The Scabbard of Excalibur: An Allegory on the Role of an Efficient and Effective Healthcare System under Universal Health Coverage during the Pandemic Response
Abstract
:1. Introduction
2. Methods
3. An Allegory: Excalibur and the Three-Headed Dragon
4. The Road to the Battle of Camlann
5. In Search of the Scabbard of Excalibur
Than seyde Merlion, “Whethir lyke ye bettir, the swerde othir the scawberde?”
“I lyke bettir the swerde,” seyde Arthure.
“Ye ar the more unwyse, for the scawberde ys worth ten of the swerde; for whyles ye have the scawberde uppon you ye shall lose no blood, be ye never so sore wounded. Therefore kepe well the scawberde allweyes with you.”Le Morte d’Arthur by Sir Thomas Malory in 1485 [35].
6. Universal Health Coverage and the Scabbard of Excalibur
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Novel Coronavirus (2019-nCoV) Situation Report–22. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200211-sitrep-22-ncov.pdf?sfvrsn=fb6d49b1_2 (accessed on 30 April 2024).
- The International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV). Statement on the Second Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV). Available online: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov) (accessed on 30 April 2024).
- The International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV). Statement on the Fifteenth Meeting of the IHR (2005) Emergency Committee on the COVID-19 Pandemic. Available online: https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic (accessed on 30 April 2024).
- Ioannidis, J.P.A. The end of the COVID-19 pandemic. Eur. J. Clin. Investig. 2022, 52, e13782. [Google Scholar] [CrossRef] [PubMed]
- Doshi, P. The elusive definition of pandemic influenza. Bull. World Health Organ. 2011, 89, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.; Doshi, P. The end of the pandemic will not be televised. BMJ 2021, 375, e068094. [Google Scholar] [CrossRef]
- COVID-19 Excess Mortality Collaborators. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–2021. Lancet 2022, 399, 1513–1536. [Google Scholar] [CrossRef]
- Msemburi, W.; Karlinsky, A.; Knutson, V.; Aleshin-Guendel, S.; Chatterji, S.; Wakefield, J. The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature 2023, 613, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Karlinsky, A.; Kobak, D. Tracking excess mortality across countries during the COVID-19 pandemic with the World Mortality Dataset. Elife 2021, 10, e69336. [Google Scholar] [CrossRef] [PubMed]
- Faramarzi, A.; Norouzi, S.; Dehdarirad, H.; Aghlmand, S.; Yusefzadeh, H.; Javan-Noughabi, J. The global economic burden of COVID-19 disease: A comprehensive systematic review and meta-analysis. Syst. Rev. 2024, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- McKibbin, W.; Fernando, R. The global economic impacts of the COVID-19 pandemic. Econ. Model. 2023, 129, 106551. [Google Scholar] [CrossRef]
- Meghan, B.; Batalova, J.; Davidoff-Gore, S.; Schmidt, T. COVID-19 and the State of Global Mobility in 2020; Migration Policy Institute: Washington, DC, USA; International Organization for Migration: Geneva, Switzerland, 2021. [Google Scholar]
- Mngomezulu, B.R. The politics of the coronavirus and its impact on international relations. Afr. J. Political Sci. Int. Relat. 2020, 14, 116–125. [Google Scholar]
- Fukuyama, F. The pandemic and political order. Foreign Aff. 2020, 99, 26–32. [Google Scholar]
- Patrick, S. When the system fails. Foreign Aff. 2020, 99, 40–51. [Google Scholar]
- Zheng, C.; Shao, W.; Chen, X.; Zhang, B.; Wang, G.; Zhang, W. Real-world effectiveness of COVID-19 vaccines: A literature review and meta-analysis. Int. J. Infect. Dis. 2022, 114, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Joyal-Desmarais, K.; Ribeiro, P.A.B.; Vieira, A.M.; Stojanovic, J.; Sanuade, C.; Yip, D.; Bacon, S.L. Long-term effectiveness of COVID-19 vaccines against infections, hospitalisations, and mortality in adults: Findings from a rapid living systematic evidence synthesis and meta-analysis up to December, 2022. Lancet Respir. Med. 2023, 11, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Moynihan, R.; Sanders, S.; Michaleff, Z.A.; Scott, A.M.; Clark, J.; To, E.J.; Jones, M.; Kitchener, E.; Fox, M.; Johansson, M.; et al. Impact of COVID-19 pandemic on utilisation of healthcare services: A systematic review. BMJ Open 2021, 11, e045343. [Google Scholar] [CrossRef] [PubMed]
- Sen-Crowe, B.; Sutherland, M.; McKenney, M.; Elkbuli, A. A Closer Look Into Global Hospital Beds Capacity and Resource Shortages During the COVID-19 Pandemic. J. Surg. Res. 2021, 260, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Office of Management and Budget, Executive Office of the President. Statement of Administration Policy. H.R. 382—A Bill to Terminate the Public Health Emergency Declared with Respect to COVID-19, H.J. Res. 7—A Joint Resolution Relating to a National Emergency Declared by the President on 13 March 2020 (30 January 2023). Available online: https://www.whitehouse.gov/wp-content/uploads/2023/01/SAP-H.R.-382-H.J.-Res.-7.pdf (accessed on 30 April 2024).
- Brown, T.M. The COVID-19 Pandemic in Historical Perspective: An AJPH Dossier. Am. J. Public. Health 2021, 111, 402–404. [Google Scholar] [CrossRef] [PubMed]
- Bourdelais, P. The COVID-19 Pandemic in Historical Perspective. Hist. Soc. Res. Suppl. 2021, 111 (Suppl. S33), 302–315. [Google Scholar]
- Doran, Á.; Colvin, C.L.; McLaughlin, E. What can we learn from historical pandemics? A systematic review of the literature. Soc. Sci. Med. 2024, 342, 116534. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.L.; Kolis, J.; Parker, J.; Proctor, D.A.; Prybylski, D.; Wardle, C.; Abad, N.; Brookmeyer, K.A.; Voegeli, C.; Chiou, H. Social histories of public health misinformation and infodemics: Case studies of four pandemics. Lancet Infect. Dis. 2024. ahead of print. [Google Scholar]
- Sprengholz, P.; Henkel, L.; Böhm, R.; Betsch, C. Historical narratives about the COVID-19 pandemic are motivationally biased. Nature 2023, 623, 588–593. [Google Scholar] [CrossRef]
- Sprengholz, P.; Henkel, L.; Böhm, R.; Betsch, C. Learning from the past? How biased memories of the pandemic endanger preparation for future crises. Clin. Transl. Med. 2023, 13, e1510. [Google Scholar] [CrossRef] [PubMed]
- Wohlin, C.; Kalinowski, M.; Felizardo, K.R.; Mendes, E. Successful combination of database search and snowballing for identification of primary studies in systematic literature studies. Inf. Softw. Technol. 2022, 147, 106908. [Google Scholar] [CrossRef]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef]
- Shoukat, A.; Vilches, T.N.; Moghadas, S.M.; Sah, P.; Schneider, E.C.; Shaff, J.; Ternier, A.; Chokshi, D.A.; Galvani, A.P. Lives saved and hospitalizations averted by COVID-19 vaccination in New York City: A modeling study. Lancet Reg. Health Am. 2022, 5, 100085. [Google Scholar] [CrossRef]
- Kayano, T.; Ko, Y.; Otani, K.; Kobayashi, T.; Suzuki, M.; Nishiura, H. Evaluating the COVID-19 vaccination program in Japan, 2021 using the counterfactual reproduction number. Sci. Rep. 2023, 13, 17762. [Google Scholar] [CrossRef] [PubMed]
- Gavish, N.; Yaari, R.; Huppert, A.; Katriel, G. Population-level implications of the Israeli booster campaign to curtail COVID-19 resurgence. Sci. Transl. Med. 2022, 14, eabn9836. [Google Scholar] [CrossRef]
- World Health Organization. COVID-19 Epidemiological Update—15 March 2024 Edition 165. Available online: https://www.who.int/publications/m/item/covid-19-epidemiological-update-15-march-2024 (accessed on 30 April 2024).
- Feikin, D.R.; Higdon, M.M.; Abu-Raddad, L.J.; Andrews, N.; Araos, R.; Goldberg, Y.; Groome, M.J.; Huppert, A.; O’Brien, K.L.; Smith, P.G.; et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: Results of a systematic review and meta-regression. Lancet 2022, 399, 924–944. [Google Scholar] [CrossRef] [PubMed]
- Noda, H. A Macro-Level Association of Vaccination Rate with the Number of Confirmed COVID-19 Cases in the United States and Japan. Int. J. Env. Res. Public Health 2022, 19, 7435. [Google Scholar] [CrossRef]
- Malory, T. Le Morte Darthur: The Original Text Edited from the Winchester Manuscript and Caxton’s Morte Darthur; D.S. Brewer: Suffolk, VA, USA, 2017. [Google Scholar]
- Young, B.E.; Fong, S.W.; Chan, Y.H.; Mak, T.M.; Ang, L.W.; Anderson, D.E.; Lee, C.Y.; Amrun, S.N.; Lee, B.; Goh, Y.S.; et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: An observational cohort study. Lancet 2020, 396, 603–611. [Google Scholar] [CrossRef]
- Meggiolaro, A.; Schepisi, M.S.; Farina, S.; Castagna, C.; Mammone, A.; Siddu, A.; Stefanelli, P.; Boccia, S.; Rezza, G. Effectiveness of vaccination against SARS-CoV-2 Omicron variant infection, symptomatic disease, and hospitalization: A systematic review and meta-analysis. Expert. Rev. Vaccines 2022, 21, 1831–1841. [Google Scholar] [CrossRef]
- Angelini, M.; Teglia, F.; Astolfi, L.; Casolari, G.; Boffetta, P. Decrease of cancer diagnosis during COVID-19 pandemic: A systematic review and meta-analysis. Eur. J. Epidemiol. 2023, 38, 31–38. [Google Scholar] [CrossRef]
- Mogharab, V.; Ostovar, M.; Ruszkowski, J.; Hussain, S.Z.M.; Shrestha, R.; Yaqoob, U.; Aryanpoor, P.; Nikkhoo, A.M.; Heidari, P.; Jahromi, A.R.; et al. Global burden of the COVID-19 associated patient-related delay in emergency healthcare: A panel of systematic review and meta-analyses. Glob. Health 2022, 18, 58. [Google Scholar] [CrossRef]
- Gu, S.; Dai, Z.; Shen, H.; Bai, Y.; Zhang, X.; Liu, X.; Xu, G. Delayed Stroke Treatment during COVID-19 Pandemic in China. Cerebrovasc. Dis. 2021, 50, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Dyer, O. COVID-19: Delta infections threaten herd immunity vaccine strategy. BMJ 2021, 374, n1933. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of COVID-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Chen, L.; Shi, Y. Booster COVID-19 vaccination against the SARS-CoV-2 Omicron variant: A systematic review. Hum. Vaccin. Immunother. 2022, 18, 2062983. [Google Scholar] [CrossRef]
- Keyel, A.C.; Russell, A.; Plitnick, J.; Rowlands, J.V.; Lamson, D.M.; Rosenberg, E.; St George, K. SARS-CoV-2 Vaccine Breakthrough by Omicron and Delta Variants, New York, USA. Emerg. Infect. Dis. 2022, 28, 1990–1998. [Google Scholar] [CrossRef]
- Andeweg, S.P.; de Gier, B.; Eggink, D.; van den Ende, C.; van Maarseveen, N.; Ali, L.; Vlaemynck, B.; Schepers, R.; Hahné, S.J.M.; Reusken, C.B.E.M.; et al. Protection of COVID-19 vaccination and previous infection against Omicron BA.1, BA.2 and Delta SARS-CoV-2 infections. Nat. Commun. 2022, 13, 4738. [Google Scholar] [CrossRef] [PubMed]
- Powell, A.A.; Kirsebom, F.; Stowe, J.; Ramsay, M.E.; Lopez-Bernal, J.; Andrews, N.; Ladhani, S.N. Protection against symptomatic infection with delta (B.1.617.2) and omicron (B.1.1.529) BA.1 and BA.2 SARS-CoV-2 variants after previous infection and vaccination in adolescents in England, August, 2021-March, 2022: A national, observational, test-negative, case-control study. Lancet Infect. Dis. 2023, 23, 435–444. [Google Scholar]
- Bar-On, Y.M.; Goldberg, Y.; Mandel, M.; Bodenheimer, O.; Freedman, L.; Kalkstein, N.; Mizrahi, B.; Alroy-Preis, S.; Ash, N.; Milo, R.; et al. Protection of BNT162b2 Vaccine Booster against COVID-19 in Israel. N. Engl. J. Med. 2021, 385, 1393–1400. [Google Scholar] [CrossRef]
- Alballa, N.; Al-Turaiki, I. Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: A review. Inf. Med. Unlocked 2021, 24, 100564. [Google Scholar] [CrossRef]
- Ning, L.; Abagna, H.B.; Jiang, Q.; Liu, S.; Huang, J. Development and application of therapeutic antibodies against COVID-19. Int. J. Biol. Sci. 2021, 17, 1486–1496. [Google Scholar] [CrossRef] [PubMed]
- Şimşek-Yavuz, S.; Çelikyurt, F.I.K. An update of anti-viral treatment of COVID-19. Turk. J. Med. Sci. 2021, 51, 3372–3390. [Google Scholar] [CrossRef]
- Pitre, T.; Van Alstine, R.; Chick, G.; Leung, G.; Mikhail, D.; Cusano, E.; Khalid, F.; Zeraatkar, D. Antiviral drug treatment for nonsevere COVID-19: A systematic review and network meta-analysis. CMAJ 2022, 194, E969–E980. [Google Scholar] [CrossRef] [PubMed]
- Arbel, R.; Sagy, Y.W.; Hoshen, M.; Battat, E.; Lavie, G.; Sergienko, R.; Friger, M.; Waxman, J.G.; Dagan, N.; Balicer, R.; et al. Nirmatrelvir Use and Severe COVID-19 Outcomes during the Omicron Surge. N. Engl. J. Med. 2022, 387, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simón-Campos, A.; et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef]
- Abe, H.; Ushijima, Y.; Amano, M.; Sakurai, Y.; Yoshikawa, R.; Kinoshita, T.; Kurosaki, Y.; Yanagihara, K.; Izumikawa, K.; Morita, K.; et al. Unique Evolution of SARS-CoV-2 in the Second Large Cruise Ship Cluster in Japan. Microorganisms 2022, 10, 99. [Google Scholar] [CrossRef]
- Abe, H.; Ushijima, Y.; Bikangui, R.; Ondo, G.N.; Moure, A.; Yali-Assy-Oyamli, Y.; Yoshikawa, R.; Lell, B.; Adegnika, A.A.; Yasuda, J. Long-term validation of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of SARS-CoV-2 from March 2020 to October 2021 in Central Africa, Gabon. PLoS Negl. Trop. Dis. 2022, 16, e0010964. [Google Scholar] [CrossRef] [PubMed]
- World Health Assembly. Sustainable Health Financing, Universal Coverage and Social Health Insurance. In Resolutions, Decisions and Annexes, Proceedings of the Fifty-Eighth World Health Assembly, Geneva, Switzerland, 16–25 May 2005; World Health Organization: Geneva, Switzerland, 2005; WHA58/2005/REC/1; pp. 124–126. [Google Scholar]
- Sakamoto, H.; Ezoe, S.; Hara, K.; Hinoshita, E.; Sekitani, Y.; Abe, K.; Inada, H.; Kato, T.; Komada, K.; Miyakawa, M.; et al. The G7 presidency and universal health coverage, Japan’s contribution. Bull. World Health Organ. 2018, 96, 355–359. [Google Scholar] [CrossRef]
- Saengtabtim, K.; Tang, J.; Leelawat, N.; Egawa, S.; Suppasri, A.; Imamura, F. Universal health coverage mitigated COVID-19 health-related consequences in Asia Oceania. Int. J. Disaster Risk Reduct. 2023, 92, 103725. [Google Scholar] [CrossRef]
- Pigeolet, M.; Degu, S.; Faria, I.; Hey, M.T.; Jean-Pierre, T.; Lucerno-Prisno, D.E.; Jafarian, A.; Kanem, N.; Meara, J.G.; Gebremedhin, L.T.; et al. Universal health coverage: A commitment to essential surgical, obstetric, and anesthesia care, World Health Summit 2021 (PD 20). BMC Proc. 2023, 17 (Suppl. S6), 4. [Google Scholar] [CrossRef]
- Evans, D.B.; Hsu, J.; Boerma, T. Universal health coverage and universal access. Bull. World Health Organ. 2013, 91, 546–546A. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Universal Health Coverage. Available online: https://www.who.int/health-topics/universal-health-coverage (accessed on 30 April 2024).
- Tanahashi, T. Health service coverage and its evaluation. Bull. World Health Organ. 1978, 56, 295–303. [Google Scholar] [PubMed]
- Prime Minister. Act on the Prevention of Infectious Diseases and Medical Care for Patients with Infectious Diseases; National Printing Bureau: Tokyo, Japan, 1998; pp. 4–13. (In Japanese) [Google Scholar]
- Director of Tuberculosis and Infectious Disease Division. Regarding the provision of publicly funded medical care for overnight and home treatment for people with mild symptoms or the like of COVID-19. Notice 2020, 0430, 3. (In Japanese) [Google Scholar]
- GBD 2019 Universal Health Coverage Collaborators. Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1250–1284. [Google Scholar] [CrossRef]
- Kassenärztliche Bundesvereinigung. Powerful and Patient-Focused Outpatient Care in the COVID-19 Pandemics. Available online: https://www.kbv.de/media/sp/Ambulante_Versorgung_Corona_Pandemie_Zahlen_Fakten.pdf (accessed on 30 April 2024).
- Expert Meeting on Response to COVID-19. Medium- to Long-Term Challenges for the Next Infectious Disease Crisis Based on Past Efforts against the COVID-19. Available online: https://www.cas.go.jp/jp/seisaku/coronavirus_yushiki/pdf/corona_kadai.pdf (accessed on 30 April 2024).
- Bamgboye, E.L.; Omiye, J.A.; Afolaranmi, O.J.; Davids, M.R.; Tannor, E.K.; Wadee, S.; Niang, A.; Were, A.; Naicker, S. COVID-19 Pandemic: Is Africa Different? J. Natl. Med. Assoc. 2021, 113, 324–335. [Google Scholar] [CrossRef]
- Tulchinsky, T.H. Bismarck and the Long Road to Universal Health Coverage. In Case Studies in Public Health; Academic Press: Cambridge, MA, USA, 2018; pp. 131–179. [Google Scholar]
- Seki, T. (Ed.) Inauguration of Population Medicine; Gendai Journalism Publishing: Tokyo, Japan, 1970. (In Japanese) [Google Scholar]
Epidemiological Terminology and Concepts | Metaphors in This Essay |
---|---|
SARS-CoV-2 | Three-headed dragon |
Changes in variants | Spell of magic |
Effect of COVID-19 on deaths | Fire of death |
Effect of COVID-19 on illness | Fire of illness |
Effect of COVID-19 on SARS-CoV-2 infections | Fire of infection |
Vaccine | Excalibur |
The booster vaccination | The third slash |
Efficient and effective healthcare systems under universal health coverage | The scabbard of Excalibur |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noda, H. The Scabbard of Excalibur: An Allegory on the Role of an Efficient and Effective Healthcare System under Universal Health Coverage during the Pandemic Response. Healthcare 2024, 12, 979. https://doi.org/10.3390/healthcare12100979
Noda H. The Scabbard of Excalibur: An Allegory on the Role of an Efficient and Effective Healthcare System under Universal Health Coverage during the Pandemic Response. Healthcare. 2024; 12(10):979. https://doi.org/10.3390/healthcare12100979
Chicago/Turabian StyleNoda, Hiroyuki. 2024. "The Scabbard of Excalibur: An Allegory on the Role of an Efficient and Effective Healthcare System under Universal Health Coverage during the Pandemic Response" Healthcare 12, no. 10: 979. https://doi.org/10.3390/healthcare12100979