Comparison of the Short-Term Effect between Iontophoresis and Radial Extracorporeal Shockwave Therapy in the Treatment of Plantar Fasciitis: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Intervention—Procedure
2.3. Outcome Instruments and Variables
2.4. Sample Size and Statistical Analyses
3. Results
Sociodemographic and Clinical Characteristics of the Sample
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Díaz-López, A.M.; Guzmán-Carrasco, P. Effectiveness of different physical therapy in conservative treatment of plantar fasciitis: Systematic review. Rev. Esp. Salud Pública 2014, 88, 157–178. [Google Scholar] [CrossRef]
- Kwong, P.K.; Kay, D.; Voner, R.T.; White, M.W. Plantar fasciitis. Mechanics and pathomechanics of treatment. Clin. Sports Med. 1988, 7, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.C.; Chen, Y.C.; Lee, T.M.; Chen, W.S. Plantar fasciitis: An updated review. J. Med. Ultrasound. 2023, 31, 268–274. [Google Scholar] [CrossRef]
- Gross, M.T.; Byers, J.M.; Krafft, J.L.; Lackey, E.J.; Melton, K.M. The impact of custom semirigid foot orthotics on pain and disability for individuals with plantar fasciitis. J. Orthop. Sports Phys. Ther. 2002, 32, 149–157. [Google Scholar] [CrossRef]
- Probe, R.A.; Baca, M.; Adams, R.; Preece, C. Night splint treatment for plantar fasciitis. A prospective randomized study. Clin. Orthop. 1999, 368, 190–195. [Google Scholar] [CrossRef]
- DiGiovanni, B.F.; Nawoczenski, D.A.; Lintal, M.E.; Moore, E.A.; Murray, J.C.; Wilding, G.E.; Baumhauer, J.F. Tissue-specific plantar fascia-stretching exercise enhances outcomes in patients with chronic heel pain. A prospective, randomized study. J. Bone Joint Surg. Am. 2003, 85, 1270–1277. [Google Scholar] [CrossRef]
- Barry, L.D.; Barry, A.N.; Chen, Y. A retrospective study of standing gastrocnemius- soleus stretching versus night splinting in the treatment of plantar fasciitis. J. Foot Ankle Surg. 2002, 41, 221–227. [Google Scholar] [CrossRef]
- Scranton, P.E.; Pedegana, L.R.; Whitesel, J.P. Gait analysis. Alterations in support phase forces using supportive devices. Am. J. Sports Med. 1982, 10, 6–11. [Google Scholar] [CrossRef]
- Boddeker, R.; Schafer, H.; Haake, M. Extracorporeal shockwave therapy (ESWT) in the treatment of plantar fasciitis: A biometrical review. Clin. Rheumatol. 2001, 20, 324–330. [Google Scholar] [CrossRef]
- Buchbinder, R.; Ptasznik, R.; Gordon, J.; Buchanan, J.; Prabaharan, V.; Forbes, A. Ultrasound-guided extracorporeal shock wave therapy for plantar fasciitis: A randomized controlled trial. J. Am. Podiatr. Med. Assoc. 2002, 288, 1364–1372. [Google Scholar] [CrossRef]
- Aqil, A.; Siddiqui, M.R.; Solan, M.; Redfern, D.J.; Gulati, V.; Cobb, J.P. Extracorporeal shock wave therapy is effective in treating chronic plantar fasciitis: A meta-analysis of RCTs. Clin. Orthop. Relat. Res. 2013, 471, 3645–3652. [Google Scholar] [CrossRef]
- Basford, J.R.; Malanga, G.A.; Krause, D.A.; Harmsen, W.S. A randomized controlled evaluation of low-intensity laser therapy: Plantar fasciitis. Arch. Phys. Med. Rehabil. 1998, 79, 249–254. [Google Scholar] [CrossRef]
- Powell, M.; Post, W.R.; Keener, J.; Wearden, S. Effective treatment of chronic plantar fasciitis with dorsiflexion night splints: A crossover prospective randomized outcome study. Foot Ankle Int. 1998, 19, 10–18. [Google Scholar] [CrossRef]
- Kamel, M.; Kotob, H. High frequency ultrasonographic findings in plantar fasciitis and assessment of local steroid injection. J. Rheumatol. 2000, 27, 2139–2141. [Google Scholar] [PubMed]
- Kane, D.; Greaney, T.; Bresnihan, B.; Gibney, R.; FitzGerald, O. Ultrasound guided injection of recalcitrant plantar fasciitis. Ann. Rheum. Dis. 1998, 57, 383–384. [Google Scholar] [CrossRef]
- Gudeman, S.D.; Eisele, S.A.; Heidt, R.S., Jr.; Colosimo, A.J.; Stroupe, A.L. Treatment of plantar fasciitis by iontophoresis of 0.4% dexamethasone. A randomized, double-blind, placebo-controlled study. Am. J. Sports Med. 1997, 25, 312–316. [Google Scholar] [CrossRef]
- Japour, C.J.; Vohra, R.; Vohra, P.K.; Garfunkel, L.; Chin, N. Management of heel pain syndrome with acetic acid iontophoresis. J. Am. Podiatr. Med. Assoc. 1999, 89, 251–257. [Google Scholar] [CrossRef]
- Lafuente-Guijosa, A.; O’Mullony-Muñoz, I.; Escribá-de-La-Fuente, M.; Cura-Ituarte, P. Tratamiento de la fascitis plantar: Revisión del tratamiento basado en la evidencia. Reumatol. Clin. 2007, 3, 159–165. [Google Scholar] [CrossRef]
- Ohshima, Y.; Shimizu, H.; Yanagishita, T.; Watanabe, D.; Tamada, Y.; Sugenoya, J.; Tsuda, T.; Matsumoto, Y. Changes in Na+, K+ concentrations in perspiration and perspiration volume with alternating current iontophoresis in palmoplantar hyperhidrosis patients. Arch. Dermatol. Res. 2008, 300, 595–600. [Google Scholar] [CrossRef]
- Montaser-Kouhsari, L.; Zartab, H.; Fanian, F.; Noorian, N.; Sadr, B.; Nassiri-Kashani, M.; Firooz, A. Comparison of intradermal injection with iontophoresis of abobotulinum toxin A for the treatment of primary axillary hyperhidrosis: A randomized, controlled trial. J Dermatol. Treat. 2014, 25, 337–341. [Google Scholar] [CrossRef]
- Kasha, P.C.; Banga, A.K. A review of patent literature for iontophoretic drug delivery and devices. Recent Pat. Drug Deliv. Formul. 2008, 2, 41–50. [Google Scholar] [CrossRef]
- Tupker, R.A.; Coenraads, P.J.; Zanen, P.; Schuttelaar, M.L. A Randomized controlled observer-blinded treatment of chronic foot eczema with iontophoresis and bath-PUVA. Acta Derm.-Venereol. 2013, 93, 456–460. [Google Scholar] [CrossRef]
- Eslamian, F.; Shakouri, S.K.; Jahanjoo, F.; Hajialiloo, M.; Notghi, F. Extracorporeal shock wave therapy versus local corticosteroid injection in the treatment of chronic plantar fasciitis, a single blinded randomized clinical trial. Pain Med. 2016, 17, 1722–1731. [Google Scholar] [CrossRef]
- Carreras-Regorigo, N. Eficacia de las ondas de choque en traumatología. Cuest. Fisioter. 2014, 43, 121–135. [Google Scholar]
- Liao, C.D.; Xie, G.M.; Tsauo, J.Y.; Chen, H.C.; Liou, T.H. Efficacy of extracorporeal shockwave therapy for knee tendinopathies and other soft tissue disorders: A meta-analysis of randomized controlled trials. BMC Musculoeskeletal Disorder. 2018, 19, 278–303. [Google Scholar] [CrossRef]
- Lohrer, H.; Nauck, T.; Dorn-Lange, N.V.; Schöll, J.; Vester, J.C. Comparison of radial versus focused extracorporeal shock waves in plantar fasciitis using functional measures. Foot Ankle Int. 2010, 31, 1–9. [Google Scholar] [CrossRef]
- Gerdesmeyer, L.; Henne, M.; Gobel, M.; Diehl, P. Physical principles and generation of shockwaves. In Extracorporeal Shockwave Therapy; Gerdesmeyer, L., Weil, L.S., Eds.; Data Trace Publishing Company: Towson, MD, USA, 2007; pp. 11–20. [Google Scholar]
- Gerdesmeyer, L.; Maier, M.; Haake, M.; Schmitz, C. Physicaltechnical principles of extracorporeal shockwave therapy (ESWT). Orthopade 2002, 31, 610–617. [Google Scholar] [CrossRef]
- Schuhfried, O.; Fialka-Moser, V. Iontophoresis in the treatment of pain. Wien Med. Wochenschr. 1995, 145, 4–8. [Google Scholar] [PubMed]
- Vaquer-Quiles, L.; Blasco-González, L.; Honrubia-Gozálvez, H.; Bayona-Bausset, V.L.; Villanueva-Pérez, J.; Asensio-Samper, G.; Cerdá-Olmedo, J.; de-Andrés-Ibañez, J. Iontoforesis en el abordaje del paciente con dolor crónico. Rev. Soc. Esp. Dolor. 2009, 16, 275–278. [Google Scholar] [CrossRef]
- Kim, C.; Cashdollar, M.R.; Mendicino, R.W.; Catanzariti, A.R.; Fuge, L. Incidence of plantar fascia ruptures following corticosteroid injection. Foot Ankle Spec. 2010, 3, 335–337. [Google Scholar] [CrossRef]
- Suzue, N.; Iwame, T.; Kato, K.; Takao, S.; Tateishi, T.; Takeda, Y.; Hamada, D.; Goto, T.; Takata, Y.; Matsuura, T.; et al. Plantar fascia rupture in a professional soccer player. J. Med. Investig. 2014, 61, 413–416. [Google Scholar] [CrossRef]
- Bezzant, J.; Stephen, R.; Petelenz, T.; Jacobsen, S. Painless cauterization of spider veins with the use of iontophoretic local anesthesia. J. Am. Acad. Dermatol. 1988, 19, 869–875. [Google Scholar] [CrossRef]
- Morral, A.; Urrútia, G.; Gich, I.; Ruiz, R.; Bonfill, X. Radial extracorporeal shock wave device appearance does not influence clinical outcomes: A randomized controlled trial. J. Rehabil. Med. 2019, 51, 201–208. [Google Scholar] [CrossRef]
- Saxena, A.; Hong, B.K.; Yun, A.S.; Maffulli, N.; Gerdesmeyer, L. Treatment of plantar fasciitis with radial soundwave ‘early’ is better tan after 6 months: A pilot study. J. Foot Ankle Surg. 2017, 56, 1361. [Google Scholar] [CrossRef]
- Storz Medical. Masterpuls MP100 Extracorporeal Shock Wave Therapy. pp. 1–11. Available online: https://www.ivexgroup.com/images/stories/pdf/01_Storz_Medical/Masterpuls_MP100.pdf (accessed on 18 March 2021).
- Wang, Y.-C.; Chen, S.-J.; Huang, P.-J.; Huang, H.-T.; Cheng, Y.-M.; Shih, C.-L. Efficacy of different energy levels used in focused and radial extracorporeal shockwave therapy in the treatment of plantar fasciitis: A Meta-analysis of randomized placebo-controlled trials. J. Clin. Med. 2019, 8, 1497. [Google Scholar] [CrossRef]
- Sweeting, D.; Parish, B.; Hooper, L.; Chester, R. The effectiveness of manual stretching in the treatment of plantar heel pain: A systematic review. J. Foot Ankle Res. 2011, 4, 19. [Google Scholar] [CrossRef]
- Reed, M.D.; Van-Nostran, W. Assessing pain intensity with the visual analog scale: A plea for uniformity. J. Clin. Pharmacol. 2014, 54, 241–244. [Google Scholar] [CrossRef]
- Redmond, A.C.; Crosbie, J.; Ouvrier, R.A. Development and validation of a novel rating system for scoring standing foot posture: The Foot Posture Index. Clin. Biomech. 2006, 21, 89–98. [Google Scholar] [CrossRef]
- Hurst, H.; Bolton, J. Assessing the clinical significance of change scores recorded on subjective outcome measures. J. Manipulative Physiol. Ther. 2004, 27, 26–35. [Google Scholar] [CrossRef]
- Rampakakis, E.; SteMarie, P.A.; Sampalis, J.S.; Karellis, A.; Shir, Y.; Fitzcharles, M.A. Real-life assessment of the validity of patient global impression of change in fibromyalgia. RMD Open 2015, 1, e000146, Erratum in RMD Open 2015, 1, e000146corr1. [Google Scholar] [CrossRef]
- Kesikburun, S.; Uran-Şan, A.; Kesikburun, B.; Aras, B.; Yaşar, E.; Tan, A.K. Comparison of ultrasound-guided prolotherapy versus extracorporeal shock wave therapy in the treatment of chronic plantar fasciitis: A randomized clinical trial. J. Foot Ankle Surg. 2022, 61, 48–52. [Google Scholar] [CrossRef]
- Jha, D.K.; Wongkaewpotong, J.; Chuckpaiwong, B. Effect of age and BMI on sonographic findings of plantar fascia. J. Foot Ankle Surg. 2023, 62, 125–128. [Google Scholar] [CrossRef]
- Vaamonde-Lorenzo, L.; Cuenca-González, C.; Monleón-Llorente, L.; Chiesa-Estomba, R.; Labrada-Rodríguez, Y.H.; Castro-Portal, A.; Archanco Olcese, M.; Garvin Ocampos, L. Aplicación de ondas de choque focales piezoeléctricas en el tratamiento de la fascitis plantar. Rev. Esp. Cir. Ortop. Traumatol. 2019, 63, 227–232. [Google Scholar] [CrossRef]
- Cleland, J.A.; Abbott, J.H.; Kidd, M.O.; Stockwell, S.; Cheney, S.; Gerrard, D.F.; Flynn, T.W. Manual physical therapy and exercise versus electrophysical agents and exercise in the management of plantar heel pain: A multicenter randomized clinical trial. J. Orthop. Sports Phys. Ther. 2009, 39, 573–585. [Google Scholar] [CrossRef]
- Burton, I. Combined extracorporeal shockwave therapy and exercise for the treatment of tendinopathy: A narrative review. Sports Med. Health Sci. 2021, 4, 8–17. [Google Scholar] [CrossRef]
- Wang, C.J. Extracorporeal shockwave therapy in musculoskeletal disorders. J. Orthop. Surg. Res. 2012, 7, 11. [Google Scholar] [CrossRef]
- Choi, I.J.; Jeon, J.H.; Choi, W.H.; Yang, H.E. Effects of extracorporeal shockwave therapy for mild knee osteoarthritis: A pilot study. Medicine 2023, 102, e36117. [Google Scholar] [CrossRef]
- Grecco, M.V.; Brech, G.C.; Greve, J.M. One-year treatment follow-up of plantar fasciitis: Radial shockwaves vs. conventional physiotherapy. Clinics 2013, 68, 1089–1095. [Google Scholar] [CrossRef]
- Razzano, C.; Carbone, S.; Mangone, M.; Iannotta, M.R.; Battaglia, A.; Santilli, V. Treatment of chronic plantar fasciitis with noninvasive interactive neurostimulation: A prospective randomized controlled study. J. Foot Ankle Surg. 2017, 56, 768–772. [Google Scholar] [CrossRef]
- Elía-Martínez, J.M.; Schmitt, J.; Tenias-Burillo, J.M.; Valero-Inigo, J.C.; Sánchez-Ponce, G.; Peñalver-Barrios, L.; García-Fenollosa, M.; Cortés-Fabregat, A. Comparación de la terapia de ondas de choque extracorpóreas focales y presiones radiales en la fascitis plantar. Rehabilitación 2020, 54, 11–18. [Google Scholar] [CrossRef]
- Melese, H.; Alamer, A.; Getie, K.; Nigussie, F.; Ayhualem, S. Extracorporeal shock wave therapy on pain and foot functions in subjects with chronic plantar fasciitis: A systematic review of randomized controlled trials. Disabil Rehabil. 2022, 44, 5007–5014. [Google Scholar] [CrossRef]
- Latt, L.D.; Jaffe, D.E.; Tang, Y.; Taljanovic, M.S. Evaluation and treatment of chronic plantar fasciitis. Foot Ankle Orthop. 2020, 5, 2473011419896763. [Google Scholar] [CrossRef]
- Auersperg, V.; Trieb, K. Extracorporeal shock wave therapy: An update. EFORT Open Rev. 2020, 5, 584–592. [Google Scholar] [CrossRef]
- Sun, K.; Zhou, H.; Jiang, W. Extracorporeal shock wave therapy versus other therapeutic methods for chronic plantar fasciitis. Foot Ankle Surg. 2020, 26, 33–38. [Google Scholar] [CrossRef]
- Coheña-Jiménez, M.; Pabón-Carrasco, M.; Pérez Belloso, A.J. Comparison between customised foot orthoses and insole combined with the use of extracorporeal shock wave therapy in plantar fasciitis, medium-term follow-up results: A randomised controlled trial. Clin. Rehabil. 2021, 35, 740–749. [Google Scholar] [CrossRef]
- Tognolo, L.; Giordani, F.; Biz, C.; Bernini, A.; Ruggieri, P.; Stecco, C.; Frigo, A.C.; Masiero, S. Myofascial points treatment with focused extracorporeal shock wave therapy (f-ESWT) for plantar fasciitis: An open label randomized clinical trial. Eur. J. Phys. Rehabil. Med. 2022, 58, 85–93. [Google Scholar] [CrossRef]
- Ibrahim, M.I.; Donatelli, R.A.; Hellman, M.; Hussein, A.Z.; Furia, J.P.; Schmitz, C. Long-term results of radial extracorporeal shock wave treatment for chronic plantar fasciopathy: A prospective, randomized, placebo-controlled trial with two years follow-up. J. Orthop. Res. 2017, 35, 1532–1538. [Google Scholar] [CrossRef]
- Liang, H.W.; Wang, T.G.; Chen, W.S.; Hou, S.M. Thinner plantar fascia predicts decreased pain after extracorporeal shock wave therapy. Clin. Orthop. Relat. Res. 2007, 460, 219–225. [Google Scholar] [CrossRef]
- Lai, T.W.; Ma, H.L.; Lee, M.S.; Chen, P.M.; Ku, M.C. Ultrasonography and clinical outcome comparison of extracorporeal shock wave therapy and corticosteroid injections for chronic plantar fasciitis: A randomized controlled trial. J. Musculoskelet. Neuronal Interact. 2018, 18, 47–54. [Google Scholar] [PubMed]
- Brown, C.D.; Lauber, C.A.; Cappaert, T. The effect of dexamethasone iontophoresis on decreasing pain and improving function in patients with musculoskeletal conditions. J. Sport Rehabil. 2015, 24, 327–331. [Google Scholar] [CrossRef]
- Osborne, H.R.; Allison, G.T. Treatment of plantar fasciitis by LowDye taping and iontophoresis: Short term results of a double blinded, randomised, placebo controlled clinical trial of dexamethasone and acetic acid. Br. J. Sports Med. 2006, 40, 545–549. [Google Scholar] [CrossRef]
- Cotchett, M.; Frescos, N.; Whittaker, G.A.; Bonanno, D.R. Psychological factors associated with foot and ankle pain: A mixed methods systematic review. J. Foot Ankle Res. 2022, 15, 10. [Google Scholar] [CrossRef]
Characteristic | Total N (%) (N = 127) | Experimental Group A N (%) (N = 63) (Iontophoresis) | Control Group B N (%) (N = 64) (rESWT) | p-Value | |
---|---|---|---|---|---|
Sex b | Female | 56 (44.1) | 26 (41.9) | 30 (46.2) | 0.632 |
Male | 71 (55.9) | 36 (58.1) | 35 (53.8) | ||
FPI b | Pronation | 95 (74.8) | 49 (78.0) | 46 (70.8) | 0.139 |
Highly pronated | 17 (13.4) | 9 (14.6) | 8 (12.3) | ||
Neutro | 5 (3.9) | 0 (0.0) | 5 (7.7) | ||
Supinated | 10 (7.9) | 4 (7.3) | 6 (9.2) | ||
BMI (Kg/m2) c Mean ± SD | 27.1 ± 2.4 | 27.0 ± 2.4 | 27.1 ± 2.3 | 0.896 | |
Age (years) a Mean ± SD | 50.1 ± 10.3 | 51.5 ± 11.6 | 48.8 ± 8.7 | 0.141 | |
Initial thickness fascia (mm) c Mean ± SD | 4.2 ± 0.8 | 4.2 ± 0.7 | 4.3 ± 0.4 | 0.521 | |
VAS baseline c Mean ± SD | 8.6 ± 0.8 | 8.5 ± 0.7 | 8.7 ± 0.8 | 0.174 | |
EQ-5D (thermometer scale) c Mean ± SD | 30.5 ± 8.5 | 29.4 ± 7.7 | 31.61 ± 9.0 | 0.133 |
VAS (N = 127) | T0 | T1 | T2 | T3 | T4 | T5 | Fascia Thickness T4 | EQ-5D (Thermometer Scale) T5 | |
---|---|---|---|---|---|---|---|---|---|
Experimental Group A (N = 63) | Mean ± SD | 8.5 ± 0.7 | 6.5 ± 1.6 | 5.1 ± 1.7 | 3.8 ± 1.5 | 2.5 ± 1.4 | 2.4 ± 1.2 | 3.4 ± 0.6 | 56.2 ± 10.3 |
95%CI | 8.3–8.7 | 6.1–6.9 | 4.7–5.5 | 3.4–4.2 | 2.2–2.9 | 2.0–2.6 | 3.2–3.6 | 53.6–58.9 | |
MCDI | - | - | 5.50 | - | - | - | 2.05 | - | |
Control Group B (N = 64) | Mean ± SD | 8.7 ± 0.8 | 4.8 ± 1.6 | 1.0 ± 0.9 | 0.1 ± 0.3 | 0.0 ± 0.0 | 0.0 ± 0.0 | 3.0 ± 0.2 | 67.0 ± 9.4 |
95%CI | 8.5–8.9 | 4.4–5.2 | 0.8–1.2 | 0.0–0.1 | 0.0–0.0 | 0.0–0.0 | 3.0–3.1 | 64.7–69.3 | |
MCDI | - | - | 6.0 | - | - | - | 3.10 | - | |
Overall significance in time | p-value | 0.174 | ≤0.0001 *** | ≤0.0001 *** | ≤0.0001 *** | ≤0.0001 *** | ≤0.0001 *** | ≤0.0001 *** | ≤0.0001 *** |
Experimental Group A (N = 63) comparison in pair-significance | T0 vs. T1, T2, T3, T4, T5 | T1 vs. T0, T2, T3, T4, T5 | T2 vs. T0, T1, T3, T4, T5 | T3 vs. T0, T1, T2, T4, T5 | T4 vs. T0, T1, T2, T5 | T5 vs. T0, T1, T2, T4 | - | - | |
Group B (N = 64) (ESWT) comparison in pair-significance | T0 vs. T1, T2, T3, T4, T5 | T1 vs. T0, T2, T3, T4, T5 | T2 vs. T0, T1, T3, T4, T5 | T3 vs. T0, T1, T2, T5 | T4 vs. T0, T1, T2, T3 | T5 vs. T0, T1, T2, T3 | - | - |
Very Much Improved | Much Improved | Minimally Improved | No Change | Minimally Worse | Much Worse | Very Much Worse | p-Value | |
---|---|---|---|---|---|---|---|---|
PGIC-I T4 (Iontophoresis) | 23 (37.1) | 24 (38.7) | 15(24.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | ≤0.0001 *** |
PGIC-I T4 (ESWT) | 54 (83.1) | 11 (16.9) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
EuroQol-5D Items | Experimental Group A (IONTOFORESIS) | Control Group B (rESWT) | ||||
---|---|---|---|---|---|---|
Baseline N (%) | Endpoint N (%) | p-Value | Baseline N (%) | Endpoint N (%) | p-Value | |
EuroQol-5D/Mobility | ||||||
1. I have no trouble walking. | 10 (15.9) | 58 (92.1) | p < 0.001 c | 10 (15.6) | 54(84.4) | p < 0.001 b |
2. Some difficulty walking. | 42 (66.7) | 5 (7.9) | 45 (70.3) | 10 (15.6) | ||
3. I have to stay in bed. | 11 (17.5) | 0 (0) | 9 (14.1) | 0 (0) | ||
EuroQol-5D/Self-care | ||||||
1. I have no issues with self-care. | 15 (23.8) | 53 (84.1) | p < 0.004 b | 17 (26.5) | 60 (93.8) | p < 0.001 c |
2. Some difficulty with self-care. | 44 (69.8) | 9 (14.3) | 43 (67.2) | 4 (6.2) | ||
3. I am unable to perform self-care. | 4 (6.3) | 1 (1.6) | 4 (6.3) | 0 (0) | ||
EuroQol-5D/Daily activity | ||||||
1. I have no issues with daily activities. | 5(9.4) | 47 (74.6) | p < 0.023 b | 12 (18.8) | 51 (79.7) | p < 0.001 b |
2. Some difficulty with daily activities. | 56 (87.5) | 16 (25.4) | 49 (81.2) | 13 (20.3) | ||
3. I am unable to perform daily activities. | 2 (3.1) | 0 (0) | 3 (0) | 0 (0) | ||
EuroQol-5D/Pain | ||||||
1. No pain or discomfort. | 0 (0) | 41 (65.1) | p < 0.004 c | 0 (0) | 56 (87.45) | p < 0.001 c |
2. Moderate pain or discomfort. | 33 (52.4) | 19 (30.2) | 30 (46.9) | 7 (10.9) | ||
3. Severe pain or discomfort. | 30 (47.6) | 3 (4.8) | 34 (53.1) | 1 (1.6) | ||
EuroQol-5D/Anxiety | ||||||
1. Not anxious or depressed. | 33 (52.4) | 47 (74.6) | p < 0.001 c | 15 (23.4) | 35 (54.7) | p < 0.006 b |
2. Moderately anxious or depressed. | 21 (33.3) | 9 (14.3) | 33 (51.6) | 19 (29.7) | ||
3. Very anxious or depressed. | 9 (14.3) | 7 (11.1) | 16 (25.0) | 10 (15.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pabón-Carrasco, M.; Coheña-Jiménez, M.; Pérez-Belloso, A.J.; Algaba-del-Castillo, J.; Cáceres-Matos, R.; Castro-Méndez, A. Comparison of the Short-Term Effect between Iontophoresis and Radial Extracorporeal Shockwave Therapy in the Treatment of Plantar Fasciitis: A Randomized Controlled Trial. Healthcare 2024, 12, 1223. https://doi.org/10.3390/healthcare12121223
Pabón-Carrasco M, Coheña-Jiménez M, Pérez-Belloso AJ, Algaba-del-Castillo J, Cáceres-Matos R, Castro-Méndez A. Comparison of the Short-Term Effect between Iontophoresis and Radial Extracorporeal Shockwave Therapy in the Treatment of Plantar Fasciitis: A Randomized Controlled Trial. Healthcare. 2024; 12(12):1223. https://doi.org/10.3390/healthcare12121223
Chicago/Turabian StylePabón-Carrasco, Manuel, Manuel Coheña-Jiménez, Ana Juana Pérez-Belloso, José Algaba-del-Castillo, Rocío Cáceres-Matos, and Aurora Castro-Méndez. 2024. "Comparison of the Short-Term Effect between Iontophoresis and Radial Extracorporeal Shockwave Therapy in the Treatment of Plantar Fasciitis: A Randomized Controlled Trial" Healthcare 12, no. 12: 1223. https://doi.org/10.3390/healthcare12121223
APA StylePabón-Carrasco, M., Coheña-Jiménez, M., Pérez-Belloso, A. J., Algaba-del-Castillo, J., Cáceres-Matos, R., & Castro-Méndez, A. (2024). Comparison of the Short-Term Effect between Iontophoresis and Radial Extracorporeal Shockwave Therapy in the Treatment of Plantar Fasciitis: A Randomized Controlled Trial. Healthcare, 12(12), 1223. https://doi.org/10.3390/healthcare12121223