Trends in Molecular Diagnosis of Nosocomial Pneumonia Classic PCR vs. Point-of-Care PCR: A Narrative Review
Abstract
:1. Introduction
1.1. Polymerase Chain Reaction—Short Technical Overlook
1.2. Multiplex PCR—The Classic Method and Its Usefulness in Managing Pneumonia
1.3. POC-PCR—A Game Changer?
1.4. Finding AMR Genes—Another Helping Tool in Antibiotic Guidance
1.5. Classic PCR—POC PCR Comparison
Classic PCR | POC-PCR |
---|---|
Specialized medical personnel needed for the process | No need for qualified medical personnel |
Medium sample volume needed | Very little sample volume necessary |
Requires sample transportation from bedside to laboratory | Does not require sample transport, is performed near the patient |
Requires extensive processing before amplifying | Only requires sample lysis before amplifying |
Risk of nucleic acid degradation or contamination during processing | Minimal risk of degradation or contamination due to no processing required |
Time until results—approximately 6 h | Time until results—approximately 3–4 h |
1.6. Knowledge Gaps and Feature Directions
2. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lim, W.S. Pneumonia—Overview. Ref. Modul. Biomed. Sci. 2020, 185–197. [Google Scholar]
- Papazian, L.; Klompas, M.; Luyt, C.-E. Ventilator-Associated Pneumonia in Adults: A Narrative Review. Intensive Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef] [PubMed]
- Charles, M.P.; Kali, A.; Easow, J.M.; Joseph, N.M.; Ravishankar, M.; Srinivasan, S.; Kumar, S.; Umadevi, S. Ventilator-Associated Pneumonia. Australas. Med. J. 2014, 7, 334. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Bassi, G.L.; Luna, C.M.; Martin-Loeches, I. International ERS/ESICM/ESCMID/ALAT Guidelines for the Management of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: Guidelines for the Management of Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana Del Tórax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar]
- Craven, D.E.; Hudcova, J.; Lei, Y. Diagnosis of Ventilator-Associated Respiratory Infections (VARI): Microbiologic Clues for Tracheobronchitis (VAT) and Pneumonia (VAP). Clin. Chest Med. 2011, 32, 547–557. [Google Scholar] [CrossRef]
- Hunter, J.D. Ventilator Associated Pneumonia. BMJ 2012, 344, 867–903. [Google Scholar] [CrossRef]
- Choudhuri, A.H. Ventilator-Associated Pneumonia: When to Hold the Breath? Int. J. Crit. Illn. Inj. Sci. 2013, 3, 169. [Google Scholar] [CrossRef]
- Wu, D.; Wu, C.; Zhang, S.; Zhong, Y. Risk Factors of Ventilator-Associated Pneumonia in Critically III Patients. Front. Pharmacol. 2019, 10, 482. [Google Scholar] [CrossRef]
- Luo, W.; Xing, R.; Wang, C. The Effect of Ventilator-Associated Pneumonia on the Prognosis of Intensive Care Unit Patients within 90 Days and 180 Days. BMC Infect. Dis. 2021, 21, 684. [Google Scholar] [CrossRef]
- Torres, A.; Cilloniz, C.; Niederman, M.S.; Menéndez, R.; Chalmers, J.D.; Wunderink, R.G.; van der Poll, T. Pneumonia. Nat. Rev. Dis. Prim. 2021, 7, 25. [Google Scholar] [CrossRef]
- Giuliano, K.K.; Baker, D.; Quinn, B. The Epidemiology of Nonventilator Hospital-Acquired Pneumonia in the United States. Am. J. Infect. Control 2018, 46, 322–327. [Google Scholar] [CrossRef]
- Abbafati, C.; Machado, D.; Cislaghi, B.; Salman, O.; Karanikolos, M.; McKee, M.; Abbas, K.; Brady, O.; Larson, H.; Trias-Llimós, S. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar]
- Barbier, F.; Andremont, A.; Wolff, M.; Bouadma, L. Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: Recent Advances in Epidemiology and Management. Curr. Opin. Pulm. Med. 2013, 19, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Cunha, B.A.; Brusch, J.L. Hospital-Acquired Pneumonia (Nosocomial Pneumonia) and Ventilator-Associated Pneumonia. Drugs Dis. 2021. Available online: https://emedicine.medscape.com/article/234753-overview (accessed on 24 March 2023).
- Sunarti, L.S. Microbial Normal Flora: Its Existence and Their Contribution to Homeostasis. J. Adv. Microbiol. 2022, 22, 1–15. [Google Scholar] [CrossRef]
- Russo, A.; Giuliano, S.; Ceccarelli, G.; Alessandri, F.; Giordano, A.; Brunetti, G.; Venditti, M. Comparison of Septic Shock Due to Multidrug-Resistant Acinetobacter Baumannii or Klebsiella Pneumoniae Carbapenemase-Producing K. Pneumoniae in Intensive Care Unit Patients. Antimicrob. Agents Chemother. 2018, 62, e02562-17. [Google Scholar] [CrossRef]
- Chung, D.R.; Song, J.-H.; Kim, S.H.; Thamlikitkul, V.; Huang, S.-G.; Wang, H.; So, T.M.; Yasin, R.M.; Hsueh, P.-R.; Carlos, C.C. High Prevalence of Multidrug-Resistant Nonfermenters in Hospital-Acquired Pneumonia in Asia. Am. J. Respir. Crit. Care Med. 2011, 184, 1409–1417. [Google Scholar] [CrossRef]
- Sfeir, M.M. Diagnosis of Multidrug-Resistant Pathogens of Pneumonia. Diagnostics 2021, 11, 2287. [Google Scholar] [CrossRef]
- Assefa, M. Multi-Drug Resistant Gram-Negative Bacterial Pneumonia: Etiology, Risk Factors, and Drug Resistance Patterns. Pneumonia 2022, 14, 4. [Google Scholar] [CrossRef]
- Bassetti, M.; Kanj, S.S.; Kiratisin, P.; Rodrigues, C.; Van Duin, D.; Villegas, M.V.; Yu, Y. Early Appropriate Diagnostics and Treatment of MDR Gram-Negative Infections. JAC-Antimicrob. Resist. 2022, 4, dlac089. [Google Scholar] [CrossRef]
- Yoo, I.Y.; Huh, K.; Shim, H.J.; Yun, S.A.; Chung, Y.N.; Kang, O.K.; Huh, H.J.; Lee, N.Y. Evaluation of the BioFire FilmArray Pneumonia Panel for Rapid Detection of Respiratory Bacterial Pathogens and Antibiotic Resistance Genes in Sputum and Endotracheal Aspirate Specimens. Int. J. Infect. Dis. 2020, 95, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Naboni, N.S.; Nowshen, A.; Sultana, S.; Haque, F.; Hossain, M.M. A Review on The Causative Agents, Risk Factors and Management of Ventilator-Associated Pneumonia: South Asian Perspective. J. Med. 2022, 23, 151–161. [Google Scholar] [CrossRef]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J. Management of Adults with Hospital-Acquired and Ventilator-Associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef]
- Luyt, C.-E.; Bréchot, N.; Trouillet, J.-L.; Chastre, J. Antibiotic Stewardship in the Intensive Care Unit. Crit. Care 2014, 18, 480. [Google Scholar] [CrossRef] [PubMed]
- Enne, V.I.; Aydin, A.; Baldan, R.; Owen, D.R.; Richardson, H.; Ricciardi, F.; Russell, C.; Nomamiukor-Ikeji, B.O.; Swart, A.-M.; High, J. Multicentre Evaluation of Two Multiplex PCR Platforms for the Rapid Microbiological Investigation of Nosocomial Pneumonia in UK ICUs: The INHALE WP1 Study. Thorax 2022, 77, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Shebl, E.; Gulick, P.G. Nosocomial Pneumonia. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Hilty, M.; Burke, C.; Pedro, H.; Cardenas, P.; Bush, A.; Bossley, C.; Davies, J.; Ervine, A.; Poulter, L.; Pachter, L. Disordered Microbial Communities in Asthmatic Airways. PLoS ONE 2010, 5, e8578. [Google Scholar] [CrossRef]
- Erb-Downward, J.R.; Thompson, D.L.; Han, M.K.; Freeman, C.M.; McCloskey, L.; Schmidt, L.A.; Young, V.B.; Toews, G.B.; Curtis, J.L.; Sundaram, B. Analysis of the Lung Microbiome in the “Healthy” Smoker and in COPD. PLoS ONE 2011, 6, e16384. [Google Scholar] [CrossRef]
- Alsayed, A.R.; Abed, A.; Khader, H.A.; Al-Shdifat, L.M.; Hasoun, L.; Al-Rshaidat, M.M.; Alkhatib, M.; Zihlif, M. Molecular Accounting and Profiling of Human Respiratory Microbial Communities: Toward Precision Medicine by Targeting the Respiratory Microbiome for Disease Diagnosis and Treatment. Int. J. Mol. Sci. 2023, 24, 4086. [Google Scholar] [CrossRef]
- Jamal, W.; Al Roomi, E.; AbdulAziz, L.R.; Rotimi, V.O. Evaluation of Curetis Unyvero, a Multiplex PCR-Based Testing System, for Rapid Detection of Bacteria and Antibiotic Resistance and Impact of the Assay on Management of Severe Nosocomial Pneumonia. J. Clin. Microbiol. 2014, 52, 2487–2492. [Google Scholar] [CrossRef]
- Powledge, T.M. The Polymerase Chain Reaction. Adv. Physiol. Educ. 2004, 28, 44–50. [Google Scholar] [CrossRef]
- Petralia, S.; Conoci, S. PCR Technologies for Point of Care Testing: Progress and Perspectives. ACS Sens. 2017, 2, 876–891. [Google Scholar] [CrossRef] [PubMed]
- Canene-Adams, K. General PCR. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 529, pp. 291–298. [Google Scholar]
- Valasek, M.A.; Repa, J.J. The Power of Real-Time PCR. Adv. Physiol. Educ. 2005, 29, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Reischl, U.; Wittwer, C.; Cockerill, F. Rapid Cycle Real-Time PCR—Methods and Applications: Microbiology and Food Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, S.K.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M. Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present. Microorganisms 2019, 7, 130. [Google Scholar] [CrossRef] [PubMed]
- Artika, I.M.; Wiyatno, A.; Ma’roef, C.N. Pathogenic Viruses: Molecular Detection and Characterization. Infect. Genet. Evol. 2020, 81, 104215. [Google Scholar] [CrossRef]
- Conway Morris, A.; Bos, L.D.; Nseir, S. Molecular Diagnostics in Severe Pneumonia: A New Dawn or False Promise? Intensive Care Med. 2022, 48, 740–742. [Google Scholar] [CrossRef]
- Roquilly, A.; Torres, A.; Villadangos, J.; Netea, M.; Dickson, R.; Becher, B.; Asehnoune, K. Pathophysiological Role of Respiratory Dysbiosis in Hospital-Acquired Pneumonia. Lancet Respir. Med. 2019, 7, 710–720. [Google Scholar] [CrossRef]
- Hanson, K.E.; Azar, M.M.; Banerjee, R.; Chou, A.; Colgrove, R.C.; Ginocchio, C.C.; Hayden, M.K.; Holodiny, M.; Jain, S.; Koo, S. Molecular Testing for Acute Respiratory Tract Infections: Clinical and Diagnostic Recommendations from the IDSA’s Diagnostics Committee. Clin. Infect. Dis. 2020, 71, 2744–2751. [Google Scholar] [CrossRef]
- Szabó, S.; Feier, B.; Capatina, D.; Tertis, M.; Cristea, C.; Popa, A. An Overview of Healthcare Associated Infections and Their Detection Methods Caused by Pathogen Bacteria in Romania and Europe. J. Clin. Med. 2022, 11, 3204. [Google Scholar] [CrossRef]
- Morris, A.C.; Kefala, K.; Simpson, A.J.; Wilkinson, T.S.; Everingham, K.; Kerslake, D.; Raby, S.; Laurenson, I.; Swann, D.G.; Walsh, T.S. Evaluation of the Effect of Diagnostic Methodology on the Reported Incidence of Ventilator-Associated Pneumonia. Thorax 2009, 64, 516–522. [Google Scholar] [CrossRef]
- Vidanapathirana, G.; Angulmaduwa, A.; Munasinghe, T.; Ekanayake, E.; Harasgama, P.; Kudagammana, S.; Dissanayake, B.; Liyanapathirana, L. Comparison of Pneumococcal Colonization Density among Healthy Children and Children with Respiratory Symptoms Using Real Time PCR (RT-PCR). BMC Microbiol. 2022, 22, 31. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Amplification of CDNA Generated by Reverse Transcription of MRNA: Two-Step Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Cold Spring Harb. Protoc. 2019, 2019, pdb-prot095190. [Google Scholar] [CrossRef]
- Larsson, A.; Greig-Pylypczuk, R.; Huisman, A. The State of Point-of-Care Testing: A European Perspective. Upsala J. Med. Sci. 2015, 120, 1–10. [Google Scholar] [CrossRef]
- Qin, J.; Wang, W.; Gao, L.; Yao, S.Q. Emerging Biosensing and Transducing Techniques for Potential Applications in Point-of-Care Diagnostics. Chem. Sci. 2022, 13, 2857–2876. [Google Scholar] [CrossRef] [PubMed]
- Astatke, M.; Tiburzi, O.; Connolly, A. A Novel RNA Detection Technique for Point-of-Care Identification of Pathogens. J. Immunoass. Immunochem. 2022, 43, 1955380. [Google Scholar] [CrossRef]
- Wang, C.; Liu, M.; Wang, Z.; Li, S.; Deng, Y.; He, N. Point-of-Care Diagnostics for Infectious Diseases: From Methods to Devices. Nano Today 2021, 37, 101092. [Google Scholar] [CrossRef]
- Scalise, D. Poised for Growth. Point-of-Care Testing. Hosp. Health Netw. 2006, 80, 77–83. [Google Scholar]
- Luppa, P.B.; Müller, C.; Schlichtiger, A.; Schlebusch, H. Point-of-Care Testing (POCT): Current Techniques and Future Perspectives. TrAC Trends Anal. Chem. 2011, 30, 887–898. [Google Scholar] [CrossRef]
- Grigorev, G.V.; Lebedev, A.V.; Wang, X.; Qian, X.; Maksimov, G.V.; Lin, L. Advances in Microfluidics for Single Red Blood Cell Analysis. Biosensors 2023, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, A.A.; Lo Faro, M.J.; Petralia, S.; Fazio, B.; Musumeci, P.; Conoci, S.; Irrera, A.; Priolo, F. Ultrasensitive Label-and PCR-Free Genome Detection Based on Cooperative Hybridization of Silicon Nanowires Optical Biosensors. ACS Sens. 2018, 3, 1690–1697. [Google Scholar] [CrossRef]
- Huang, E.; Wang, Y.; Yang, N.; Shu, B.; Zhang, G.; Liu, D. A Fully Automated Microfluidic PCR-Array System for Rapid Detection of Multiple Respiratory Tract Infection Pathogens. Anal. Bioanal. Chem. 2021, 413, 1787–1798. [Google Scholar] [CrossRef]
- Kost, G.J. Public Health Education Should Include Point-of-Care Testing: Lessons Learned from the Covid-19 Pandemic. Ejifcc 2021, 32, 311. [Google Scholar] [PubMed]
- Torres, A.; Lee, N.; Cilloniz, C.; Vila, J.; Van der Eerden, M. Laboratory Diagnosis of Pneumonia in the Molecular Age. Eur. Respir. J. 2016, 48, 1764–1778. [Google Scholar] [CrossRef] [PubMed]
- Wellinghausen, N.; Siegel, D.; Gebert, S.; Winter, J. Rapid Detection of Staphylococcus Aureus Bacteremia and Methicillin Resistance by Real-Time PCR in Whole Blood Samples. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, R.K.; Rinaldo, C.R.; Nowalk, M.P.; Balasubramani, G.; Moehling, K.K.; Bullotta, A.; Eng, H.F.; Raviotta, J.M.; Sax, T.M.; Wisniewski, S. Viral Infections in Outpatients with Medically Attended Acute Respiratory Illness during the 2012–2013 Influenza Season. BMC Infect. Dis. 2015, 15, 87. [Google Scholar] [CrossRef]
- Babady, N.E. The FilmArray® Respiratory Panel: An Automated, Broadly Multiplexed Molecular Test for the Rapid and Accurate Detection of Respiratory Pathogens. Expert Rev. Mol. Diagn. 2013, 13, 779–788. [Google Scholar] [CrossRef]
- Loeffelholz, M.; Pong, D.; Pyles, R.; Xiong, Y.; Miller, A.; Bufton, K.; Chonmaitree, T. Comparison of the FilmArray Respiratory Panel and Prodesse Real-Time PCR Assays for Detection of Respiratory Pathogens. J. Clin. Microbiol. 2011, 49, 4083–4088. [Google Scholar] [CrossRef]
- Scanvic, A.; Courdavault, L.; Sollet, J.-P.; Le Turdu, F. Intérêt de La PCR Temps Réel Cepheid Xpert SAMR/SA Sur Genexpert® DX System Dans La Prise En Charge de La Bactériémie à Staphylocoque. Pathol. Biol. 2011, 59, 67–72. [Google Scholar] [CrossRef]
- Liotti, F.M.; Posteraro, B.; Mannu, F.; Carta, F.; Pantaleo, A.; De Angelis, G.; Menchinelli, G.; Spanu, T.; Fiori, P.L.; Turrini, F. Development of a Multiplex PCR Platform for the Rapid Detection of Bacteria, Antibiotic Resistance, and Candida in Human Blood Samples. Front. Cell. Infect. Microbiol. 2019, 9, 389. [Google Scholar] [CrossRef]
- Millot, G.; Voisin, B.; Loiez, C.; Wallet, F.; Nseir, S. The next Generation of Rapid Point-of-Care Testing Identification Tools for Ventilator-Associated Pneumonia. Ann. Transl. Med. 2017, 5, 451. [Google Scholar] [CrossRef]
- Wang, C.; Ye, Q.; Zhang, J.; Pang, R.; Gu, Q.; Ding, Y.; Wu, Q.; Wang, J. Multiplex PCR Identification of the Major Pseudomonas Aeruginosa Serogroups Using Specific Novel Target Genes. LWT 2022, 163, 113567. [Google Scholar] [CrossRef]
- Strålin, K.; Herrmann, B.; Abdeldaim, G.; Olcén, P.; Holmberg, H.; Mölling, P. Comparison of Sputum and Nasopharyngeal Aspirate Samples and of the PCR Gene Targets LytA and Spn9802 for Quantitative PCR for Rapid Detection of Pneumococcal Pneumonia. J. Clin. Microbiol. 2014, 52, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Albrich, W.C.; Madhi, S.A.; Adrian, P.V.; Telles, J.-N.; Paranhos-Baccalà, G.; Klugman, K.P. Genomic Load from Sputum Samples and Nasopharyngeal Swabs for Diagnosis of Pneumococcal Pneumonia in HIV-Infected Adults. J. Clin. Microbiol. 2014, 52, 4224–4229. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Hopping, G.C.; Vaidyanathan, U.; Ronquillo, Y.C.; Hoopes, P.C.; Moshirfar, M. Polymerase Chain Reaction and Its Application in the Diagnosis of Infectious Keratitis. Med. Hypothesis Discov. Innov. Ophthalmol. 2019, 8, 152. [Google Scholar] [PubMed]
- Strålin, K.; Törnqvist, E.; Kaltoft, M.S.; Olcén, P.; Holmberg, H. Etiologic Diagnosis of Adult Bacterial Pneumonia by Culture and PCR Applied to Respiratory Tract Samples. J. Clin. Microbiol. 2006, 44, 643–645. [Google Scholar] [CrossRef]
- Chen, K.; Ahmed, S.; Sun, C.; Sheng, Y.-J.; Wu, G.; Deng, C.-L.; Ojha, S.C. Accuracy of Molecular Amplification Assays for Diagnosis of Staphylococcal Pneumonia: A Systematic Review and Meta-Analysis. J. Clin. Microbiol. 2021, 59, e03003-20. [Google Scholar] [CrossRef]
- Van der Eerden, M.; Vlaspolder, F.; De Graaff, C.; Groot, T.; Jansen, H.; Boersma, W. Value of Intensive Diagnostic Microbiological Investigation in Low-and High-Risk Patients with Community-Acquired Pneumonia. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 241–249. [Google Scholar] [CrossRef]
- Banerjee, R.; Teng, C.B.; Cunningham, S.A.; Ihde, S.M.; Steckelberg, J.M.; Moriarty, J.P.; Shah, N.D.; Mandrekar, J.N.; Patel, R. Randomized Trial of Rapid Multiplex Polymerase Chain Reaction–Based Blood Culture Identification and Susceptibility Testing. Clin. Infect. Dis. 2015, 61, 1071–1080. [Google Scholar] [CrossRef]
- Muthuri, S.G.; Venkatesan, S.; Myles, P.R.; Leonardi-Bee, J.; Al Khuwaitir, T.S.; Al Mamun, A.; Anovadiya, A.P.; Azziz-Baumgartner, E.; Báez, C.; Bassetti, M. Effectiveness of Neuraminidase Inhibitors in Reducing Mortality in Patients Admitted to Hospital with Influenza a H1N1pdm09 Virus Infection: A Meta-Analysis of Individual Participant Data. Lancet Respir. Med. 2014, 2, 395–404. [Google Scholar] [CrossRef]
- Baudel, J.-L.; Tankovic, J.; Dahoumane, R.; Carrat, F.; Galbois, A.; Ait-Oufella, H.; Offenstadt, G.; Guidet, B.; Maury, E. Multiplex PCR Performed of Bronchoalveolar Lavage Fluid Increases Pathogen Identification Rate in Critically Ill Patients with Pneumonia: A Pilot Study. Ann. Intensive Care 2014, 4, 35. [Google Scholar] [CrossRef]
- Bogaerts, P.; Hamels, S.; De Mendonça, R.; Huang, T.-D.; Roisin, S.; Remacle, J.; Markine-Goriaynoff, N.; de Longueville, F.; Plüster, W.; Denis, O. Analytical Validation of a Novel High Multiplexing Real-Time PCR Array for the Identification of Key Pathogens Causative of Bacterial Ventilator-Associated Pneumonia and Their Associated Resistance Genes. J. Antimicrob. Chemother. 2013, 68, 340–347. [Google Scholar] [CrossRef]
- Zacharioudakis, I.M.; Zervou, F.N.; Dubrovskaya, Y.; Inglima, K.; See, B.; Aguero-Rosenfeld, M. Evaluation of a Multiplex PCR Panel for the Microbiological Diagnosis of Pneumonia in Hospitalized Patients: Experience from an Academic Medical Center. Int. J. Infect. Dis. 2021, 104, 354–360. [Google Scholar] [CrossRef]
- Iliescu, F.S.; Ionescu, A.M.; Gogianu, L.; Simion, M.; Dediu, V.; Chifiriuc, M.C.; Pircalabioru, G.G.; Iliescu, C. Point-of-Care Testing—The Key in the Battle against SARS-CoV-2 Pandemic. Micromachines 2021, 12, 1464. [Google Scholar] [CrossRef]
- Xu, E.; Pérez-Torres, D.; Fragkou, P.C.; Zahar, J.-R.; Koulenti, D. Nosocomial Pneumonia in the Era of Multidrug-Resistance: Updates in Diagnosis and Management. Microorganisms 2021, 9, 534. [Google Scholar] [CrossRef]
- Dhesi, Z.; Enne, V.I.; O ‘Grady, J.; Gant, V.; Livermore, D.M. Rapid and Point-of-Care Testing in Respiratory Tract Infections: An Antibiotic Guardian? ACS Pharmacol. Transl. Sci. 2020, 3, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Harder, R.; Wei, K.; Vaze, V.; Stahl, J.E. Simulation Analysis and Comparison of Point of Care Testing and Central Laboratory Testing. MDM Policy Pract. 2019, 4, 2381468319856306. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Suo, Y.; Zou, Z.; Sun, J.; Zhang, S.; Wang, B.; Xu, Y.; Darland, D.; Zhao, J.X.; Mu, Y. Integrated Microfluidic Systems with Sample Preparation and Nucleic Acid Amplification. Lab Chip 2019, 19, 2769–2785. [Google Scholar] [CrossRef] [PubMed]
- Walker, F.M.; Hsieh, K. Advances in Directly Amplifying Nucleic Acids from Complex Samples. Biosensors 2019, 9, 117. [Google Scholar] [CrossRef] [PubMed]
- Smith, M. Validating Real-Time Polymerase Chain Reaction (PCR) Assays. Encycl. Virol. 2021, volume 5, 35–44. [Google Scholar]
- Zhu, H.; Zhang, H.; Ni, S.; Korabečná, M.; Yobas, L.; Neuzil, P. The Vision of Point-of-Care PCR Tests for the COVID-19 Pandemic and Beyond. TrAC Trends Anal. Chem. 2020, 130, 115984. [Google Scholar] [CrossRef]
- Kunze, N.; Moerer, O.; Steinmetz, N.; Schulze, M.H.; Quintel, M.; Perl, T. Point-of-Care Multiplex PCR Promises Short Turnaround Times for Microbial Testing in Hospital-Acquired Pneumonia–an Observational Pilot Study in Critical Ill Patients. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Paonessa, J.R.; Shah, R.D.; Pickens, C.I.; Lizza, B.D.; Donnelly, H.K.; Malczynski, M.; Qi, C.; Wunderink, R.G. Rapid Detection of Methicillin-Resistant Staphylococcus Aureus in BAL: A Pilot Randomized Controlled Trial. Chest 2019, 155, 999–1007. [Google Scholar] [CrossRef]
- Cillóniz, C.; Torres, A.; Niederman, M.S. Management of Pneumonia in Critically Ill Patients. BMJ 2021, 375, e065871. [Google Scholar] [CrossRef]
- Andrews, D.; Chetty, Y.; Cooper, B.S.; Virk, M.; Glass, S.K.; Kelly, P.A.; Sudhanva, M.; Jeyaratnam, D. Multiplex PCR Point of Care Testing versus Routine, Laboratory-Based Testing in the Treatment of Adults with Respiratory Tract Infections: A Quasi-Randomised Study Assessing Impact on Length of Stay and Antimicrobial Use. BMC Infect. Dis. 2017, 17, 671. [Google Scholar] [CrossRef] [PubMed]
- Perez, K.K.; Olsen, R.J.; Musick, W.L.; Cernoch, P.L.; Davis, J.R.; Land, G.A.; Peterson, L.E.; Musser, J.M. Integrating Rapid Pathogen Identification and Antimicrobial Stewardship Significantly Decreases Hospital Costs. Arch. Pathol. Lab. Med. 2013, 137, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Clark, N.M.; Lynch, J.P. Influenza: Epidemiology, Clinical Features, Therapy, and Prevention; Thieme Medical Publishers: New York, NY, USA, 2011; Volume 32, pp. 373–392. [Google Scholar]
- Lee, J.S.; Ahn, J.J.; Kim, S.J.; Yu, S.Y.; Koh, E.J.; Kim, S.H.; Sung, H.S.; Huh, J.W.; Hwang, S.Y. POCT Detection of 14 Respiratory Viruses Using Multiplex RT-PCR. BioChip J. 2021, 15, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Vos, L.M.; Bruning, A.H.; Reitsma, J.B.; Schuurman, R.; Riezebos-Brilman, A.; Hoepelman, A.I.; Oosterheert, J.J. Rapid Molecular Tests for Influenza, Respiratory Syncytial Virus, and Other Respiratory Viruses: A Systematic Review of Diagnostic Accuracy and Clinical Impact Studies. Clin. Infect. Dis. 2019, 69, 1243–1253. [Google Scholar] [CrossRef]
- Niederman, M.S.; Torres, A. Severe Community-Acquired Pneumonia. Eur. Respir. Rev. 2022, 31. [Google Scholar] [CrossRef]
- Luyt, C.-E.; Hékimian, G.; Bonnet, I.; Bréchot, N.; Schmidt, M.; Robert, J.; Combes, A.; Aubry, A. Usefulness of Point-of-Care Multiplex PCR to Rapidly Identify Pathogens Responsible for Ventilator-Associated Pneumonia and Their Resistance to Antibiotics: An Observational Study. Crit. Care 2020, 24, 378. [Google Scholar] [CrossRef]
- Peiffer-Smadja, N.; Bouadma, L.; Mathy, V.; Allouche, K.; Patrier, J.; Reboul, M.; Montravers, P.; Timsit, J.-F.; Armand-Lefevre, L. Performance and Impact of a Multiplex PCR in ICU Patients with Ventilator-Associated Pneumonia or Ventilated Hospital-Acquired Pneumonia. Crit. Care 2020, 24, 1–10. [Google Scholar] [CrossRef]
- Poritz, M.A.; Blaschke, A.J.; Byington, C.L.; Meyers, L.; Nilsson, K.; Jones, D.E.; Thatcher, S.A.; Robbins, T.; Lingenfelter, B.; Amiott, E. FilmArray, an Automated Nested Multiplex PCR System for Multi-Pathogen Detection: Development and Application to Respiratory Tract Infection. PLoS ONE 2011, 6, e26047. [Google Scholar] [CrossRef]
- Kollef, M.H.; Burnham, C.-A.D. Ventilator-Associated Pneumonia: The Role of Emerging Diagnostic Technologies; Thieme Medical Publishers: New York, NY, USA, 2017; Volume 38, pp. 253–263. [Google Scholar]
- Andersson, M.E.; Olofsson, S.; Lindh, M. Comparison of the FilmArray Assay and In-House Real-Time PCR for Detection of Respiratory Infection. Scand. J. Infect. Dis. 2014, 46, 897–901. [Google Scholar] [CrossRef]
- Crotty, M.P.; Meyers, S.; Hampton, N.; Bledsoe, S.; Ritchie, D.J.; Buller, R.S.; Storch, G.A.; Kollef, M.H.; Micek, S.T. Impact of Antibacterials on Subsequent Resistance and Clinical Outcomes in Adult Patients with Viral Pneumonia: An Opportunity for Stewardship. Crit. Care 2015, 19, 404. [Google Scholar] [CrossRef] [PubMed]
- Micek, S.T.; Chew, B.; Hampton, N.; Kollef, M.H. A Case-Control Study Assessing the Impact of Nonventilated Hospital-Acquired Pneumonia on Patient Outcomes. Chest 2016, 150, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Maataoui, N.; Chemali, L.; Patrier, J.; Tran Dinh, A.; Le Fèvre, L.; Lortat-Jacob, B.; Marzouk, M.; d’Humières, C.; Rondinaud, E.; Ruppé, E. Impact of Rapid Multiplex PCR on Management of Antibiotic Therapy in COVID-19-Positive Patients Hospitalized in Intensive Care Unit. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2227–2234. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Ruan, S.-Y.; Pan, S.-C.; Lee, T.-F.; Chien, J.-Y.; Hsueh, P.-R. Performance of a Multiplex PCR Pneumonia Panel for the Identification of Respiratory Pathogens and the Main Determinants of Resistance from the Lower Respiratory Tract Specimens of Adult Patients in Intensive Care Units. J. Microbiol. Immunol. Infect. 2019, 52, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Blaschke, A.J.; Heyrend, C.; Byington, C.L.; Fisher, M.A.; Barker, E.; Garrone, N.F.; Thatcher, S.A.; Pavia, A.T.; Barney, T.; Alger, G.D. Rapid Identification of Pathogens from Positive Blood Cultures by Multiplex Polymerase Chain Reaction Using the FilmArray System. Diagn. Microbiol. Infect. Dis. 2012, 74, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Altun, O.; Almuhayawi, M.; Ullberg, M.; Özenci, V. Clinical Evaluation of the FilmArray Blood Culture Identification Panel in Identification of Bacteria and Yeasts from Positive Blood Culture Bottles. J. Clin. Microbiol. 2013, 51, 4130–4136. [Google Scholar] [CrossRef]
- Zheng, X.; Polanco, W.; Carter, D.; Shulman, S. Rapid Identification of Pathogens from Pediatric Blood Cultures by Use of the FilmArray Blood Culture Identification Panel. J. Clin. Microbiol. 2014, 52, 4368–4371. [Google Scholar] [CrossRef]
- Ray, S.T.; Drew, R.J.; Hardiman, F.; Pizer, B.; Riordan, A. Rapid Identification of Microorganisms by FilmArray Blood Culture Identification Panel Improves Clinical Management in Children. Pediatr. Infect. Dis. J. 2016, 35, e134–e138. [Google Scholar] [CrossRef]
- Pulido, M.; Moreno-Martínez, P.; González-Galán, V.; Cuenca, F.F.; Pascual, Á.; Garnacho-Montero, J.; Antonelli, M.; Dimopoulos, G.; Lepe, J.; McConnell, M. Application of BioFire FilmArray Blood Culture Identification Panel for Rapid Identification of the Causative Agents of Ventilator-Associated Pneumonia. Clin. Microbiol. Infect. 2018, 24, 1213-e1. [Google Scholar] [CrossRef]
- Kyriazopoulou, E.; Karageorgos, A.; Liaskou-Antoniou, L.; Koufargyris, P.; Safarika, A.; Damoraki, G.; Lekakis, V.; Saridaki, M.; Adamis, G.; Giamarellos-Bourboulis, E.J. BioFire® FilmArray® Pneumonia Panel for Severe Lower Respiratory Tract Infections: Subgroup Analysis of a Randomized Clinical Trial. Infect. Dis. Ther. 2021, 10, 1437–1449. [Google Scholar] [CrossRef]
- Chen, J.H.; Lam, H.-Y.; Yip, C.C.; Wong, S.C.; Chan, J.F.; Ma, E.S.; Cheng, V.C.; Tang, B.S.; Yuen, K.-Y. Clinical Evaluation of the New High-Throughput Luminex NxTAG Respiratory Pathogen Panel Assay for Multiplex Respiratory Pathogen Detection. J. Clin. Microbiol. 2016, 54, 1820–1825. [Google Scholar] [CrossRef]
- Oboho, I.K.; Tomczyk, S.M.; Al-Asmari, A.M.; Banjar, A.A.; Al-Mugti, H.; Aloraini, M.S.; Alkhaldi, K.Z.; Almohammadi, E.L.; Alraddadi, B.M.; Gerber, S.I. 2014 MERS-CoV Outbreak in Jeddah—A Link to Health Care Facilities. N. Engl. J. Med. 2015, 372, 846–854. [Google Scholar] [CrossRef]
- Endimiani, A.; Hujer, K.M.; Hujer, A.M.; Kurz, S.; Jacobs, M.R.; Perlin, D.S.; Bonomo, R.A. Are We Ready for Novel Detection Methods to Treat Respiratory Pathogens in Hospital-Acquired Pneumonia? Clin. Infect. Dis. 2011, 52, S373–S383. [Google Scholar] [CrossRef]
- Rossney, A.S.; Herra, C.M.; Brennan, G.I.; Morgan, P.M.; O’Connell, B. Evaluation of the Xpert Methicillin-Resistant Staphylococcus Aureus (MRSA) Assay Using the GeneXpert Real-Time PCR Platform for Rapid Detection of MRSA from Screening Specimens. J. Clin. Microbiol. 2008, 46, 3285–3290. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.J.; Wang, T.-H. Magnetic Droplet Manipulation Platforms for Nucleic Acid Detection at the Point of Care. Ann. Biomed. Eng. 2014, 42, 2289–2302. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Shetty, A.M.; Solomon, M.J.; Larson, R.G. Fundamentals of Magnet-Actuated Droplet Manipulation on an Open Hydrophobic Surface. Lab Chip 2009, 9, 1567–1575. [Google Scholar] [CrossRef]
- Wassenberg, M.; Kluytmans, J.A.; Bosboom, R.; Buiting, A.; van Elzakker, E.; Melchers, W.; Thijsen, S.; Troelstra, A.; Vandenbroucke-Grauls, C.; Visser, C. Rapid Diagnostic Testing of Methicillin-Resistant Staphylococcus Aureus Carriage at Different Anatomical Sites: Costs and Benefits of Less Extensive Screening Regimens. Clin. Microbiol. Infect. 2011, 17, 1704–1710. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, C.; Hirsch, H.H. Comparing Luminex NxTAG-Respiratory Pathogen Panel and RespiFinder-22 for Multiplex Detection of Respiratory Pathogens. J. Med. Virol. 2016, 88, 1319–1324. [Google Scholar] [CrossRef]
- Tang, Y.-W.; Gonsalves, S.; Sun, J.Y.; Stiles, J.; Gilhuley, K.A.; Mikhlina, A.; Dunbar, S.A.; Babady, N.E.; Zhang, H. Clinical Evaluation of the Luminex NxTAG Respiratory Pathogen Panel. J. Clin. Microbiol. 2016, 54, 1912–1914. [Google Scholar] [CrossRef]
- Popowitch, E.B.; Kaplan, S.; Wu, Z.; Tang, Y.-W.; Miller, M.B. Comparative Performance of the Luminex NxTAG Respiratory Pathogen Panel, GenMark ESensor Respiratory Viral Panel, and BioFire FilmArray Respiratory Panel. Microbiol. Spectr. 2022, 10, e01248-22. [Google Scholar] [CrossRef]
- Cercenado, E.; Marín, M.; Burillo, A.; Martín-Rabadán, P.; Rivera, M.; Bouza, E. Rapid Detection of Staphylococcus Aureus in Lower Respiratory Tract Secretions from Patients with Suspected Ventilator-Associated Pneumonia: Evaluation of the Cepheid Xpert MRSA/SA SSTI Assay. J. Clin. Microbiol. 2012, 50, 4095–4097. [Google Scholar] [CrossRef]
- Lung, M.; Codina, G. Molecular Diagnosis in HAP/VAP. Curr. Opin. Crit. Care 2012, 18, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-M.; Lv, S.; Zhang, W.; Cui, Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. Sensors 2022, 22, 1620. [Google Scholar] [CrossRef] [PubMed]
- Galhano, B.S.; Ferrari, R.G.; Panzenhagen, P.; de Jesus, A.C.S.; Conte-Junior, C.A. Antimicrobial Resistance Gene Detection Methods for Bacteria in Animal-Based Foods: A Brief Review of Highlights and Advantages. Microorganisms 2021, 9, 923. [Google Scholar] [CrossRef]
- Grenni, P. Antimicrobial Resistance in Rivers: A Review of the Genes Detected and New Challenges. Environ. Toxicol. Chem. 2022, 41, 687–714. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.N.; Fowler, R.; Balada-Llasat, J.M.; Carroll, A.; Stone, H.; Akerele, O.; Buchan, B.; Windham, S.; Hopp, A.; Ronen, S. Multicenter Evaluation of the BioFire FilmArray Pneumonia/Pneumonia plus Panel for Detection and Quantification of Agents of Lower Respiratory Tract Infection. J. Clin. Microbiol. 2020, 58, e00128-20. [Google Scholar] [CrossRef] [PubMed]
- Anjum, M.F.; Zankari, E.; Hasman, H. Molecular Methods for Detection of Antimicrobial Resistance. Antimicrob. Resist. Bact. Livest. Companion Anim. 2018, volume 5, 33–50. [Google Scholar]
- Gil-Gil, T.; Ochoa-Sánchez, L.E.; Baquero, F.; Martínez, J.L. Antibiotic Resistance: Time of Synthesis in a Post-Genomic Age. Comput. Struct. Biotechnol. J. 2021, 19, 3110–3124. [Google Scholar] [CrossRef]
- Ozongwu, C.; Personne, Y.; Platt, G.; Jeanes, C.; Aydin, S.; Kozato, N.; Gant, V.; O’Grady, J.; Enne, V. The Unyvero P55 ‘Sample-in, Answer-out’Pneumonia Assay: A Performance Evaluation. Biomol. Detect. Quantif. 2017, 13, 1–6. [Google Scholar] [CrossRef]
- Cepheid International. The New GeneXpert®System. Available online: https://www.cepheid.com/Package%20Insert%20Files/Xpert-Carba-R-Rx-Only-US-IVD-ENGLISH-Package-Insert-301-2438-Rev-G.pdf (accessed on 23 April 2023).
- Cortegiani, A.; Russotto, V.; Graziano, G.; Geraci, D.; Saporito, L.; Cocorullo, G.; Raineri, S.M.; Mammina, C.; Giarratano, A. Use of Cepheid Xpert Carba-R® for Rapid Detection of Carbapenemase-Producing Bacteria in Abdominal Septic Patients Admitted to Intensive Care Unit. PLoS ONE 2016, 11, e0160643. [Google Scholar] [CrossRef] [PubMed]
- Shengchen, D.; Gu, X.; Fan, G.; Sun, R.; Wang, Y.; Yu, D.; Li, H.; Zhou, F.; Xiong, Z.; Lu, B. Evaluation of a Molecular Point-of-Care Testing for Viral and Atypical Pathogens on Intravenous Antibiotic Duration in Hospitalized Adults with Lower Respiratory Tract Infection: A Randomized Clinical Trial. Clin. Microbiol. Infect. 2019, 25, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.; Koo, S.H.; Jiang, B.; Lim, P.Q.; Tan, T.Y. Comparison of the Biofire FilmArray Respiratory Panel, Seegene AnyplexII RV16, and Argene for the Detection of Respiratory Viruses. J. Clin. Virol. 2018, 106, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Gadsby, N.J.; McHugh, M.P.; Forbes, C.; MacKenzie, L.; Hamilton, S.K.; Griffith, D.M.; Templeton, K.E. Comparison of Unyvero P55 Pneumonia Cartridge, in-House PCR and Culture for the Identification of Respiratory Pathogens and Antibiotic Resistance in Bronchoalveolar Lavage Fluids in the Critical Care Setting. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1171–1178. [Google Scholar] [CrossRef]
- Chu, S.V.; Vu, S.T.; Nguyen, H.M.; Le, N.T.; Truong, P.T.; Vu, V.T.; Phung, T.T.; Nguyen, A.T. Fast and Sensitive Real-Time PCR Detection of Major Antiviral-Drug Resistance Mutations in Chronic Hepatitis B Patients by Use of a Predesigned Panel of Locked-Nucleic-Acid TaqMan Probes. J. Clin. Microbiol. 2021, 59, e00936-21. [Google Scholar] [CrossRef]
- Laurence, C.O.; Gialamas, A.; Bubner, T.; Yelland, L.; Willson, K.; Ryan, P.; Beilby, J. Point of Care Testing in General Practice Trial Management Group Patient Satisfaction with Point-of-Care Testing in General Practice. Br. J. Gen. Pract. 2010, 60, e98–e104. [Google Scholar] [CrossRef]
- Rajsic, S.; Breitkopf, R.; Bachler, M.; Treml, B. Diagnostic Modalities in Critical Care: Point-of-Care Approach. Diagnostics 2021, 11, 2202. [Google Scholar] [CrossRef]
- Hinds, L.E.; Brown, C.L.; Clark, S.J. Point of Care Estimation of Haemoglobin in Neonates. Arch. Dis. Child.-Fetal Neonatal Ed. 2007, 92, F378–F380. [Google Scholar] [CrossRef]
- Bubner, T.K.; Laurence, C.O.; Gialamas, A.; Yelland, L.N.; Ryan, P.; Willson, K.J.; Tideman, P.; Worley, P.; Beilby, J.J. Effectiveness of Point-of-care Testing for Therapeutic Control of Chronic Conditions: Results from the PoCT in General Practice Trial. Med. J. Aust. 2009, 190, 624–626. [Google Scholar] [CrossRef]
- Nikolaou, P.; Sciuto, E.L.; Zanut, A.; Petralia, S.; Valenti, G.; Paolucci, F.; Prodi, L.; Conoci, S. Ultrasensitive PCR-Free Detection of Whole Virus Genome by Electrochemiluminescence. Biosens. Bioelectron. 2022, 209, 114165. [Google Scholar] [CrossRef]
- Spencer, D.H.; Sellenriek, P.; Burnham, C.-A.D. Validation and Implementation of the GeneXpert MRSA/SA Blood Culture Assay in a Pediatric Setting. Am. J. Clin. Pathol. 2011, 136, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Stamper, P.D.; Cai, M.; Howard, T.; Speser, S.; Carroll, K.C. Clinical Validation of the Molecular BD GeneOhm StaphSR Assay for Direct Detection of Staphylococcus Aureus and Methicillin-Resistant Staphylococcus Aureus in Positive Blood Cultures. J. Clin. Microbiol. 2007, 45, 2191–2196. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.-H.; Huang, Y.-C.; Lin, T.-Y. Evaluation of the BD GeneOhm StaphSR Assay for Detection of Staphylococcus Aureus in Patients in Intensive Care Units. J. Microbiol. Immunol. Infect. 2011, 44, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Senn, L.; Basset, P.; Nahimana, I.; Zanetti, G.; Blanc, D. Which Anatomical Sites Should Be Sampled for Screening of Methicillin-resistant Staphylococcus Aureus Carriage by Culture or by Rapid PCR Test? Clin. Microbiol. Infect. 2012, 18, E31–E33. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.; Shorman, M. Evaluation of the BD GeneOhm MRSA and VanR Assays as a Rapid Screening Tool for Detection of Methicillin-Resistant Staphylococcus Aureus and Vancomycin-Resistant Enterococci in a Tertiary Hospital in Saudi Arabia. Int. J. Microbiol. 2011, 2011, 861514. [Google Scholar] [CrossRef]
PROS | CONS |
---|---|
High sensitivity | High costs when compared to traditional methods |
High specificity—can distinguish a particular sequence from a complex mixture of DNA molecules | Some pathogens are not included in the multiplex panel |
Extremely fast when compared to traditional methods | Can not assess susceptibility to all antibiotics—antibiogram remains gold standard |
Minimal risk of cross-contamination | Non-viable organism detection complicates diagnosis between current and prior infection |
Easy to do | |
Can use blood as fluid sample, higher sensitivity than hemoculture | |
Simultaneous identification of multiple microorganisms and resistance genes | |
Antimicrobial therapy does not influence results | |
Lower risk of multidrug-resistant pathogen emergence | |
Fewer needlessly administered drugs |
Platforms | Pathogens | Sensibility | Specificity | Time |
---|---|---|---|---|
GeneXpert [55,76] | MRSA, MSSA, Influenza A/B, RSV, TB, and genes associated with antibiotic resistance (carbapenemases) | 75–99% | 72–100% | 1 h |
Curetis Unyvero system [30,55,76,77,94] | 20 types of bacterial and fungal pathogens and 19 genes associated with antibiotic resistance | 81% | 99% | 4 h |
FilmArray Respiratory Panel [21,55,76,77,111,112] | 22 types of pathogens: 18 types of viral pathogens and 4 types of bacterial pathogens | 81–100% | 98–100% | 45 min |
FilmArray Pneumonia Panel [21,76,100] | 33 types of pathogens: 18 types of bacterial pathogens, 8 types of viral pathogens and 7 antimicrobial resistance genes | 96.2% | 97.2–98.3% | 1 h |
BD GeneOhm MRSA [113] | MRSA | 85.2–97.2% | 92–96.5% | 1 h |
VAPChip [4,88] | 13 types of VAP-causing pathogens and 24 genes associated with antibiotic resistance | 98.7% | 97.7% | 5 h |
Luminex NxTAG Respiratory Pathogen Panel (NxTAG-RPP, Austin, TX) [111,114,115,116]. | 21 types of viral pathogens | 80–100% | 98.8–100% | 1 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bălan, A.-M.; Bodolea, C.; Trancă, S.D.; Hagău, N. Trends in Molecular Diagnosis of Nosocomial Pneumonia Classic PCR vs. Point-of-Care PCR: A Narrative Review. Healthcare 2023, 11, 1345. https://doi.org/10.3390/healthcare11091345
Bălan A-M, Bodolea C, Trancă SD, Hagău N. Trends in Molecular Diagnosis of Nosocomial Pneumonia Classic PCR vs. Point-of-Care PCR: A Narrative Review. Healthcare. 2023; 11(9):1345. https://doi.org/10.3390/healthcare11091345
Chicago/Turabian StyleBălan, Andrei-Mihai, Constantin Bodolea, Sebastian Daniel Trancă, and Natalia Hagău. 2023. "Trends in Molecular Diagnosis of Nosocomial Pneumonia Classic PCR vs. Point-of-Care PCR: A Narrative Review" Healthcare 11, no. 9: 1345. https://doi.org/10.3390/healthcare11091345
APA StyleBălan, A. -M., Bodolea, C., Trancă, S. D., & Hagău, N. (2023). Trends in Molecular Diagnosis of Nosocomial Pneumonia Classic PCR vs. Point-of-Care PCR: A Narrative Review. Healthcare, 11(9), 1345. https://doi.org/10.3390/healthcare11091345