Pattern of Antibiotic Use among Hospitalized Patients at a Level One Multidisciplinary Care Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Collection of Data and Calculation
2.3. Classification of Antibiotics
2.4. Statistics and Software
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laxminarayan, R.; Van Boeckel, T.; Frost, I.; Kariuki, S.; Khan, E.A.; Limmathurotsakul, D.; Larsson, D.G.J.; Levy-Hara, G.; Mendelson, M.; Outterson, K.; et al. The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. Lancet Infect. Dis. 2020, 20, e51–e60. [Google Scholar] [CrossRef] [PubMed]
- Garcia Reeves, A.B.; Lewis, J.W.; Trogdon, J.G.; Stearns, S.C.; Weber, D.J.; Weinberger, M. Association between statewide adoption of the CDC’s Core Elements of Hospital Antimicrobial Stewardship Programs and rates of methicillin-resistant Staphylococcus aureus bacteremia and Clostridioides difficile infection in the United States. Infect. Control Hosp. Epidemiol. 2020, 41, 430–437. [Google Scholar] [CrossRef]
- Baur, D.; Gladstone, B.P.; Burkert, F.; Carrara, E.; Foschi, F.; Döbele, S.; Tacconelli, E. Effect of antibiotic stewardship on the incidence of infection and colonization with antibiotic-resistant bacteria and Clostridium difficile infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2017, 17, 990–1001. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014.
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Chokshi, A.; Sifri, Z.; Cennimo, D.; Horng, H. Global contributors to antibiotic resistance. J. Glob. Infect. Dis. 2019, 11, 36–42. [Google Scholar]
- Hersh, A.L.; King, L.M.; Shapiro, D.J.; Hicks, L.A.; Fleming-Dutra, K.E. Unnecessary Antibiotic Prescribing in US Ambulatory Care Settings, 2010–2015. Clin. Infect. Dis. 2021, 72, 133–137. [Google Scholar] [CrossRef]
- Fu, M.; Gong, Z.; Zhu, Y.; Li, C.; Zhou, Y.; Hu, L.; Li, H.; Wushouer, H.; Guan, X.; Shi, L. Inappropriate antibiotic prescribing in primary healthcare facilities in China: A nationwide survey, 2017–2019. Clin. Microbiol. Infect. 2022, 29, 602–609. [Google Scholar] [CrossRef]
- Pollack, L.A.; Srinivasan, A. Core elements of hospital antibiotic stewardship programs from the Centers for Disease Control and Prevention. Clin. Infect. Dis. 2014, 59, S97–S100. [Google Scholar] [CrossRef]
- Davey, P.; Marwick, C.A.; Scott, C.L.; Charani, E.; McNeil, K.; Brown, E.; Gould, I.M.; Ramsay, C.R.; Michie, S. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst. Rev. 2017, 2, CD003543. [Google Scholar] [CrossRef]
- James, R.; Upjohn, L.; Cotta, M.; Luu, S.; Marshall, C.; Buising, K.; Thursky, K. Measuring antimicrobial prescribing quality in Australian hospitals: Development and evaluation of a national antimicrobial prescribing survey tool. J. Antimicrob. Chemother. 2015, 70, 1912–1918. [Google Scholar] [CrossRef]
- WHO. WHO Methodology for a Global Programme on Surveillance of Antimicrobial Consumption; World Health Organization: Geneva, Switzerland, 2016.
- Janto, M.; Iurcov, R.; Daina, C.M.; Neculoiu, D.C.; Venter, A.C.; Badau, D.; Cotovanu, A.; Negrau, M.; Suteu, C.L.; Sabau, M.; et al. Oral Health among Elderly, Impact on Life Quality, Access of Elderly Patients to Oral Health Services and Methods to Improve Oral Health: A Narrative Review. J. Pers. Med. 2022, 12, 372. [Google Scholar] [CrossRef]
- Munteanu, G.Z.; Munteanu, Z.V.I.; Roiu, G.; Daina, C.M.; Moraru, R.; Moraru, L.; Trambitas, C.; Badau, D.; Daina, L.G. Aspects of Tertiary Prevention in Patients with Primary Open Angle Glaucoma. Journal. Pers. Med. 2021, 11, 830. [Google Scholar] [CrossRef]
- Saleem, Z.; Hassali, M.A.; Godman, B.; Versporten, A.; Hashmi, F.K.; Saeed, H.; Saleem, F.; Salman, M.; Rehman, I.U.; Khan, T.M. Point prevalence surveys of antimicrobial use: A systematic review and the implications. Expert Rev. Anti-Infect. Ther. 2020, 18, 897–910. [Google Scholar] [CrossRef]
- WHO. WHO Access, Watch, Reserve (AWaRe) Classification of Antibiotics for Evaluation and Monitoring of Use. 2021. Available online: https://apps.who.int/iris/rest/bitstreams/1374989/retrieve (accessed on 19 February 2023).
- Hillock, N.T.; Connor, E.; Wilson, C.; Kennedy, B. Comparative analysis of Australian hospital antimicrobial utilization, using the WHO AWaRe classification system and the adapted Australian Priority Antimicrobial List (PAL). JAC Antimicrob. Resist. 2021, 3, dlab017. [Google Scholar] [CrossRef]
- Mugada, V.; Mahato, V.; Andhavaram, D.; Vajhala, S.M. Evaluation of Prescribing Patterns of Antibiotics Using Selected Indicators for Antimicrobial Use in Hospitals and the Access, Watch, Reserve (AwaRe) Classification by the World Health Organization. Turk. J. Pharm. Sci. 2021, 18, 282–288. [Google Scholar] [CrossRef]
- Pauwels, I.; Versporten, A.; Drapier, N.; Vlieghe, E.; Goossens, H. Hospital antibiotic prescribing patterns in adult patients according to the WHO Access, Watch and Reserve classification (AwaRe): Results from a worldwide point prevalence survey in 69 countries. J. Antimicrob. Chemother. 2021, 76, 1614–1624. [Google Scholar] [CrossRef]
- WHO Collaborating Centre for Drug Statistics Methodology. ATC/DDD Index 2022. Available online: https://www.whocc.no/atc_ddd_index/ (accessed on 15 February 2023).
- Bogdan, M.A.; Bungau, S.; Tit, D.M.; Zaha, D.C.; Nechifor, A.C.; Behl, T.; Chambre, D.; Lupitu, A.I.; Copolovici, L.; Copolovici, D.M. Chemical Profile, Antioxidant Capacity, and Antimicrobial Activity of Essential Oils Extracted from Three Different Varieties (Moldoveanca 4, Vis magic 10, and Alba 7) of Lavandula angustifolia. Molecules 2021, 26, 4381. [Google Scholar] [CrossRef]
- Vică, M.L.; Glevitzky, M.; Tit, D.M.; Behl, T.; Heghedűş-Mîndru, R.C.; Zaha, D.C.; Ursu, F.; Popa, M.; Glevitzky, I.; Bungău, S. The antimicrobial activity of honey and propolis extracts from the central region of Romania. Food Biosci. 2021, 41, 101014. [Google Scholar] [CrossRef]
- Nunes, P.H.C.; Moreira, J.P.L.; Thompson, A.F.; Machado, T.L.D.S.; Cerbino-Neto, J.; Bozza, F.A. Antibiotic Consumption and Deviation of Prescribed Daily Dose from the Defined Daily Dose in Critical Care Patients: A Point-Prevalence Study. Front. Pharmacol. 2022, 13, 913568. [Google Scholar] [CrossRef]
- Amponsah, O.K.O.; Buabeng, K.O.; Owusu-Ofori, A.; Ayisi-Boateng, N.K.; Hämeen-Anttila, K.; Enlund, H. Point prevalence survey of antibiotic consumption across three hospitals in Ghana. JAC Antimicrob. Resist. 2021, 3, dlab008. [Google Scholar] [CrossRef]
- Franchi, C.; Mandelli, S.; Fortino, I.; Nobili, A. Antibiotic use and associated factors in adult outpatients from 2000 to 2019. Pharmacol. Res. Perspect. 2021, 9, e00878. [Google Scholar] [CrossRef] [PubMed]
- Omulo, S.; Oluka, M.; Achieng, L.; Osoro, E.; Kinuthia, R.; Guantai, A.; Opanga, S.A.; Ongayo, M.; Ndegwa, L.; Verani, J.R.; et al. Point-prevalence survey of antibiotic use at three public referral hospitals in Kenya. PLoS ONE 2022, 17, e0270048. [Google Scholar] [CrossRef] [PubMed]
- Friedli, O.; Gasser, M.; Cusini, A.; Fulchini, R.; Vuichard-Gysin, D.; Halder Tobler, R.; Wassilew, N.; Plüss-Suard, C.; Kronenberg, A. Impact of the COVID-19 Pandemic on Inpatient Antibiotic Consumption in Switzerland. Antibiotics 2022, 11, 792. [Google Scholar] [CrossRef] [PubMed]
- Grau, S.; Hernandez, S.; Echeverria-Esnal, D.; Almendral, A.; Ferrer, R.; Limon, E.; Horcajada, J.P.; Catalan Infection Control Antimicrobial Stewardship Program (VINCat-PROA). Antimicrobial consumption among 66 acute care hospitals in Catalonia: Impact of the COVID-19 pandemic. Antibiotics 2021, 10, 943. [Google Scholar] [CrossRef]
- Ahmed, N.; Balaha, M.; Haseeb, A.; Khan, A. Antibiotic Usage in Surgical Prophylaxis: A Retrospective Study in the Surgical Ward of a Governmental Hospital in Riyadh Region. Healthcare 2022, 10, 387. [Google Scholar] [CrossRef]
- Tarrant, C.; Colman, A.M.; Jenkins, D.R.; Chattoe-Brown, E.; Perera, N.; Mehtar, S.; Nakkawita, W.M.I.D.; Bolscher, M.; Krockow, E.M. Drivers of Broad-Spectrum Antibiotic Overuse across Diverse Hospital Contexts—A Qualitative Study of Prescribers in the UK, Sri Lanka and South Africa. Antibiotics 2021, 10, 94. [Google Scholar] [CrossRef]
- Webb, B.J.; Sorensen, J.; Jephson, A.; Mecham, I.; Dean, N.C. Broad-spectrum antibiotic use and poor outcomes in community-onset pneumonia: A cohort study. Eur. Respir. J. 2019, 54, 1900057. [Google Scholar] [CrossRef]
- Nandi, A.; Pecetta, S.; Bloom, D.E. Global antibiotic use during the COVID-19 pandemic: Analysis of pharmaceutical sales data from 71 countries, 2020–2022. Lancet 2023, 57, 101848. [Google Scholar] [CrossRef]
- John, S.M.; Panda, B.K.; Bhosle, D.G. Evaluation of cephalosporins utilization and compliance with reference to the hospital antibiotic policy of an Indian tertiary care hospital. Int. J. Basic. Clin. Pharmacol. 2019, 8, 1044–1050. [Google Scholar] [CrossRef]
- Gururaja, M.P. Cephalosporin utilization evaluation in a University Teaching Hospital: A prospective study. J. Drug. Deliv. Therapeut. 2013, 3, 83–87. [Google Scholar]
- Alsowaida, Y.S.; Benitez, G.; Bin Saleh, K.; Almangour, T.A.; Shehadeh, F.; Mylonakis, E. Effectiveness and Safety of Ceftriaxone Compared to Standard of Care for Treatment of Bloodstream Infections Due to Methicillin-Susceptible Staphylococcus aureus: A Systematic Review and Meta-Analysis. Antibiotics 2022, 11, 375. [Google Scholar] [CrossRef]
- Henig, O.; Kehat, O.; Meijer, S.E.; Chikly, A.; Weiss-Meilik, A.; Egoz, E.; Ben-Ami, R.; Paran, Y. Antibiotic use during the COVID-19 pandemic in a tertiary hospital with an ongoing antibiotic stewardship program. Antibiotics 2021, 10, 1056. [Google Scholar] [CrossRef]
- Chen, J.; Ekaney, I.; Shah, P.J. Comparison of antimicrobial utilization metrics: Food for thought for an antimicrobial stewardship programme. Int. J. Antimicrob. Agents 2022, 60, 106681. [Google Scholar] [CrossRef]
2017 | 2018 | 2019 | 2020 | 2021 | Total | |
---|---|---|---|---|---|---|
Number of patients | 41,598 | 40,038 | 39,743 | 26,138 | 27,755 | 175,272 |
Number of patients treated with antibiotics | 22,928 | 21,881 | 21,182 | 13,135 | 15 173 | 94,299 |
% | 55.12 | 54.65 | 53.30 | 50.25 | 54.67 | 53.80 |
2017 | 2018 | 2019 | 2020 | 2021 | Total | |
---|---|---|---|---|---|---|
Intensive care unit | 398.87 | 368.77 | 381.04 | 389.66 | 344.59 | 1882.93 |
Surgical wards | 1163.48 | 871.06 | 933.13 | 1559.36 | 4421.46 | 8948.49 |
Medical wards | 415.91 | 421.38 | 350.21 | 432.75 | 1215.75 | 2836 |
Total | 1978.26 | 1661.21 | 1664.38 | 2381.77 | 5981.80 | 13,677.42 |
ATC Code | Substance Name | 2017 | 2018 | 2019 | 2020 | 2021 | Total |
---|---|---|---|---|---|---|---|
J01DD04 | Ceftriaxone | 613.94 | 584.05 | 450.90 | 531.23 | 1438.52 | 3618.64 |
J01XD01 | Metronidazole | 110.79 | 43.39 | 104.81 | 298.63 | 1226.74 | 1784.37 |
J01DC02 | Cefuroxime | 167.68 | 198.96 | 255.52 | 427.52 | 449.36 | 1499.04 |
J01CA01 | Ampicillin | 129.11 | 133.26 | 132.46 | 138.85 | 297.06 | 830.74 |
J01MA02 | Ciprofloxacin | 109.29 | 105.78 | 88.42 | 115.67 | 288.43 | 707.60 |
J01GB06 | Amikacin | 217.12 | 37.46 | 34.24 | 36.45 | 308.83 | 634.11 |
J01CR02 | Amoxicillin/clavulanic acid | 106.56 | 78.07 | 61.47 | 94.83 | 211.72 | 552.64 |
J01DD08 | Cefixime | 9.26 | 9.83 | 9.95 | 16.08 | 434.70 | 479.83 |
J01GB03 | Gentamicin | 72.49 | 54.39 | 89.45 | 97.21 | 116.54 | 430.09 |
A07AA11 | Rifaximin | 73.57 | 77.45 | 67.63 | 66.89 | 123.53 | 409.06 |
J01CA04 | Amoxicillin | 38.49 | 43.22 | 43.03 | 28.36 | 170.93 | 324.04 |
J01DD62 | Cefoperazone/sulbactam | 36.83 | 46.77 | 34.06 | 56.09 | 145.68 | 319.43 |
J01DH02 | Meropenem | 16.23 | 22.04 | 31.90 | 71.97 | 145.61 | 287.74 |
J01FF01 | Clindamycin | 44.33 | 56.12 | 42.85 | 45.09 | 89.07 | 277.46 |
J01DD02 | Ceftazidime | 39.58 | 20.76 | 25.21 | 34.00 | 59.86 | 179.40 |
J01DD12 | Cefoperazone | 45.17 | 20.94 | 21.57 | 17.92 | 55,75 | 161.36 |
J01MA12 | Levofloxacin | 21.78 | 20.80 | 10.54 | 31.67 | 59.81 | 144.60 |
J01XA01 | Vancomicin | 8.67 | 11.02 | 18.22 | 39.13 | 57.63 | 134.66 |
J01MA14 | Moxifloxacin | 10.29 | 17.31 | 15.85 | 29.74 | 35.20 | 108.39 |
J01MA06 | Norfloxacin | 5.82 | 5.51 | 3.17 | 80.50 | 7.07 | 102.06 |
J01AA02 | Doxycycline | 2.91 | 3.22 | 8.76 | 10.23 | 54.61 | 79.72 |
J01CE01 | Benzylpenicillin | 29.39 | 5.65 | 22.71 | 13.99 | 2.38 | 74.13 |
J01XA02 | Teicoplanin | 1.86 | 1.93 | 22.20 | 13.32 | 20.06 | 59.38 |
J01FA09 | Clarithromycin | 5.54 | 6.03 | 7.77 | 7.85 | 31.24 | 58.42 |
J01XB01 | Colistin | 6.80 | 10.03 | 8.98 | 7.15 | 21.54 | 54.49 |
J01CF04 | Oxacilin | 11.14 | 6.75 | 9.78 | 12.50 | 12.13 | 52.30 |
J01DH03 | Ertapenem | 5.08 | 4.09 | 4.81 | 6.20 | 18.11 | 38.29 |
J04AB02 | Rifampicin | 3.39 | 0.29 | 4.46 | 7.74 | 15.92 | 31.79 |
J01CR05 | Piperacillin/tazobactam | 8.08 | 8.67 | 3.36 | 0.96 | 10.29 | 31.36 |
J01CR01 | Ampicillin/sulbactam | 2.84 | 5.96 | 5.33 | 3.80 | 11.71 | 29.65 |
J01DE01 | Cefepime | 0.00 | 0.27 | 2.34 | 5.88 | 19.09 | 27.57 |
J01MA01 | Ofloxacin | 15.70 | 4.47 | 2.31 | 0.68 | 3.89 | 27.06 |
J01AA12 | Tigecycline | 0.38 | 1.61 | 4.10 | 7.25 | 12.39 | 25.73 |
J01XX08 | Linezolid | 1.76 | 7.62 | 5.35 | 1.02 | 6.75 | 22.49 |
J01FA10 | Azithromycin | 0.63 | 0.39 | 0.25 | 14.08 | 4.87 | 20.21 |
J01DC04 | Cefaclor | 4.97 | 5.55 | 1.67 | 0.77 | 0 | 12.96 |
J01DH51 | Imipenem/Cilastin | 0.79 | 1.57 | 3.04 | 2.14 | 4.93 | 12.47 |
J01FA01 | Erythromycin | 0 | 0 | 2.60 | 1.92 | 7.13 | 11.65 |
J01XX01 | Fosfomycin | 0 | 0 | 2.12 | 2.51 | 5.93 | 10.56 |
J01DD52 | Ceftazidime/avibactam | 0 | 0 | 0.83 | 1.65 | 6.92 | 9.40 |
J01DB04 | Cefazolin | 0 | 0 | 0.37 | 2.32 | 0 | 2.69 |
J01DH56 | Imipenem/cilastatin/ relebactam | 0 | 0 | 0 | 0 | 0.23 | 0.23 |
Total | 1978.26 | 1661.21 | 1664.38 | 2381.77 | 5981.80 | 13,677.4 |
2017 | 2018 | 2019 | 2020 | 2021 | Total | |
---|---|---|---|---|---|---|
Penicillin’s | 208.13 | 188.89 | 207.98 | 193.70 | 482.51 | 1281.20 |
Combination (beta-lactam/beta-lactamase inhibitors) | 154.31 | 139.48 | 105.05 | 157.32 | 386.32 | 942.48 |
1st generation cephalosporins | - | - | 0.37 | 2.32 | - | 2.69 |
2nd-generation cephalosporins | 172.65 | 204.51 | 257.19 | 428.29 | 449.36 | 1511.99 |
3rd-generation cephalosporins | 707.96 | 635.58 | 507.64 | 599.22 | 1988.83 | 4439.22 |
4th-generation cephalosporins | - | 0.27 | 2.34 | 5.88 | 19.09 | 27.57 |
Carbapenems | 22.10 | 27.70 | 39.75 | 80.31 | 168.88 | 338.73 |
Beta-lactams | 1265.16 | 1196.41 | 1120.31 | 1467.04 | 3494.98 | 8543.90 |
Macrolides | 6.16 | 6.42 | 10.62 | 23.84 | 43.24 | 90.28 |
Lincosamide | 44.33 | 56.12 | 42.85 | 45.09 | 89.07 | 277.46 |
Aminoglycoside | 289.62 | 91.85 | 123.69 | 133.67 | 425.38 | 1064.20 |
Glycopeptides | 10.53 | 12.95 | 40.42 | 52.45 | 77.69 | 194.04 |
Polymyxins | 6.80 | 10.03 | 8.98 | 7.15 | 21.54 | 54.49 |
Fluoroquinolones | 162.89 | 153.86 | 120.29 | 258.26 | 394.40 | 1 089.70 |
Tetracyclines | 3.29 | 4.82 | 12.86 | 17.48 | 67.00 | 105.45 |
Rifamycins | 76.95 | 77.74 | 72.09 | 74.63 | 139.45 | 440.86 |
Azoles | 110.79 | 43.39 | 104.81 | 298.63 | 1226.74 | 1784.37 |
Oxazolidinone | 1.76 | 7.62 | 5.35 | 1.02 | 6.75 | 22.49 |
Other antibiotics for systemic use | - | - | 2.12 | 2.51 | 5.93 | 10.56 |
Group Antibiotics | 2017 | 2018 | 2019 | 2020 | 2021 | Total |
---|---|---|---|---|---|---|
Access | 765.18 | 467.51 | 555.26 | 782.26 | 2501.74 | 5071.94 (37.07%) |
Watch | 1167.32 | 1127.69 | 1055.81 | 1526.35 | 3296.92 | 8174.10 (59.69%) |
Reserve | 8.94 | 19.25 | 19.26 | 17.07 | 47.83 | 112.35 (0.82%) |
Not Recommended | 36.83 | 46.77 | 34.06 | 56.09 | 145.68 | 319.43 (2.34%) |
Antibiotic | % Resistance (%R 95%C.I.) | Coefficient of Variation | ||||
---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | ||
Ceftriaxone | 52.9 (50.7–55.3) | 48.6 (40.2–55.3) | 40.9 (37.3–44.2) | 54.5 (51.0–58.1) | 48.8 (45.0–53.1) | 0.11 |
Cefuroxime | 40.5 (37.4–43.7) | 39.5 (37.1–42.2) | 40.1 (36.4–43.9) | 38.2 (34.3–42.3) | 42.6 (38.7–48.4) | 0.03 |
Ampicillin | 49.1 (46.3–53.1) | 79.8 (71.9–81.2) | 68.3 (63.7–69.5) | 65.1 (63.2–67.4) | 69.4 (67.8–71.4) | 0.17 |
Ciprofloxacin | 53.6 (51.4–55.8) | 52.9 (51.3–54.5) | 48.4 (46.9–49.9) | 46.8 (45.2–48.4) | 54.7 (53.2–56.2) | 0.07 |
Amikacin | 14.9 (13.4–16.6) | 12.9 (11.5–14.2) | 13.7 (12.6–14.9) | 11.4 (10.2–12.7) | 18.9 (17.6–20.3) | 0.20 |
Amoxicillin/ Clavulanic acid | 26.6 (30.0–34.7) | 61.7 (59.4–63.9) | 51.9 (51.0–55.0) | 48.6 (47.0–51.2) | 52 (50.7–54.7) | 0.27 |
Cefixime | 53.6 (49.8–57.4) | 52 (48.3–55.2) | 54.9 (48.8–60.8) | 61.6 (54.6–68.1) | 62.5 (57.0–67.7) | 0.08 |
Gentamicin | 36.1 (33.6–38.7) | 29.6 (28.1–31.1) | 32.2 (30.8–33.6) | 26.7 (25.2–28.3) | 30.8 (29.4–32.2) | 0.11 |
Meropenem | 23.1 (20.5–25.9) | 24.7 (23.1–26.4) | 22.9 (21.6–24.3) | 24.1 (22.5–25.7) | 36.6 (35.0–38.2) | 0.22 |
Clindamycin | 42.9 (39.1–46.8) | 58.8 (54.9–62.6) | 42.6 (39.5–45.8) | 44.7 (41.0–48.5) | 35 (31.4–38.7) | 0.19 |
Ceftazidime | 38.2 (28.0–39.7) | 40.5 (38.7–42.4) | 39 (37.2–40.9) | 33.2 (31.2–35.3) | 42.6 (40.7–44.5) | 0.09 |
Levofloxacin | 40 (37.7–42.4) | 42 (39.7–46.1) | 45.8 (42.2–49.4) | 46.9 (43.0–50.8) | 53.1 (49.6–56.7) | 0.11 |
Vancomycin | 2.1 (1.8–4.2) | 11.7 (10.2–14.3) | 3 (2.2–10.0 | 3 (2.6–11.1) | 10 (9.0–12.6) | 0.76 |
Moxifloxacin | 73.8 (67.7–79.1) | 19.7 (16.7–23.0) | 17.9 (15.5–20.8) | 21 (16.9–23.3) | 23.2 (20.3–26.2) | 0.19 |
Penicillin G | 63 (61.3–68.0) | 62 (59.1–68.0) | 74 (76.0–94.4) | 58 (51.1–69.2) | 63.6 (62.4–70.5) | 0.11 |
Teicoplanin | 1.7 (1.2–2.2) | 7.9 (6.3–9.9) | 7 (5.6–8.7) | 6 (4.4–8.1) | 5.8 (4.4–7.6) | 0.42 |
Colistin | - | 21 (17.9–24.5) | 27.4 (24.2–30.8) | 21.3 (17.9–25.2) | 18.6 (16.0–21.5) | 0.17 |
Oxacillin | 4.3 (2.4–7.4) | 76.1 (72.4–79.4) | 64 (60.0–68.2) | 63.6 (58.1–68.7) | 66.9 (61.4–72.0) | 0.17 |
Ertapenem | - | 12.1 (10.7–13.7) | 15.2 (13.6–16.9) | 11.3 (9.8–13.0) | 22.2 (20.4–24.1) | 0.33 |
Rifampin | - | 19.1 (16.1–22.5) | 12.2 (9.5–15.5) | 9.2 (6.5–12.9) | 10.8 (7.7–14.7) | 0.34 |
Piperacillin/ Tazobactam | 18.5 (16.5–20.6) | 36.7 (34.9–38.6) | 31.5 (29.9–33.9) | 37.5 (35.8–39.2) | 43.5 (41.9–45.1) | 0.28 |
Ampicillin/ Sulbactam | 21.8 (19.3–24.5) | 49 (41.31–52.9) | 50.3 (42.3–58.3) | 45.3 (39.9–50.8) | 53.8 (50.0–57.6) | 0.10 |
Cefepime | 39.1 (34.1–44.3) | 30 (28.3–31.8) | 30.1 (28.5–31.) | 26.9 (25.1–28.7) | 35.1 (33.6–36.8) | 0.15 |
Ofloxacin | 31.9 (29.6–34.3) | 36 (31.2–42.6) | 44 (39.2–48.9) | 40.1 (32.8–47.9) | 29.6 (23.5–36.5) | 0.16 |
Linezolid | - | 6.8 (5.4–8.7) | 6.8 (5.8–9.4) | 4.2 (3.0–6.4) | 4.5 (5.3–9.4) | 0.25 |
Azithromycin | 59.5 (51.6–66.9) | 60.1 (54.6–65.1) | 50 (34.8–65.2) | 73.9 (51.3–88.9) | 66.7 (44.7–83.6) | 0.14 |
Imipenem/ Cilastin | 36.1 (30.4–42.2) | 27.6 (25.9–29.3) | 27.4 (25.8–29.0) | 30.3 (28.5–32.2) | 37.1 (35.4–38.8) | 0.15 |
Erythromycin | 49 (44.7–53.3) | 68.7 (65.6–71.6) | 60.4 (57.9–62.9) | 61.8 (58.9–64.7) | 58.1 (54.9–61.2) | 0.12 |
Ceftazidime/ Avibactam | - | - | 28.1 (21.6–35.7) | 32.1 (28.1–36.4) | 53.2 (50.2–56.2) | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodoșan, V.; Daina, L.G.; Zaha, D.C.; Cotrău, P.; Vladu, A.; Dorobanțu, F.R.; Negrău, M.O.; Babeș, E.E.; Babeș, V.V.; Daina, C.M. Pattern of Antibiotic Use among Hospitalized Patients at a Level One Multidisciplinary Care Hospital. Healthcare 2023, 11, 1302. https://doi.org/10.3390/healthcare11091302
Hodoșan V, Daina LG, Zaha DC, Cotrău P, Vladu A, Dorobanțu FR, Negrău MO, Babeș EE, Babeș VV, Daina CM. Pattern of Antibiotic Use among Hospitalized Patients at a Level One Multidisciplinary Care Hospital. Healthcare. 2023; 11(9):1302. https://doi.org/10.3390/healthcare11091302
Chicago/Turabian StyleHodoșan, Viviana, Lucia Georgeta Daina, Dana Carmen Zaha, Petru Cotrău, Adriana Vladu, Florica Ramona Dorobanțu, Marcel Ovidiu Negrău, Elena Emilia Babeș, Victor Vlad Babeș, and Cristian Marius Daina. 2023. "Pattern of Antibiotic Use among Hospitalized Patients at a Level One Multidisciplinary Care Hospital" Healthcare 11, no. 9: 1302. https://doi.org/10.3390/healthcare11091302
APA StyleHodoșan, V., Daina, L. G., Zaha, D. C., Cotrău, P., Vladu, A., Dorobanțu, F. R., Negrău, M. O., Babeș, E. E., Babeș, V. V., & Daina, C. M. (2023). Pattern of Antibiotic Use among Hospitalized Patients at a Level One Multidisciplinary Care Hospital. Healthcare, 11(9), 1302. https://doi.org/10.3390/healthcare11091302