Longitudinal Analysis and Latent Growth Modeling of the Modified Hip Dysfunction and Osteoarthritis Outcome Score for Joint Replacement (HOOS-JR)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Participants
2.2. Hip Dysfunction and Osteoarthritis Outcome Score for Joint Replacement
2.3. Data Analysis
2.3.1. Data Cleaning
2.3.2. Confirmatory Factor Analysis
2.3.3. Longitudinal Invariance Testing
2.3.4. Longitudinal Invariance Testing
3. Results
3.1. Confirmatory Factor Analysis
3.2. Longitudinal Invariance Testing of the Alternate HOOS-JR
3.3. Longitudinal Invariance Testing of the Alternate HOOS-JR
4. Discussion
4.1. Confirmatory Factor Analysis
4.2. Longitudinal Invariance Testing
4.3. Latent Growth Curve Model
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ethgen, O.; Bruyère, O.; Richy, F.; Dardennes, C.; Reginster, J.-Y. Health-related quality of life in total hip and total knee arthroplasty. A qualitative and systematic review of the literature. J. Bone Joint Surg. 2004, 86, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Koenig, L.; Zhang, Q.; Austin, M.S.; Demiralp, B.; Fehring, T.K.; Feng, C.; Mather, R.C.; Nguyen, J.T.; Saavoss, A.; Springer, B.D.; et al. Estimating the societal benefits of THA after accounting for work status and productivity: A markov model approach. Clin. Orthop. Relat. Res. 2016, 474, 2645–2654. [Google Scholar] [CrossRef] [PubMed]
- Gould, D.; Thuraisingam, S.; Shadbolt, C.; Knight, J.; Young, J.; Schilling, C.; Choong, P.F.; Dowsey, M.M. Cohort profile: The St Vincent’s Melbourne Arthroplasty Outcomes (SMART) Registry, a pragmatic prospective database defining outcomes in total hip and knee replacement patients. BMJ Open 2021, 11, e040408. [Google Scholar] [CrossRef]
- Trudelle-Jackson, E.; Emerson, R.; Smith, S. Outcomes of total hip arthroplasty: A study of patients one year postsurgery. J. Orthop. Sports Phys. Ther. 2002, 32, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, I.N.; Bohensky, M.A.; Zomer, E.; Tacey, M.; Gorelik, A.; Brand, C.A.; de Steiger, R. The projected burden of primary total knee and hip replacement for osteoarthritis in Australia to the year 2030. BMC Musculoskelet. Disord. 2019, 20, 90. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of Primary and Revision Hip and Knee Arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. 2007, 89, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Crawford, R.W.; Murray, D.W. Total hip replacement: Indications for surgery and risk factors for failure. Ann. Rheum. Dis. 1997, 56, 455–457. [Google Scholar] [CrossRef] [PubMed]
- DeShazo, J.P.; Hoffman, M.A. A comparison of a multistate inpatient EHR database to the HCUP Nationwide Inpatient Sample. BMC Health Serv. Res. 2015, 15, 384. [Google Scholar] [CrossRef]
- Lopez, C.D.; River Perla, K.M.; Njoroge, M.W.; Yusuf, C.T.; Yang, R. Risk assessments in orthognathic surgery: A national inpatient sample (NIS) and nationwide ambulatory surgery sample (NASS) analysis. FACE 2023, 4, 44–54. [Google Scholar] [CrossRef]
- Hash-Campbell, D. Predicting Functional Outcomes Post Total Hip Arthroplasty in Women Under 50. Ph.D. Thesis, Weill Medical College of Cornell University, New York, NY, USA, 2020. [Google Scholar]
- Zhang, Y.; Jordan, J.M. Epidemiology of osteoarthritis. Clin. Geriatr. Med. 2010, 26, 355–369. [Google Scholar] [CrossRef]
- Sinusas, K. Osteoarthritis: Diagnosis and treatment. Am. Fam. Physician 2012, 85, 49–56. [Google Scholar]
- Livermore-Brasher, S. Guidelines for Useful Integration of Patient-rated Outcome Measures into Clinical Practice. Clin. Pract. Athl. Train. 2018, 1, 14–30. [Google Scholar] [CrossRef]
- Bachmeier, C.J.; March, L.M.; Cross, M.J.; Lapsley, H.M.; Tribe, K.L.; Courtenay, B.G.; Brooks, P.M. Arthritis Cost and Outcome Project Group A comparison of outcomes in osteoarthritis patients undergoing total hip and knee replacement surgery. Osteoarthr. Cartil. 2001, 9, 137–146. [Google Scholar] [CrossRef]
- Dawson, J.; Fitzpatrick, R.; Murray, D.; Carr, A. Comparison of measures to assess outcomes in total hip replacement surgery. Qual. Health Care 1996, 5, 81–88. [Google Scholar] [CrossRef]
- Bulstrode, C.J.; Murray, D.W.; Carr, A.J.; Pynsent, P.B.; Carter, S.R. Designer hips. BMJ 1993, 306, 732–733. [Google Scholar] [CrossRef]
- Bellamy, N.; Buchanan, W.W.; Goldsmith, C.H.; Campbell, J.; Stitt, L.W. Validation study of WOMAC: A health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J. Rheumatol. 1988, 15, 1833–1840. [Google Scholar]
- Kalairajah, Y.; Azurza, K.; Hulme, C.; Molloy, S.; Drabu, K.J. Health outcome measures in the evaluation of total hip arthroplasties—A comparison between the Harris hip score and the Oxford hip score. J. Arthroplast. 2005, 20, 1037–1041. [Google Scholar] [CrossRef]
- Lyman, S.; Lee, Y.-Y.; McLawhorn, A.S.; Islam, W.; MacLean, C.H. What are the minimal and substantial improvements in the HOOS and KOOS and JR versions after total joint replacement? Clin. Orthop. Relat. Res. 2018, 476, 2432–2441. [Google Scholar] [CrossRef]
- Matharu, G.S.; McBryde, C.W.; Robb, C.A.; Pynsent, P.B. An analysis of Oxford hip and knee scores following primary hip and knee replacement performed at a specialist centre. Bone Joint J. 2014, 96, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Nilsdotter, A.; Bremander, A. Measures of hip function and symptoms: Harris Hip Score (HHS), Hip Disability and Osteoarthritis Outcome Score (HOOS), Oxford Hip Score (OHS), Lequesne Index of Severity for Osteoarthritis of the Hip (LISOH), and American Academy of Orthopedic Surgeons (AAOS) Hip and Knee Questionnaire. Arthritis Care Res. 2011, 63 (Suppl. S11), S200–S207. [Google Scholar] [CrossRef] [PubMed]
- Nilsdotter, A.K.; Lohmander, L.S.; Klässbo, M.; Roos, E.M. Hip disability and osteoarthritis outcome score (HOOS)—Validity and responsiveness in total hip replacement. BMC Musculoskelet. Disord. 2003, 4, 10. [Google Scholar] [CrossRef]
- Ostendorf, M.; van Stel, H.F.; Buskens, E.; Schrijvers, A.J.P.; Marting, L.N.; Verbout, A.J.; Dhert, W.J.A. Patient-reported outcome in total hip replacement. A comparison of five instruments of health status. J. Bone Joint Surg. 2004, 86, 801–808. [Google Scholar] [CrossRef]
- Rahman, W.A.; Greidanus, N.V.; Siegmeth, A.; Masri, B.A.; Duncan, C.P.; Garbuz, D.S. Patients report improvement in quality of life and satisfaction after hip resurfacing arthroplasty. Clin. Orthop. Relat. Res. 2013, 471, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Lyman, S.; Lee, Y.-Y.; Franklin, P.D.; Li, W.; Mayman, D.J.; Padgett, D.E. Validation of the HOOS, JR: A Short-form Hip Replacement Survey. Clin. Orthop. Relat. Res. 2016, 474, 1472–1482. [Google Scholar] [CrossRef]
- Gandek, B.; Roos, E.M.; Franklin, P.D.; Ware, J.E. A 12-item short form of the Hip disability and Osteoarthritis Outcome Score (HOOS-12): Tests of reliability, validity and responsiveness. Osteoarthr. Cartil. 2019, 27, 754–761. [Google Scholar] [CrossRef]
- Leech, N.L.; Barrett, K.C.; Morgan, G.A. IBM SPSS for Intermediate Statistics; Routledge: London, UK, 2014; ISBN 9781136334948. [Google Scholar]
- Taber, K.S. The use of cronbach’s alpha when developing and reporting research instruments in science education. Res. Sci. Educ. 2017, 48, 1–24. [Google Scholar] [CrossRef]
- Burton, L.J.; Mazerolle, S.M. Survey instrument validity part I: Principles of survey instrument development and validation in athletic training education research. Athl. Train. Educ. J. 2011, 6, 27–35. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Matsunaga, M. How to factor-analyze your data right: Do’s, don’ts, and how-to’s. Int. J. Psychol. Res. 2010, 3, 97–110. [Google Scholar] [CrossRef]
- Miley, E.N.; Casanova, M.P.; Cheatham, S.W.; Larkins, L.; Pickering, M.A.; Baker, R.T. Confirmatory Factor Analysis of the Hip Disability and Osteoarthritis Outcome Score (HOOS) and Associated Sub-scales. Int. J. Sports Phys. Ther. 2023, 18, 145–159. [Google Scholar] [CrossRef]
- Miley, E.N.; Pickering, M.A.; Cheatham, S.W.; Larkins, L.; Cady, A.C.; Baker, R.T. Psychometric analysis of the Hip Disability and Osteoarthritis Outcome Score Joint Replacement (HOOS-JR). Osteoarthr. Cartil. Open 2024, 6, 100435. [Google Scholar] [CrossRef] [PubMed]
- Bryant, F.B.; Yarnold, P.R. Principal-Components Analysis and Exploratory and Confirmatory Factor Analysis; American Psychological Association: Washington, DC, USA, 1995. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming; Routledge: London, UK, 2013; ISBN 9780203807644. [Google Scholar]
- Singer, J.D.; Willett, J.B. Applied Longitudinal Data Analysis; Oxford University Press: Oxford, UK, 2003; ISBN 9780195152968. [Google Scholar]
- Bolander, W.; Dugan, R.; Jones, E. Time, change, and longitudinally emergent conditions: Understanding and applying longitudinal growth modeling in sales research. J. Pers. Sell. Sales Manag. 2017, 37, 153–159. [Google Scholar] [CrossRef]
- Preacher, K.; Wichman, A.; MacCallum, R.; Briggs, N. Latent Growth Curve Modeling; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2008; ISBN 9781412939553. [Google Scholar]
- Hesseling, B.; Mathijssen, N.M.C.; van Steenbergen, L.N.; Melles, M.; Vehmeijer, S.B.W.; Porsius, J.T. Fast Starters, Slow Starters, and Late Dippers: Trajectories of Patient-Reported Outcomes After Total Hip Arthroplasty: Results from a Dutch Nationwide Database. J. Bone Joint Surg. 2019, 101, 2175–2186. [Google Scholar] [CrossRef]
- Porsius, J.T.; Mathijssen, N.M.C.; Klapwijk-Van Heijningen, L.C.M.; Van Egmond, J.C.; Melles, M.; Vehmeijer, S.B.W. Early recovery trajectories after fast-track primary total hip arthroplasty: The role of patient characteristics. Acta Orthop. 2018, 89, 597–602. [Google Scholar] [CrossRef]
- Hospital for Special Surgery Hip Disability and Osteoarthritis Outcome Score for Joint Replacement (HOOS, JR.) Scoring Instructions. Available online: https://www.hss.edu/files/HOOS-JR-Scoring-Instructions-2017.pdf (accessed on 5 March 2024).
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics; Allyn & Bacon: Needham Heights, MA, USA, 2001. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming; Psychology Press: London, UK, 2013; ISBN 9781410600219. [Google Scholar]
- Grimm, L.G.; Yarnold, P.R. (Eds.) Reading and Understanding Multivariate Statistics; American Psychological Association: Washington, DC, USA, 1995. [Google Scholar]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Putnick, D.L.; Bornstein, M.H. Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. Dev. Rev. 2016, 41, 71–90. [Google Scholar] [CrossRef]
- Mansell, G.; Hill, J.C.; Main, C.J.; Von Korff, M.; van der Windt, D. Mediators of treatment effect in the back in action trial: Using latent growth modeling to take change over time into account. Clin. J. Pain 2017, 33, 811–819. [Google Scholar] [CrossRef]
- Burant, C.J. Latent growth curve models: Tracking changes over time. Int. J. Aging Hum. Dev. 2016, 82, 336–350. [Google Scholar] [CrossRef]
- Taasoobshirazi, G.; Wang, S. The performance of the SRMR, RMSEA, CFI, and TLI: An examination of sample size, path size, and degrees of freedom. J. Appl. Quant. Methods 2016, 11, 31–39. [Google Scholar]
- Shi, D.; DiStefano, C.; Maydeu-Olivares, A.; Lee, T. Evaluating SEM Model Fit with Small Degrees of Freedom. Multivar. Behav. Res. 2022, 57, 179–207. [Google Scholar] [CrossRef]
- Golinelli, D.; Grassi, A.; Tedesco, D.; Sanmarchi, F.; Rosa, S.; Rucci, P.; Amabile, M.; Cosentino, M.; Bordini, B.; Fantini, M.P.; et al. Patient reported outcomes measures (PROMs) trajectories after elective hip arthroplasty: A latent class and growth mixture analysis. J. Patient Rep. Outcomes 2022, 6, 95. [Google Scholar] [CrossRef]
- Ng, C.Y.; Ballantyne, J.A.; Brenkel, I.J. Quality of life and functional outcome after primary total hip replacement. A five-year follow-up. J. Bone Joint Surg. 2007, 89, 868–873. [Google Scholar] [CrossRef]
- Tomarken, A.J.; Waller, N.G. Structural equation modeling: Strengths, limitations, and misconceptions. Annu. Rev. Clin. Psychol. 2005, 1, 31–65. [Google Scholar] [CrossRef]
- Raja, A.; Jenkins, A.; Reams, M.; Horst, P.K. Normative data of the hip disability and osteoarthritis outcome score, JR in a healthy united states population. J. Arthroplast. 2019, 34, 1122–1126. [Google Scholar] [CrossRef]
- Mannion, A.F.; Impellizzeri, F.M.; Naal, F.D.; Leunig, M. Women demonstrate more pain and worse function before THA but comparable results 12 months after surgery. Clin. Orthop. Relat. Res. 2015, 473, 3849–3857. [Google Scholar] [CrossRef]
Modified Five-Item HOOS-JR | χ2 | df | CFI | TLI | IFI | RMSEA | SRMR |
---|---|---|---|---|---|---|---|
Preoperative | 65.33 | 5 | 0.982 | 0.965 | 0.982 | 0.085 | 0.024 |
6 months postoperative | 59.84 | 5 | 0.982 | 0.964 | 0.982 | 0.081 | 0.025 |
1 year postoperative | 94.98 | 5 | 0.974 | 0.949 | 0.975 | 0.104 | 0.028 |
2 years postoperative | 138.08 | 5 | 0.964 | 0.929 | 0.965 | 0.126 | 0.035 |
3 years postoperative | 63.30 | 5 | 0.986 | 0.972 | 0.986 | 0.084 | 0.021 |
Modified Five-Item HOOS-JR | χ2 | df | χ2diff (dfdiff) | CFI | CFIdiff | TLI | RMSEA | SRMR |
---|---|---|---|---|---|---|---|---|
Preoperative | 65.33 | 5 | - | 0.982 | - | 0.965 | 0.085 | 0.024 |
6 months postoperative | 59.84 | 5 | - | 0.982 | - | 0.964 | 0.081 | 0.025 |
1 year postoperative | 94.98 | 5 | - | 0.974 | - | 0.949 | 0.104 | 0.028 |
2 years postoperative | 138.08 | 5 | - | 0.964 | - | 0.929 | 0.126 | 0.035 |
3 years postoperative | 63.30 | 5 | - | 0.986 | - | 0.972 | 0.084 | 0.021 |
Configural (equal form) | 804.79 | 216 | - | 0.975 | - | 0.965 | 0.040 | 0.028 |
Metric (equal loadings) | 950.73 | 232 | 145.94 (16) | 0.969 | 0.006 | 0.960 | 0.043 | 0.033 |
Equal factor variances * | 1091.45 | 236 | 286.66 (20) | 0.964 | 0.011 | 0.952 | 0.047 | 0.059 |
Scalar (equal indicator intercepts) | 1507.46 | 248 | 702.67 (32) | 0.946 | 0.012 | 0.935 | 0.055 | 0.033 |
Equal latent means * | 4128.12 | 252 | 3323.33 (36) | 0.835 | 0.140 | 0.804 | 0.096 | 0.232 |
Modified Five-Item HOOS-JR | χ2 | df | χ2diff (dfdiff) | CFI | CFIdiff | TLI | RMSEA | SRMR |
---|---|---|---|---|---|---|---|---|
Preoperative | 65.33 | 5 | - | 0.982 | - | 0.965 | 0.085 | 0.024 |
6 months postoperative | 59.84 | 5 | - | 0.982 | - | 0.964 | 0.081 | 0.025 |
1 year postoperative | 94.98 | 5 | - | 0.974 | - | 0.949 | 0.104 | 0.028 |
2 years postoperative | 138.08 | 5 | - | 0.964 | - | 0.929 | 0.126 | 0.035 |
3 years postoperative | 63.30 | 5 | - | 0.986 | - | 0.972 | 0.084 | 0.021 |
Configural (equal form) | 804.79 | 216 | - | 0.975 | - | 0.965 | 0.040 | 0.028 |
Metric (equal loadings) | 950.73 | 232 | 145.94 (16) | 0.969 | 0.006 | 0.960 | 0.043 | 0.033 |
Equal factor variances * | 1091.45 | 236 | 286.66 (20) | 0.964 | 0.011 | 0.952 | 0.047 | 0.059 |
Scalar (equal indicator intercepts) ** | 1073.83 | 244 | 269.04 (28) | 0.965 | 0.010 | 0.957 | 0.040 | 0.031 |
Equal latent means * | 3962.49 | 248 | 3157.70 (32) | 0.842 | 0.133 | 0.809 | 0.095 | 0.262 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miley, E.N.; Pickering, M.A.; Cheatham, S.W.; Larkins, L.W.; Cady, A.C.; Baker, R.T. Longitudinal Analysis and Latent Growth Modeling of the Modified Hip Dysfunction and Osteoarthritis Outcome Score for Joint Replacement (HOOS-JR). Healthcare 2024, 12, 1024. https://doi.org/10.3390/healthcare12101024
Miley EN, Pickering MA, Cheatham SW, Larkins LW, Cady AC, Baker RT. Longitudinal Analysis and Latent Growth Modeling of the Modified Hip Dysfunction and Osteoarthritis Outcome Score for Joint Replacement (HOOS-JR). Healthcare. 2024; 12(10):1024. https://doi.org/10.3390/healthcare12101024
Chicago/Turabian StyleMiley, Emilie N., Michael A. Pickering, Scott W. Cheatham, Lindsay W. Larkins, Adam C. Cady, and Russell T. Baker. 2024. "Longitudinal Analysis and Latent Growth Modeling of the Modified Hip Dysfunction and Osteoarthritis Outcome Score for Joint Replacement (HOOS-JR)" Healthcare 12, no. 10: 1024. https://doi.org/10.3390/healthcare12101024
APA StyleMiley, E. N., Pickering, M. A., Cheatham, S. W., Larkins, L. W., Cady, A. C., & Baker, R. T. (2024). Longitudinal Analysis and Latent Growth Modeling of the Modified Hip Dysfunction and Osteoarthritis Outcome Score for Joint Replacement (HOOS-JR). Healthcare, 12(10), 1024. https://doi.org/10.3390/healthcare12101024