google Scholar] [CrossRef] [Green Version]
- Mahlknecht, P.; Foltynie, T.; Limousin, P.; Poewe, W. How does deep brain stimulation change the course of Parkinson’s disease? Mov. Disord. 2022, 37, 1581–1592. [Google Scholar] [CrossRef]
- Geraedts, V.J.; Feleus, S.; Marinus, J.; van Hilten, J.J.; Contarino, M.F. What predicts quality of life after subthalamic deep brain stimulation in Parkinson’s disease? A systematic review. Eur. J. Neurol. 2020, 27, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Krack, P.; Batir, A.; Van Blercom, N.; Chabardes, S.; Fraix, V.; Ardouin, C.; Koudsie, A.; Limousin, P.D.; Benazzouz, A.; LeBas, J.F.; et al. Five-year follow-up of bilateral stimulation of the Ssbthalamic nucleus in advanced Parkinson’s disease. NEJM 2003, 349, 1925–1934. [Google Scholar] [CrossRef] [Green Version]
- de Noordhout, A.M.; Mouchamps, M.; Remacle, J.M.; Delstanche, S.; Bonhomme, V.; Gonce, M. Subthalamic deep brain stimulation versus best medical treatment: A 12-year follow-up. Acta Neurol. Belg. 2022, 122, 197–202. [Google Scholar] [CrossRef]
- Siderowf, A.; Jaggi, J.L.; Xie, S.X.; Loveland-Jones, C.; Leng, L.; Hurtig, H.; Colcher, A.; Stern, M.; Chou, K.L.; Liang, G.; et al. Long-term effects of bilateral subthalamic nucleus stimulation on health-related quality of life in advanced Parkinson’s disease. Mov. Disord. 2006, 21, 746–753. [Google Scholar] [CrossRef]
- Aviles-Olmos, I.; Kefalopoulou, Z.; Tripoliti, E.; Candelario, J.; Akram, H.; Martinez-Torres, I.; Jahanshahi, M.; Foltynie, T.; Hariz, M.; Zrinzo, L.; et al. Long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson’s disease using an MRI-guided and MRI-verified approach. J. Neurol. Neurosurg. Psychiatry 2014, 85, 1419–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.L.; Liu, J.L.; Fu, X.L.; Xian, W.B.; Gu, J.; Liu, Y.M.; Ye, J.; Chen, J.; Qian, H.; Xu, S.H.; et al. Long-term Efficacy of subthalamic nucleus deep brain stimulation in Parkinson’s disease: A 5-year follow-up study in China. Chin. Med. J. 2015, 128, 2433–2438. [Google Scholar] [CrossRef] [PubMed]
- Lezcano, E.; Gomez-Esteban, J.C.; Tijero, B.; Bilbao, G.; Lambarri, I.; Rodriguez, O.; Villoria, R.; Dolado, A.; Berganzo, K.; Molano, A.; et al. Long-term impact on quality of life of subthalamic nucleus stimulation in Parkinson’s disease. J. Neurol. 2016, 263, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y.; Tsai, S.T.; Hung, H.Y.; Lin, S.H.; Pan, Y.H.; Lin, S.Z. Targeting the subthalamic nucleus for deep brain stimulation--a comparative study between magnetic resonance images alone and fusion with computed tomographic images. World Neurosurg. 2011, 75, 132–137. [Google Scholar] [CrossRef]
- Chen, Y.C.; Kuo, C.C.; Chen, S.Y.; Chen, T.Y.; Pan, Y.H.; Wang, P.K.; Tsai, S.T. Median Nerve Stimulation Facilitates the Identification of Somatotopy of the Subthalamic Nucleus in Parkinson’s Disease Patients under Inhalational Anesthesia. Biomedicines 2021, 10, 74. [Google Scholar] [CrossRef]
- Tsai, S.T.; Tseng, G.F.; Kuo, C.C.; Chen, T.Y.; Chen, S.Y. Sevoflurane and Parkinson’s Disease: Subthalamic Nucleus Neuronal Activity and Clinical Outcome of Deep Brain Stimulation. Anesthesiology 2020, 132, 1034–1044. [Google Scholar] [CrossRef]
- Tsai, S.T.; Lin, S.H.; Lin, S.Z.; Chen, J.Y.; Lee, C.W.; Chen, S.Y. Neuropsychological effects after chronic subthalamic stimulation and the topography of the nucleus in Parkinson’s disease. Neurosurgery 2007, 61, E1024–E1030. [Google Scholar] [CrossRef]
- Martinez-Martin, P.; Gil-Nagel, A.; Gracia, L.M.; Gomez, J.B.; Martinez-Sarries, J.; Bermejo, F. Unified Parkinson’s Disease Rating Scale characteristics and structure. The Cooperative Multicentric Group. Mov. Disord. 1994, 9, 76–83. [Google Scholar] [CrossRef]
- Defer, G.L.; Widner, H.; Marie, R.M.; Remy, P.; Levivier, M. Core assessment program for surgical interventional therapies in Parkinson’s disease (CAPSIT-PD). Mov. Disord. 1999, 14, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martin, P.; Gil-Nagel, A.; Morlán Gracia, L.; Balseiro Gómez, J.; Martínez-Sarriés, F.J.; Bermejo, F.; Del Ser Quijano, T.; Macías, M.C.; Jiménez-Rojas, C.; Marañón, E.; et al. Intermediate scale for assessment of Parkinson’s disease. Characteristics and structure. Park. Relat. Disord. 1995, 1, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression and mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Goetz, C.G.; Poewe, W.; Rascol, O.; Sampaio, C.; Stebbins, G.T.; Counsell, C.; Giladi, N.; Holloway, R.G.; Moore, C.G.; Wenning, G.K.; et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations The Movement Disorder Society Task Force on rating scales for Parkinson’s disease. Mov. Disord. 2004, 19, 1020–1028. [Google Scholar] [CrossRef]
- Verheyden, G.; Kampshoff, C.S.; Burnett, M.E.; Cashell, J.; Martinelli, L.; Nicholas, A.; Stack, E.L.; Ashburn, A. Psychometric properties of 3 functional mobility tests for people with Parkinson disease. Phys. Ther. 2014, 94, 230–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramaker, C.; Marinus, J.; Stiggelbout, A.M.; Van Hilten, B.J. Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease. Mov. Disord. 2002, 17, 867–876. [Google Scholar] [CrossRef]
- Julien, C.; Hache, G.; Dulac, M.; Dubrou, C.; Castelnovo, G.; Giordana, C.; Azulay, J.P.; Fluchère, F. The clinical meaning of levodopa equivalent daily dose in Parkinson’s disease. Fundam. Clin. Pharmacol. 2021, 35, 620–630. [Google Scholar] [CrossRef]
- Peto, V.; Jenkinson, C.; Fitzpatrick, R.; Greenhall, R. The development and validation of a short measure of functioning and well being for individuals with Parkinson’s disease. Qual. Life Res. 1995, 4, 241–248. [Google Scholar] [CrossRef]
- Horváth, K.; Aschermann, Z.; Kovács, M.; Makkos, A.; Harmat, M.; Janszky, J.; Komoly, S.; Karádi, K.; Kovács, N. Changes in quality of life in Parkinson’s disease: How large must they be to be relevant? Neuroepidemiology 2017, 48, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Damiano, A.M.; Snyder, C.; Strausser, B.; Willian, M.K. A review of health-related quality-of-life concepts and measures for Parkinson’s disease. Qual. Life Res. 1999, 8, 235–243. [Google Scholar] [CrossRef]
- Ma, H.I.; Hwang, W.J.; Chen-Sea, M.J. Reliability and validity testing of a Chinese-translated version of the 39-item Parkinson’s disease questionnaire (PDQ-39). Qual. Life Res. 2005, 14, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Ahlskog, J.E.; Muenter, M.D. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov. Disord. 2001, 16, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Lachenmayer, M.L.; Mürset, M.; Antih, N.; Debove, I.; Muellner, J.; Bompart, M.; Schlaeppi, J.A.; Nowacki, A.; You, H.; Michelis, J.P.; et al. Subthalamic and pallidal deep brain stimulation for Parkinson’s disease-meta-analysis of outcomes. NPJ Park. Dis. 2021, 7, 77. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Li, Y. Long-term follow-up of bilateral subthalamic nucleus stimulation in Chinese Parkinson’s disease patients. Br. J. Neurosurg. 2015, 29, 329–333. [Google Scholar] [CrossRef]
- Jiang, J.L.; Chen, S.Y.; Hsieh, T.C.; Lee, C.W.; Lin, S.H.; Tsai, S.T. Different effectiveness of subthalamic deep brain stimulation in Parkinson’s disease: A comparative cohort study at 1 year and 5 years. J. Formos. Med. Assoc. 2015, 114, 835–841. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Chen, W.; Guo, Q.; Yang, C.; Gu, J.; Xian, W.; Liu, Y.; Zheng, Y.; Ye, J.; Xu, S.; et al. Eight-year follow-up outcome of subthalamic deep brain stimulation for Parkinson’s disease: Maintenance of therapeutic efficacy with a relatively low levodopa dosage and stimulation intensity. CNS Neurosci. Ther. 2021, 27, 1366–1373. [Google Scholar] [CrossRef]
- Kishore, A.; Rao, R.; Krishnan, S.; Panikar, D.; Sarma, G.; Sivasanakaran, M.P.; Sarma, S. Long-term stability of effects of subthalamic stimulation in Parkinson’s disease: Indian Experience. Mov. Disord. 2010, 25, 2438–2444. [Google Scholar] [CrossRef]
- Blahak, C.; Wöhrle, J.C.; Capelle, H.H.; Bäzner, H.; Grips, E.; Weigel, R.; Hennerici, M.G.; Krauss, J.K. Tremor reduction by subthalamic nucleus stimulation and medication in advanced Parkinson’s disease. J. Neurol. 2007, 254, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Piboolnurak, P.; Lang, A.E.; Lozano, A.M.; Miyasaki, J.M.; Saint-Cyr, J.A.; Poon, Y.-Y.W.; Hutchison, W.D.; Dostrovsky, J.O.; Moro, E. Levodopa response in long-term bilateral subthalamic stimulation for Parkinson’s disease. Mov. Disord. 2007, 22, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Vijiaratnam, N.; Girges, C.; Wirth, T.; Grover, T.; Preda, F.; Tripoliti, E.; Foley, J.; Scelzo, E.; Macerollo, A.; Akram, H.; et al. Long-term success of low-frequency subthalamic nucleus stimulation for Parkinson’s disease depends on tremor severity and symptom duration. Brain Commun. 2021, 3, fcab165. [Google Scholar] [CrossRef]
- Vizcarra, J.A.; Situ-Kcomt, M.; Artusi, C.A.; Duker, A.P.; Lopiano, L.; Okun, M.S.; Espay, A.J.; Merola, A. Subthalamic deep brain stimulation and levodopa in Parkinson’s disease: A meta-analysis of combined effects. J. Neurol. 2019, 266, 289–297. [Google Scholar] [CrossRef]
- Lyons, K.E.; Pahwa, R. Long-term benefits in quality of life provided by bilateral subthalamic stimulation in patients with Parkinson disease. J. Neurosurg. 2005, 103, 252–255. [Google Scholar] [CrossRef]
- Drapier, S.; Raoul, S.; Drapier, D.; Leray, E.; Lallement, F.; Rivier, I.; Sauleau, P.; Lajat, Y.; Edan, G.; Verin, M. Only physical aspects of quality of life are significantly improved by bilateral subthalamic stimulation in Parkinson’s disease. J. Neurol. 2005, 252, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Lezcano, E.; Gomez-Esteban, J.C.; Zarranz, J.J.; Lambarri, I.; Madoz, P.; Bilbao, G.; Pomposo, I.; Garibi, J. Improvement in quality of life in patients with advanced Parkinson’s disease following bilateral deep-brain stimulation in subthalamic nucleus. Eur. J. Neurol. 2004, 11, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Gronchi-Perrin, A.; Viollier, S.; Ghika, J.; Combremont, P.; Villemure, J.-G.; Bogousslavsky, J.; Burkhard, P.R.; Vingerhoets, F. Does subthalamic nucleus deep brain stimulation really improve quality of life in Parkinson’s disease? Mov. Disord. 2006, 21, 1465–1468. [Google Scholar] [CrossRef]
- Bove, F.; Mulas, D.; Cavallieri, F.; Castrioto, A.; Chabardès, S.; Meoni, S.; Schmitt, E.; Bichon, A.; Di Stasio, E.; Kistner, A.; et al. Long-term outcomes (15 Years) after subthalamic nucleus deep brain stimulation in patients with Parkinson disease. Neurology 2021, 97, e254–e262. [Google Scholar] [CrossRef] [PubMed]
- Cerri, S.; Mus, L.; Blandini, F. Parkinson’s disease in Women and men: What’s the difference? J. Parkinsons Dis. 2019, 9, 501–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Condition | Female | Male | Total | p-Value |
---|---|---|---|---|---|
Number | 29 | 24 | 53 | ||
Age of PD onset (yr) † | 49.66 (8.16) | 49.38 (8.23) | 49.53 (8.12) | 0.902 | |
Age when underwent STN-DBS (yr) † | 59.10 (8.54) | 58.63 (6.43) | 58.89 (7.59) | 0.822 | |
PD duration (yr) † | 9.45 (2.91) | 9.25 (4.06) | 9.36 (3.44) | 0.837 | |
LEDD (mg) † | 1105.33 (413.89) | 1181.88 (482.16) | 1139.99 (443.34) | 0.537 | |
UPDRS total (0–199) † | off-med/on-stim | 78.62 (19.17) | 72.25 (19.51) | 75.74 (19.4) | 0.238 |
on-med/on-stim | 36.59 (10.68) | 37.63 (9.87) | 37.06 (10.23) | 0.717 | |
Part II (0–52) † | off-med/on-stim | 22.21 (7.16) | 19.33 (8.01) | 20.9 (7.62) | 0.174 |
on-med/on-stim | 7.14 (3.70) | 7.83 (3.74) | 7.45 (3.70) | 0.501 | |
Part III (0–108) † | off-med/on-stim | 44.83 (11.64) | 42.46 (10.71) | 43.75 (11.19) | 0.448 |
on-med/on-stim | 20.31 (7.11) | 21.29 (6.25) | 20.75 (6.69) | 0.600 | |
Part IV (0-23) # | 7.00 (2.39) | 6.25 (3.38) | 6.66 (2.88) | 0.349 | |
H & Y stage (0–5) # | off-med/on-stim | 3.24 (0.66) | 2.92 (0.62) | 3.09 (0.66) | 0.073 |
on-med/on-stim | 2.52 (0.37) | 2.42 (0.24) | 2.47 (0.32) | 0.253 | |
SEADL (0–100%) # | off-med/on-stim | 57.59 (22.31) | 67.5 (23.64) | 62.08 (23.23) | 0.123 |
on-med/on-stim | 87.93 (7.74) | 90.00 (5.90) | 88.87 (6.98) | 0.287 | |
PDQ-39 total (0–156) # | 61.34 (25.53) | 52.42 (26.91) | 57.30 (26.29) | 0.222 | |
PDQ-39 SI (0–100) # | 39.32 (16.37) | 33.60 (17.25) | 36.73 (16.86) | 0.222 | |
Mobility (0–40) † | 21.79 (9.32) | 16.67 (8.39) | 19.47 (9.19) | 0.042 * | |
ADL (0–24) # | 8.55 (5.24) | 7.42 (5.80) | 8.04 (5.48) | 0.458 | |
Emotional well-being (0–24) # | 9.31 (5.88) | 7.71 (5.15) | 8.58 (5.57) | 0.301 | |
Stigma (0–16) # | 5.34 (3.51) | 5.13 (4.41) | 5.25 (3.90) | 0.841 | |
Social support (0–12) # | 2.31 (2.69) | 2.46 (2.81) | 2.38 (2.72) | 0.846 | |
Cognition (0–16) # | 5.59 (3.21) | 5.08 (2.78) | 5.36 (3.01) | 0.550 | |
Communication (0–12) # | 3.03 (2.92) | 3.63 (2.37) | 3.30 (2.68) | 0.430 | |
Bodily discomfort (0–12) † | 5.76 (2.60) | 4.33 (3.13) | 5.11 (2.91) | 0.076 |
Item | Condition | Pre-OP | Post-OP 1Y | Diff. (1Y vs. Pre-OP) | p-Value | Post-OP 5Y | Diff. (5Y vs. Pre-OP) | p-Value |
---|---|---|---|---|---|---|---|---|
UPDRS total † | off-med/on-stim | 75.74 (19.4) | 45.60 (14.63) | −30.13 (18.55) | <0.001 * | 56.06 (16.98) | −19.68 (22.19) | <0.001 * |
on-med/on-stim | 37.06 (10.23) | 34.91 (10.60) | −2.15 (10.95) | 0.159 | 44.42 (14.16) | 7.36 (14.67) | 0.001 * | |
Part II † | off-med/on-stim | 20.91 (7.62) | 11.94 (5.41) | −8.96 (6.57) | <0.001 * | 15.75 (6.86) | −5.15 (7.94) | <0.001 * |
on-med/on-stim | 7.45 (3.70) | 8.08 (3.68) | 0.62 (3.69) | 0.224 | 11.79 (6.30) | 4.34 (5.80) | <0.001 * | |
Part III † | off-med/on-stim | 43.75 (11.19) | 26.23 (8.07) | −17.53 (11.11) | <0.001 * | 31.32 (9.54) | −12.43 (13.05) | <0.001 * |
on-med/on-stim | 20.75 (6.69) | 20.11 (6.94) | −0.64 (6.80) | 0.495 | 25.15 (7.79) | 4.40 (8.53) | <0.001 * | |
Bradykinesia † | off-med/on-stim | 18.43 (4.63) | 12.92 (3.54) | −5.51 (5.36) | <0.001* | 14.74 (4.13) | −3.70 (5.80) | <0.001 * |
on-med/on-stim | 10.23 (3.46) | 11.00 (3.68) | 0.77 (3.78) | 0.142 | 12.43 (3.52) | 2.21 (4.32) | <0.001 * | |
Tremor # | off-med/on-stim | 7.19 (5.91) | 2.68 (3.29) | −4.51 (4.53) | <0.001 * | 1.72 (2.33) | −5.47 (5.22) | <0.001 * |
on-med/on-stim | 1.34 (2.25) | 1.11 (1.67) | −0.23 (2.32) | 0.480 | 0.51 (1.20) | −0.83 (2.49) | 0.019 * | |
Rigidity # | off-med/on-stim | 8.09 (3.32) | 3.51 (2.41) | −4.58 (3.65) | <0.001 * | 5.75 (2.93) | −2.34 (4.26) | <0.001 * |
on-med/on-stim | 3.81 (2.84) | 2.40 (2.14) | −1.42 (2.85) | 0.001 * | 4.42 (2.63) | 0.60 (3.39) | 0.201 | |
Posture-gait # | off-med/on-stim | 3.77 (1.45) | 2.60 (1.10) | −1.17 (1.31) | <0.001 * | 3.32 (1.24) | −0.45 (1.53) | 0.035 * |
on-med/on-stim | 1.92 (1.14) | 2.09 (1.11) | 0.17 (1.09) | 0.261 | 2.77 (1.15) | 0.85 (1.23) | <0.001* | |
Axial symptoms † | off-med/on-stim | 8.34 (2.92) | 6.06 (2.49) | −2.28 (2.85) | <0.001 * | 7.87 (2.85) | −0.47 (3.25) | 0.296 |
on-med/on-stim | 4.40 (2.00) | 4.81 (2.18) | 0.42 (1.83) | 0.105 | 6.70 (2.55) | 2.30 (2.21) | <0.001 * | |
Part IV # | 6.66 (2.88) | 4.28 (2.35) | −2.38 (3.54) | <0.001 * | 4.98 (2.43) | −1.68 (3.01) | <0.001 * | |
H & Y stage # | off-med/on-stim | 3.09 (0.66) | 2.67 (0.42) | −0.42 (0.71) | <0.001 * | 3.04 (0.59) | −0.06 (0.89) | 0.646 |
on-med/on-stim | 2.47 (0.32) | 2.50 (0.39) | 0.03 (0.37) | 0.582 | 2.85 (0.48) | 0.38 (0.45) | <0.001 * | |
SEADL (%) # | off-med/on-stim | 62.08 (23.23) | 83.02 (11.19) | 20.94 (20.69) | <0.001* | 72.08 (19.05) | 10.00 (26.38) | 0.008 * |
on-med/on-stim | 88.87 (6.98) | 88.30 (7.53) | −0.57(7.18) | 0.569 | 81.51 (14.46) | −7.36 (14.96) | 0.001 * | |
LEDD (mg) † | 1139.99 (443.34) | 667.58 (308.58) | −472.41(391.72) | <0.001 * | 842.60 (387.10) | −297.39 (466.69) | <0.001 * |
Item | Condition | N | Change Rate (%) (1Y vs. Pre-OP) | p-Value | Change Rate (%) (5Y vs. Pre-OP) | p-Value |
---|---|---|---|---|---|---|
UPDRS Part II † | off-med/on-stim | 53 | −39.71 (26.52) | <0.001 * | −18.83 (37.15) | <0.001 * |
on-med/on-stim | 51 | 33.08 (122.37) | 0.224 | 90.97 (156.78) | <0.001 * | |
UPDRS Part III † | off-med/on-stim | 53 | −36.83 (22.51) | <0.001 * | −22.75 (36.32) | <0.001 * |
on-med/on-stim | 53 | 3.58 (47.37) | 0.495 | 36.54 (103.27) | <0.001 * | |
Bradykinesia † | off-med/on-stim | 53 | −24.78 (30.79) | <0.001 * | −13.24 (43.67) | <0.001 * |
on-med/on-stim | 53 | 29.5 (141.05) | 0.142 | 66.29 (301.48) | <0.001 * | |
Tremor # | off-med/on-stim | 47 | −69.6 (32.48) | <0.001 * | −67.61 (58.23) | <0.001 * |
on-med/on-stim | 27 | 18.56 (136.29) | 0.480 | −68.83 (82.03) | 0.019 * | |
Rigidity # | off-med/on-stim | 52 | −50.69 (35.59) | <0.001 * | −18.9 (55.76) | <0.001 * |
on-med/on-stim | 49 | −14.25 (120.91) | 0.001* | 42.9 (132.23) | 0.201 | |
Posture-gait # | off-med/on-stim | 53 | −24.14 (33.48) | <0.001* | −1.62 (47.96) | 0.035 * |
on-med/on-stim | 48 | 20.87 (76.12) | 0.261 | 61.67 (83.87) | <0.001 * | |
Axial symptoms † | off-med/on-stim | 53 | −21.64 (34.81) | <0.001 * | 2.63 (44.4) | 0.296 |
on-med/on-stim | 52 | 17.28 (65.34) | 0.105 | 77.23 (100.46) | <0.001 * | |
H & Y stage # | off-med/on-stim | 53 | −10.53 (20.93) | <0.001 * | 2.23 (28.66) | 0.646 |
on-med/on-stim | 53 | 1.89 (15.99) | 0.582 | 16.07 (18.77) | <0.001 * | |
SEADL # | off-med/on-stim | 53 | 76.71 (151.05) | <0.001 * | 54.82 (142.18) | 0.008 * |
on-med/on-stim | 53 | −0.36 (8.34) | 0.569 | −7.91 (17.25) | 0.001 * | |
LEDD † | 53 | −35.52 (35.87) | <0.001 * | −15.26 (65.76) | <0.001 * |
Item | Pre-OP | Post-OP 1Y | Diff. (1Y vs. Pre-OP) | p-Value | Post-OP 5Y | Diff. (5Y vs. Pre-OP) | p-Value |
---|---|---|---|---|---|---|---|
PDQ-39 total # | 57.3 (26.29) | 42.57 (25.76) | −14.74 (21.37) | <0.001 * | 60.53 (33.06) | 3.23 (32.63) | 0.475 |
PDQ-39 SI # | 36.73 (16.86) | 27.29 (16.51) | −9.45 (13.7) | <0.001 * | 38.8 (21.19) | 2.07 (20.92) | 0.475 |
Mobility † | 19.47 (9.19) | 13.58 (9.94) | −5.89 (9.73) | <0.001 * | 19.96 (11.15) | 0.49 (11.36) | 0.754 |
ADL # | 8.04 (5.48) | 4.81 (4.93) | −3.23 (5.54) | <0.001 * | 8.47 (6.34) | 0.43 (7.30) | 0.667 |
Emotional well-being # | 8.58 (5.57) | 6.74 (5.20) | −1.85 (4.26) | 0.003 * | 8.70 (5.98) | 0.11 (5.90) | 0.889 |
Stigma # | 5.25 (3.90) | 3.77 (3.68) | −1.47 (3.20) | 0.002 * | 4.66 (4.75) | −0.58 (4.37) | 0.334 |
Social support # | 2.38 (2.72) | 2.57 (2.76) | 0.19 (2.86) | 0.633 | 3.81 (3.23) | 1.43 (3.38) | 0.003 * |
Cognition # | 5.36 (3.01) | 5.06 (3.38) | −0.30 (2.75) | 0.428 | 6.68 (3.59) | 1.32 (4.11) | 0.023 * |
Communication # | 3.30 (2.68) | 3.28 (2.78) | −0.02 (2.58) | 0.958 | 4.83 (3.27) | 1.53 (3.42) | 0.002 * |
Bodily discomfort † | 5.11 (2.91) | 3.32 (2.46) | −1.79 (3.18) | <0.001 * | 4.17 (3.11) | −0.94 (3.31) | 0.043 * |
Item | N | Change Rate (%) (1Y vs. Pre-OP) | p-Value | Change Rate (%) (5Y vs. Pre-OP) | p-Value |
---|---|---|---|---|---|
PDQ-39 total # | 53 | −22.61 (44.30) | <0.001 * | 15.52 (66.60) | 0.475 |
PDQ-39 SI # | 53 | −22.60 (44.30) | <0.001 * | 15.52 (66.61) | 0.475 |
Mobility † | 53 | −23.33 (56.96) | <0.001 * | 20.26 (81.16) | 0.754 |
ADL # | 51 | −4.12 (191.10) | <0.001 * | 60.94 (210.16) | 0.667 |
Emotional well-being # | 52 | −8.55 (96.84) | 0.003 * | 14.06 (77.94) | 0.889 |
Stigma # | 47 | −25.50 (64.38) | 0.002 * | −3.48 (117.29) | 0.334 |
Social support # | 34 | 4.31 (129.60) | 0.633 | 69.76 (198.42) | 0.003 * |
Cognition # | 53 | 11.43 (135.80) | 0.428 | 67.08 (167.92) | 0.023 * |
Communication # | 45 | −1.54 (75.97) | 0.958 | 65.18 (108.58) | 0.002 * |
Bodily Discomfort † | 49 | −28.57 (57.13) | <0.001 * | −10.56 (62.90) | 0.043 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.-L.; Chen, S.-Y.; Tsai, S.-T.; Ma, Y.-C.; Wang, J.-H. Long-Term Effects of Subthalamic Stimulation on Motor Symptoms and Quality of Life in Patients with Parkinson’s Disease. Healthcare 2023, 11, 920. https://doi.org/10.3390/healthcare11060920
Jiang J-L, Chen S-Y, Tsai S-T, Ma Y-C, Wang J-H. Long-Term Effects of Subthalamic Stimulation on Motor Symptoms and Quality of Life in Patients with Parkinson’s Disease. Healthcare. 2023; 11(6):920. https://doi.org/10.3390/healthcare11060920
Chicago/Turabian StyleJiang, Jiin-Ling, Shin-Yuan Chen, Sheng-Tzung Tsai, Yu-Chin Ma, and Jen-Hung Wang. 2023. "Long-Term Effects of Subthalamic Stimulation on Motor Symptoms and Quality of Life in Patients with Parkinson’s Disease" Healthcare 11, no. 6: 920. https://doi.org/10.3390/healthcare11060920
APA StyleJiang, J. -L., Chen, S. -Y., Tsai, S. -T., Ma, Y. -C., & Wang, J. -H. (2023). Long-Term Effects of Subthalamic Stimulation on Motor Symptoms and Quality of Life in Patients with Parkinson’s Disease. Healthcare, 11(6), 920. https://doi.org/10.3390/healthcare11060920